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Abstract

We consider the centralized, anchor-free sensor localiza-
tion problem. We consider the case where the sensor
network reports range information and the case where
in addition to the range, we also have angular informa-
tion about the relative order of each sensor’s neighbors.
We experimented with classic and new force-directed
techniques. The classic techniques work well for small
networks with nodes distributed in simple regions. How-
ever, these techniques do not scale well with network
size and yield poor results with noisy data. We describe
a new force-directed technique, based on a multi-scale
dead-reckoning, that scales well for large networks, is re-
silient under range errors, and can reconstruct complex
underlying regions.

1 Introduction

Wireless sensor networks are used in many applications,
from natural habitat monitoring to earthquake detec-
tion; see [1] for a survey. Often, the actual location of
the sensors is not known but is necessary for the under-
lying application, e.g., determining the epicenter of a
quake. Further, the location of the sensors can be used
to design efficient network routing algorithms [13].
Abstractly, the sensor localization problem can be
thought of as a graph layout problem. The true state
of the underlying sensor network is captured by a lay-
out D of the source graph G. Given partial information
about G (adjacency information, possibly information
about edge lengths, or angles between adjacent neigh-
bors), we would like to construct a layout D of G that
matches D as well as possible. There are many varia-
tions of the problem, depending on the quality of the
edge length data (obtained using signal strength), or
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whether some of the vertices know their exact positions
(GPS-equipped sensors), or whether the vertices can
detect the relative order of their neighbors (obtained
by using multiple antennas per sensor). Centralized
and distributed algorithms have both been proposed for
these problems.

Sensors typically have a range that allows them to
detect other sensors that fall in that range, thus pro-
viding adjacency information for the underlying graph.
The strength of the signal, or the time of arrival of
the signal are typically used to estimate the actual dis-
tance between two sensors. However, sensing neighbors
is far from perfect, especially close to the limits. Sen-
sors equipped with GPS are often called anchors and
while they make the localization problem easier, they
are bulky and expensive. Anchor-free sensor networks
are more practical but pose greater challenges in local-
ization.

Sensors equipped with multiple antennas can pro-
vide angular information by reporting the relative order
of their neighbors or an estimate on the angle between
adjacent neighbors. Multiple antennas add to the cost
and size of the sensor, but not nearly as much as in
the case of GPS. Once again, the angular information is
not perfect, but even allowing for some errors, angular
information can be used to find good localizations.

In this paper we focus on the centralized sensor
localization problem for anchor-free networks. We
consider the cases with or without angular information.
We also consider different types of underlying regions
for the sensor network: simple convex polygons, simple
non-convex polygons, and non-simple polygons. Classic
force-directed methods can be augmented to take into
account the edge length information. This approach
works well for small graphs of up to fifty or so vertices,
provided that the graphs are well-connected. For



larger graphs, the simple force-directed algorithms fail
to reconstruct the vertex locations. We show that
multi-scale versions of the force-directed algorithms
can extend the utility of these algorithms to graphs
with hundreds of vertices, provided that the graphs
are defined inside simple convex polygons. Finally,
we describe a new multi-scale force-directed approach
that incorporates the angular information in a dead-
reckoning fashion. This approach can extend the utility
of multi-scale force-directed algorithms to graphs with
thousands of vertices, defined inside non-convex and
even non-simple polygons.

1.1 Related Work

In the last decade the sensor localization problem has
received a great deal of attention in the networks
and wireless communities, due to the lowering of the
production cost of miniature sensors and due to the
numerous practical applications, such as environmental
and natural habitat monitoring, smart rooms and robot
control [1]. Several recent approaches have exploited
the natural connections with graph layout algorithms.
Priyantha et al. [15] propose a new distributed anchor-
free layout technique, based on force-directed methods.
Gotsman and Koren [9] utilize a stress majorization
technique in their distributed method. Neither of
these approaches assumes that angular information is
available and as a consequence these algorithms need
additional assumptions to achieve good results (both
approaches assume that sensors are distributed in a
simple convex polygon, and Priyantha et al. assume
that the graph is rigid).

Most of the algorithms that do utilize angular infor-
mation, assume that a fraction of the sensors is GPS-
equipped. Doherty et al. [3] formulate the sensor lo-
calization problem as a linear or semidefinite program
based on both adjacency and angular information. Sav-
vides et al. [17] describe an ad-hoc localization system
(AHLoS) which employs an anchor-based algorithms for
sensor localization using both edge length and angu-
lar information. Savarese et al. [16] and Niculescu and
Nath [14] describe anchor-based algorithms for sensor
localization utilizing edge lengths information. Fekete
et al. [4] use a combination of stochastic, topological,
and geometric ideas for determining the structure of
boundary nodes of the region, and the topology of the
region.

1.2 Our Contributions

We focus on centralized force-directed sensor localiza-
tion algorithms for anchor-free networks. We consider
two variations of the problem: one in which the input
contains (noisy) edge lengths information and the other

in which the input also contains (noisy) angular infor-
mation. We perform experiments by varying the sizes
of the graphs, in terms of number of vertices and edge
density (average vertex degree). We also consider differ-
ent types of shapes for the region in which the sensors
are distributed: simple convex polygons, simple non-
convex polygons, and non-simple polygons. Finally, we
measure two types of performance metrics: the global
quality of the layout and the structure of the boundary
of the region.

We describe one new force-directed technique and
adapt several standard force-directed technique to the
centralized sensor localization problem. Two standard
force-directed techniques are those of Fruchterman-
Reingold [6] and Kamada-Kawai [11]. If we are
only given adjacency information about the underlying
graph, these algorithms fail to solve the sensor localiza-
tion problem even for small graphs. Incorporating the
(noisy) edge lengths information works surprisingly well
for graphs defined inside simple convex regions.

For larger graphs, the multi-scale graph layout
algorithms [7] perform better. However, even these
techniques fail to reconstruct graphs defined in non-
simple, or non-convex regions.

With the aid of (noisy) angular information, we can
extend the utility of multi-scale graph layout algorithms
to large graphs with complicated underlying regions.
In particular, we show that the new multi-scale dead-
reckoning algorithm performs well and is tolerant to
non-trivial noise for large networks defined in non-
simple and non-convex regions.

2 Algorithms, Metrics, and Experiments

In this section we briefly describe the algorithms we
implemented, the metrics used to evaluate performance,
and our experimental setup.

2.1 Algorithms

We implemented and tested six force-directed al-
gorithms:  Fruchterman-Reingold Algorithm (FR),
Kamada-Kawai  Algorithm  (KK), Fruchterman-
Reingold Range Algorithm (FRR), Kamada-Kawai
Range Algorithm (KKR), Multi-Scale Kamada-Kawai
Range Algorithm (MSKKR) and Multi-Scale Dead-
Reckoning Algorithm (MSDR). The first two utilize
only the graph adjacency information. The next three
utilize the graph adjacency information and the edge
lengths (range) information. The last algorithm utilizes
the graph adjacency information, the edge lengths
(range) information and the angular information.
Details about these algorithms are provided in the next
section.



2.2 Metrics

We compare the performance of various algorithms
on different underlying graphs, varying the number of
vertices, edge density, as well as the types of regions
in which the graphs are defined. We also vary the
amount of error in both the edge length and angular
information. We implemented six different metrics
to capture the performance of the algorithms, some
intended to measure the global quality of the layout
and the others measuring the quality of the boundary.
In this paper, we report the results using the Frobenius
metrics for comparing the layouts globally and the
BAR metric for comparing the quality of the boundary
reconstruction.

The global quality metrics attempt to measure how
the layout D created by a given algorithm matches the
source layout D. In particular, the Frobenius metric [8]
is equivalent to the Frobenius norm of a matrix M whose
entries are:

M.

i = ;

where n is the number of sensors, d;; is the actual
distance between sensors ¢ and j in D, and cfij is the
distance between those sensors in the layout D. Thus,
we can measure the global quality of the layout!® in terms
of the Frobenius error:
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The boundary alignment ratio (BAR) is the sum-of-
squares normalized error value of a boundary matching.
Given the true layout D, we compute its boundary and
then compute an approximation by taking a sample of
the boundary points B. We compute the same size
sample B of the boundary of the layout D produced by
our algorithm. We then apply the iterative closest point
algorithm (ICP) [2] to align the two boundaries using
rotation and translation. The boundary alignment ratio
is defined as:
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TThe global energy ratio (GER) defined by Priyantha et al. [15]
is similar to the Frobenius metric:

( ) 2
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‘While appropriate for comparing the layouts obtained by different
algorithms for graphs of the same size, the GER metric is not well-
suited to compare the quality of the layout across different graph
sizes.

GER =
n(n -1)/

The ICP algorithm first computes a match p — p for
each point p € B’, based on nearest neighbors. Next, the
ICP algorithm aligns the two layouts D and D as well as
possible using the BAR metric. This process of nearest-
neighbor computation and alignment is repeated until
the improvement in the BAR score becomes negligible.

2.3 Experiments

Since we did not have actual sensors to work with,
we wrote a plugin for our graph visualization system,
Graphael [5], that simulates the placement of the sen-
sors and the reported information from each. Our sensor
data generator takes the following parameters as input:
number of sensors, average connectivity (density), re-
gion to place the sensors in (square-shape, star-shape,
etc.), range error, and angle error. All of our regions
have the same area so that the size of the region does
not affect the performance metric results.

Our data generator fills the region with the given
number of sensors placed at random inside it. Then
the distances between all pairs of sensors are computed
so that we can determine the sensor range that will
give us the desired average connectivity. Finally, we
connect the sensors that are within the determined
sensor range and report the distance between them
after incorporating the range error into the actual
distances. The range error specifies standard deviation
(in percentage) about 100% of the true edge length using
Gaussian distribution.

Next we compute the angular information. Each
sensor chooses a random direction to be called “north.”
Then, the sensor detects the clockwise angle from north
that each of its neighbors are located at, and angle error
is factored in. We then sort these edges by reported
angle and generate a mapping from each edge to its
next clockwise edge about the node, and store with it
the angle to that edge. This procedure guarantees that
although error may be present in the reported data,
the sum of the reported angles between edges is equal
to 360°. Angle error specifies standard deviation (in
degrees) about the actual angle from a sensor’s declared
“north” to an edge using Gaussian distribution.

3 Force-Directed Algorithms for Localization

Some of the most flexible algorithms for calculating
layouts of simple undirected graphs belong to a class
known as force-directed algorithms. Also known as
spring embedders, such algorithms calculate the layout
of a graph using only information contained within the
structure of the graph itself. In general, force-directed
methods define an objective function which maps each
graph layout into a number in RT representing the
energy of the layout. This function is defined in such a



Figure 1: Typical results illustrating input/output/boundary-allignment for KK (top) and FR (bottom) for graphs with 200

vertices inside square and star-shape regions, respectively.

way that low energies correspond to layouts in which
adjacent nodes are near some pre-specified distance
from each other, and in which non-adjacent nodes are
well-spaced. A layout for a graph is then calculated
by finding a (often local) minimum of this objective
function.

The Fruchterman-Reingold (FR) algorithm [6] de-
fines an attractive force function for adjacent vertices
and a repulsive force function for non-adjacent vertices.
The vertices in the layout are repeatedly moved accord-
ing to this function until a low energy state is reached.
FR, relies on edgeLength: the unweighted “ideal” dis-
tance between two adjacent vertices. The displace-
ment of a vertex v of G is calculated by Frgr(v) =
Fa,FR + FT,FR7 where:

diStRn (u, U) 2
edgeLength?

Iy rr = Z

u€Adj(v)

(pos[u] — pos[v]),

edgeLength?
S - — .
dist gn (1, v)2

F.rr = Z

u€Adj(v)

(posfu] — posv]).

Alternatively, forces between the nodes can be com-
puted based on their graph theoretic distances, deter-
mined by the lengths of shortest paths between them.
The Kamada-Kawai (KK) algorithm [11] uses spring
forces proportional to the graph theoretic distances.
The displacement of a vertex v of G is calculated by
F KK (U):

Z dist gn (u, v)?

Vugo (distg(u,v)2 - edgeLength?

- 1> (pos[u] —pos[v]).

Since neither FR, nor KK use the range informa-
tion, the resulting layouts D are not of the same scale?
as the original graph layout D. Still, for small graphs
(50-100 vertices) in simple underlying regions these al-

gorithms often manage to reconstruct the underlying

2The notions of “scale” and “scalability” can be confusing.
In this context, “scale” refers to the edge lengths of the graph.
In general, when we refer to “scalable algorithms” we mean
algorithms whose performance does not degrade with larger input
sizes as measured by the number of vertices and edges in the input
graphs. Finally, when we refer to “multi-scale” algorithms we
mean multi-level, multi-stage type algorithms.



Figure 2: Typical results illustrating input/output/boundary-allignment for KKR (top) and FRR (bottom) for graphs with 1000
vertices, density 8, range error 10%, angle error 10°, inside U-shape and donut-shape regions, respectively.

structure, as well as the boundaries. For larger graphs
these algorithms exhibit the typical problems of fold-
over and global distortion; see Fig. 1. To address the
scale issue, we extend these algorithms to take into ac-
count the range information.

3.1 Range Extensions

In range version of the Fruchterman-Reingold al-
gorithm, FRR, the forces are defined by Frrr(v) =
Forrr + Frrrr. The difference between the FR
and FRR algorithms is in the definition of edgeLength.
While in FR the ideal edgeLength was the same for all
edges, in FRR edgeLength is different for different edges
and is defined by the reported distance between the cor-
responding pair of vertices. In a sensor network setup,
this information comes from the range of the sensors
and strength-of-signal or time-of-arrival data.

In the range version of Kamada-Kawai, KKR, we
incorporate the range data and use the weighted graph
distance instead of the unweighted graph distance,
distg(u,v). Similar to KKR, the weight of the edges

comes from the range of the sensors and strength-of-
signal or time-of-arrival data.

FRR and KKR perform well on some graphs and
not so well on others; see Fig. 2. FRR works well for
small graphs of fifty to one hundred vertices, defined in
simple convex shapes. However, larger graphs pose seri-
ous problems as FRR often settles in a local minimum.
KKR, performs well on many large graphs, given enough
iterations. Yet, KKR performs poorly on graphs defined
in non-convex shapes. As we show in Section 4 the poor
performance on non-convex shapes of algorithms based
on the Kamada-Kawai approach can be addressed with
the help of angular information.

3.2 Multi-Scale Extensions

One of the problems with the -classic force-
directed algorithms, such as Fruchterman-Reingold and
Kamada-Kawai, is that they typically do not scale to
larger graphs. One way to avoid this problem is to
use multi-scale variants of these algorithms. In par-
ticular, multi-scale variants of the Kamada-Kawai algo-
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Figure 3: Comparison between FRR, KKR, MSKKR, and MSDR algorithms measured by the Frobenius metric across square-
shape, star-shape, U-shape, and donut-shape graphs with 50 to 1000 vertices. There were twenty trials per shape, using graphs

with density 8, range error of 20% and angle error of 10°.

rithm have already been shown to produce good results
in traditional graph drawing setting [7, 10]. Our multi-
scale algorithm, MSKKR, uses these ideas to extend the
utility of KKR to larger graphs.

The MSKKR. algorithm relies on a filtration of the
vertices, intelligent placement, and multi-scale refine-
ment. Given G = (V, E), we use a maximal indepen-
dent set filtration F: V=V D> V3 D ...,D Vi D0,
such that each V; is a maximal subset of V;_; for which
the graph distance between any pair of vertices is at
least 2071 + 1. It is easy to see that given this definition
k= O(logn).

The vertices in V) are placed first, based on an
estimate of their graph distances. Then the vertices in
each successive set in the filtration are placed based on
their graph distances from the vertices that have already
been placed, followed by a refinement of the current
layout. Details of this approach are discussed in [7].

While the quality of the layouts obtained by KKR
are comparable to those obtained by MSKKR, the

multi-scale approach is much faster and offers a better
chance of getting right some of the global details of the
placement. As the charts in Fig. 3 indicate, MSKKR
performs especially well for star-shapes and donut-
shapes. The same figure indicates that just as KKR,
MSKKR has problems with U-shape graphs that the
next algorithm can address.

4 Multi-Scale Dead-Reckoning Algorithm

The KK, KKR, and MSKKR algorithms use either the
graph theoretical distance or a weighted version of this
distance when the range data is taken into account.
This approach provides layouts that typically match
the underlying graphs. Non-convex underlying shapes,
however, yield poor results even for MSKKR. This is a
problem exhibited by all of the algorithms considered
so far.

Consider the sensor network obtained by distribut-
ing sensors in a U-shape region. Both the Kamada-



Figure 4: A typical problem with graphs defined in non-convex shapes. Input/output/boundary-allignment for MSKKR for a
graph with 1000 vertices, density 8, range error of 10% and angle error of 10°.

Kawai and Fruchterman-Reingold style algorithm would
typically produce layouts in which the bends have been
straightened; see Fig. 4. This is not a flaw of the al-
gorithms but a byproduct of the way they compute the
layouts as both of these algorithms attempt to place
vertices whose graph distances are large, as far away
from each other as possible. Pairs of vertices at the tips
of the U-shape are at maximum graph distance from
each other, but their Euclidean distance is small. Thus,
to be able to reconstruct layouts of graphs defined in
non-convex or non-simple regions, we need additional
information. Most previous approaches rely on anchors
(vertices with GPS) but these are too costly and bulky.
Instead, angular information (if available) can be used
with great effect to improve the quality of the layouts.
With this in mind, we propose the multi-scale dead-
reckoning (MSDR) algorithm.

4.1 Dead-Reckoning

Dead-reckoning has been used for centuries as a
method of estimating the current position of a moving
object by applying the direction and distance traveled
to a previously determined position [12]. It is a common
method for calculating the position of a mobile robot,
using the robot’s measurements of traveled distance and
turns made. Although the problem we are considering
is a static problem, we can use this technique to obtain
better estimates for the relative positions of two distant
sensor nodes. Given range and angular information, we
can compute the distance between two vertices x and
y in the graph using this idea. We call that distance
dr(x,y).

Suppose we want to calculate the dead-reckoning
distance from vertex A to a vertex D. Let node C be D’s
predecessor in the shortest path from A to D, and let

B be C’s predecessor; see Fig. 5. Assume that dr(A, B)
and dr(A, C) have already been calculated and that we
also know the orientation of ABCA. The /BCD is also
known since the angle between edges on node C' is part
of the source data, and the lengths of the edges from B
to C and from C to D are known as well. To reduce
the number of special cases, we convert this angle to a
clockwise angle by negating it if it’s counter-clockwise.

Ultimately, we want to calculate ZACD so that we
can determine dr(A, D) via the law of cosines. To do

this, we first compute /BCA using the law of cosines:
dr(A, B)? = edge(B,C)? +dr(A,C)? — 2xedge(B, C) *

dr(A,C) * cos(L/BCA):

/BCA = cos™ (Edge(Bv C)? + dr(A,C)? — dr(A, B)2>

2 xedge(B,C) xdr(A,C)

To determine the clockwise angle / AC'D, we must either
add or subtract ZBCA to/from /BCD, depending on
the orientation of ABCA. If ABCA is clockwise, we
simply add the two. If ABCA is counter-clockwise,
then the angles overlap and we must therefore take their
difference. Put another way, we can just convert /BC A

Figure 5: In the BFS path from vertex A to D, the predecessor
of D is C' and the predecessor of C is B.
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to a clockwise angle and add it to ZBCD, then wrap it
so that it is in the range [0°,360°).

Now we know the following useful information:
dr(A,C), LACD, and edge(C,D). Using the law of
cosines again, we can compute the distance from A to
D: dr(A, D)? = dr(A, C)? +edge(C, D)? —2xdr(A,C) *
edge(C, D) x cos(LACD). Although /ACD may be
over 180°, the law of cosines still yields the proper
DR distance (the law of cosines yields the same result
for the clockwise angle which is greater than 180° and
the counter-clockwise angle which is less than 180°).
After the DR distance has been computed, we save the
orientation of AACD (determined by whether or not
LACD is greater than 180°) so that we can reference it
when calculating the DR distance to further nodes.

There are two base cases that must be considered
separately. For nodes adjacent to the starting node,
the edge length is the DR distance and no further
computation is necessary. For nodes that are 2 edges
away from the starting node, ZACD is already known

and does not need to be calculated. Therefore, only the
final law of cosines used in our algorithm needs to be
applied to find dr(A4, D).

4.2 MSDR Performance

Putting together the dead-reckoning idea with the
multi-scale range-based Kamada-Kawai algorithm re-
sults in our MSDR algorithm. Not surprisingly, it out-
performs all of the algorithms discussed earlier in the
paper, given small angle errors; see Fig. 3.

Comparing MSKKR to MSDR shows that MSDR
with angle errors of less than 10° consistently performs
better; see Fig 6. Since MSKKR does not depend on
angle errors and is resilient to range-errors it produces
stable results for in most of the experiments, with
the exception of the U-shape. MSDR’s performance
depends heavily on the angle errors and less on the
range errors. For non-convex shapes such as the U-
shape, MSDR offers significant advantages even with



50% range error and 25° angle error.

Layouts obtained with the MSDR algorithm using
small angle and range errors often match near-perfectly
the given source graphs; see Fig. 7.

The quality of the layouts under varying range
and angular errors is captured in Figs. 89. Under
the Frobenius metric, the algorithm seems stable for
range errors of less than 30% and angular errors of
less than 10°. As expected, the effect of angular
errors is more pronounced; see Fig. 8. MSDR also
captures the boundary of the underlying region very
well. Experiments with the BAR metric also confirm
that the MSDR is stable under range errors of up to
30%; see Fig. 9.

5 Conclusions and Future Work

We presented several adaptations of force-directed
graph layout algorithms for the centralized, anchor-
free sensor localization problem. We also presented a
new approach that takes advantage of angular infor-
mation, based on dead-reckoning and multi-scale tech-
niques. Our results indicate that incorporating angular
information can significantly improve the performance
of force-directed sensor localization approaches. All of
these algorithms as well as the simulation that gener-
ates the data have been implemented as a part of the
Graphael [5] system.

The results presented in this paper are for cen-
tralized algorithms, whereas distributed algorithms for
the sensor localization problem are more desirable. We
plan to explore the possibility of developing practical
distributed variants of the two multi-scale algorithms,
MSKKR and MSDR.
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Figure 7: Typical results illustrating input/output/boundary-allignment for MSDR on square-shape, star-shape, U-shape, and
donut-shape graphs. The underlying graphs have 1000 vertices, density 8, range error of 10% and angle error of 10°.
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Figure 8: Frobenius metric error tolerance for MSDR across square-shape, star-shape, U-shape, and donut-shape graphs. There
were twenty trials for each experiment using graphs with 1000 vertices, density 8 and varying the range and angle errors.
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Figure 9: BAR metric error tolerance for MSDR across square-shape, star-shape, U-shape, and donut-shape graphs. There
were twenty trials for each experiments using graphs with 1000 vertices, density 8 and varying the range and angle errors.



