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Abstract

An (α, β)-covered object is a simply connected planar region c with the property
that for each point p ∈ ∂c there exists a triangle contained in c and having p as a
vertex, such that all its angles are at least α and all its edges are at least β · diam(c)-
long. This notion extends that of fat convex objects. We show that the combinatorial
complexity of the union of n (α, β)-covered objects of ‘constant description complexity’
is O(λs+2(n) log2 n log log n), where s is the maximum number of intersections between
the boundaries of any pair of the given objects.

1 Introduction

A planar object c is (α, β)-covered if the following conditions are satisfied.

1. c is simply-connected;

2. For each point p ∈ ∂c we can place a triangle ∆ fully inside c, such that p is a vertex of
∆, each angle of ∆ is at least α, and the length of each edge of ∆ is at least β ·diam(c).
We call such a triangle ∆ a good triangle for c.

The notion of (α, β)-covered objects generalizes the notion of convex fat objects. A
planar convex object c is α-fat if the ratio between the radii of the balls s+ and s− is at
most α, where s+ is the smallest ball containing c and s− is a largest ball that is contained in
c. It is easy to show that an α-fat convex object is an (α′, β′)-covered object, for appropriate
constants α′, β′ that depend on α.

In this paper we will also make the additional assumption that all the objects under
consideration have constant description complexity, meaning that each object is a semialge-
braic set defined by a constant number of polynomial equalities and inequalities of constant
maximum degree.

The goal of this paper is to obtain sharp bounds for the combinatorial complexity of
the union of a collection C of n (α, β)-covered objects of constant description complexity,
for constant parameters α, β > 0.

∗Work by Alon Efrat has been supported by Rothschild Fellowship and by NSF grant CCR-9623851.
†Computer Science Department, Stanford University, alon@graphics.stanford.edu
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Introduction 2

There are not too many results of this kind. If C is a collection of α-fat triangles1, then
the complexity of

⋃
C is O(n log log n) (with the constant of proportionality depending on

α) [12], and this bound improves to O(n) if the triangles are nearly of the same size [2] or
are infinite wedges. See also [11] for additional results concerning fat polygons. If C is a
collection of n pseudo-disks (arbitrary simply-connected regions bounded by closed Jordan
curves, each pair of whose boundaries intersect at most twice), then the complexity of

⋃
C is

O(n) [10]. Of course, if we drop the fatness condition, the complexity of
⋃
C can be Ω(n2),

even for the case of (non-fat) triangles. Even for fat convex objects, some bound on the
description complexity of each object must be assumed, or else the complexity of the union
might be arbitrarily large.

In [4] it was shown that if C is a collection of n convex α-fat objects of constant descrip-
tion complexity, then the complexity of

⋃
C is O(n1+ε), for any ε > 0, where the constant

of proportionality depends on ε, on the fatness parameter and on the maximum description
complexity of the given objects. In an attempt to remove the convexity restriction, it was
shown in [5] that if C is a collection of n κ-curved objects of constant description complexity,
then the complexity of

⋃
C is O(λs′(n) log2 n), where s′ is a constant that depends on κ and

on the description complexity of the objects. A planar object c is κ-curved (for a parameter
κ) if each point p on its boundary is contained in some disk B ⊆ c whose radius is at least
κ·diam(c). However, the class of κ-curved objects is rather restricted. For example, an α-fat
triangle is not a κ-curved object for any κ. However, the notion of (α, β)-covered objects
clearly generalizes the notion of κ-curved objects (as well as that of fat convex objects).

Let C be a collection of n (α, β)-covered objects of constant description complexity in
general position. This implies that the boundaries of each pair of objects of C have at most
some constant number, s, of intersection points, and we may assume that s also bounds the
number of points at which the boundary of an object in C is not C1 or C2, as well as the
number of inflection points and locally x- and y-extremal points of any such boundary.

The main result of this paper is:

Theorem 1.1 Under the above assumptions, the combinatorial complexity of the union of
C is O(λs+2(n) log2 n log log n).

The proof of Theorem 1.1 is given in the following sections. In is worth mentioning
that if all objects of C are roughly of the same size, then the bound of Theorem 1.1 can be
improved to O(λs+2(n)), see Remark 3.4 for further discussion.

Theorem 1.1, as well as the previous works cited above, contribute to the study of the
union of planar objects, an area that has many algorithmic applications, such as finding
the maximal depth in an arrangement of fat objects (see [7]), hidden surface removal in a
collection of fat objects in 3-space [9], point-enclosure queries in a collection of fat objects
in the plane [8], and more; See [16] for more applications, and other definitions of fat
non-convex objects. Theorem 1.1 both extends these results to the more general class of
(α, β)-covered objects, and slightly improves the corresponding complexity bounds.

The contributions of this paper are thus (a) the introduction of the new class of ‘fat’
non-convex objects (namely (α, β)-covered objects), which, as we believe, captures the input

1For triangles, there is an equivalent definition of fatness that requires all angles to be at least some fixed
constant α0; in [12], this is called α0-fatness.
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Preliminaries 3

data in most realistic scenes; (b) presenting a sharper bound on the union complexity than
the bounds obtained in [4] (bringing them to within a polylogarithmic factor off the actual
complexity); and (c) the proof technique, which is much simpler than the analysis given in
[4].

2 Preliminaries

p

e
∆

c

Figure 1: The point p is 3π/2-oriented.

Let C be a collection of n (α, β)-covered objects, as in the introduction. Let c ∈ C, and
let p be a point on ∂c. We say that p is θ-oriented if there is a good triangle ∆ for c with p
as a vertex, such that the ray e emerging from p at orientation θ intersects the interior of
∆. In this case we call ∆ a θ-oriented triangle at p. See Figure 1.

Let Ψ be the set of orientations
{α

4 , 2α
4 , . . . , α⌈8π/α⌉

4 }. We call a triangle ∆ a θ-critical triangle at p if ∆ is a good triangle at
p, and ∆ is (θ − α

4 )-oriented at p, θ-oriented at p, and (θ + α
4 )-oriented at p. Observe that

for each c ∈ C and p ∈ ∂c, there exist a θ-critical triangle at p, for some θ ∈ Ψ. For each
c ∈ C and each θ ∈ Ψ let γθ(c) denote the portion of ∂c consisting of points p such that p is
(θ− α

4 )-oriented, θ-oriented, and ,(θ + α
4 )-oriented. By the constant description complexity

assumption made in the introduction, γθ(c) consists of at most s connected portions of ∂c.
We further divide these portions of γθ(c) into a constant number of ‘not-too-long’ subarcs
(that might overlap), called primitive arcs or p-arcs for short. Each p-arc δ is required (i)
to be differentiable (that is, there exists a well defined tangent at each relatively interior
point of δ), (ii) not to contain in its relative interior any locally x-extremal or y-extremal
point or any inflection point of ∂a, and (iii) to satisfy the property that the difference in the
orientations of the tangents at any pair of points of δ is at most π/t, for some predetermined
integer t > 10. A p-arc along the boundary of an object c is convex if the segment connecting
the endpoints of the arc is contained in c. Otherwise, we say that the p-arc is concave.

For each c ∈ C and for every θ ∈ Ψ, we place a θ-oriented triangle at each endpoint
of every p-arc of γθ(c), and we let Pc denote the collection of these triangles. The p-arcs
are chosen sufficiently short, so that the boundary of each connected component of c \

⋃
Pc

contains at most a single p-arc. We call a maximally connected component of c\
⋃

Pc a cap,
and the segment connecting the endpoints of its p-arc the chord of the cap. The union of a
cap and the two triangles of Pc adjacent to the endpoint of its p-arc is called a sub-object,
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Proof of Lemma 2.1 4

see Figure 2. If a sub-object is not simply connected, we ‘fill in’ its holes and add them to
the sub-object. The boundary of a sub-object consists of a single p-arc and of portions of
edges of the good triangles of Pc adjacent to the p-arc’s endpoints. Note that the chord of
the sub-object is generally not part of the sub-object. The collection of all sub-objects of c
that are adjacent to p-arcs that are θ-oriented is denoted by cθ. See Figure 3. Clearly cθ

consists of a constant number of sub-objects. Let Cθ denote the collection of all sub-objects
with this property of every c ∈ C.

Fix θ ∈ Ψ, which we assume, for simplicity, to be the negative vertical direction, oth-
erwise rotate the plane. Define a segment tree Tθ over orthogonal the y-projections of the
sub-objects of Cθ. Each node µ ∈ T is associated with a subset Sµ ⊆ Cθ and with a
horizontal slab Iµ.

Fix θA, θB ∈ Ψ, (not necessarily distinct) and levels iA of TθA
and iB of TθB

. Note that
there are O(log2 n) quadruples (θA, θB, iA, iB) of this kind. Define A (resp. B) to be the
collection of sub-objects in Sµ for µ in the iA’th level of TθA

(resp. the iB’th level of TθB
).

Let U(θA, θB, iA, iB) denote the set of ‘mixed’ vertices of ∂
⋃

(A ∪ B) that lie on γθA
(a) for

some a ∈ A, and on γθB
(b) for some b ∈ B. The following section is dedicated to the proof

of the following lemma.

Lemma 2.1 The size of U(θA, θB, iA, iB) is
O(λs+2(n) log log n).

It is easy to see that the proof of Theorem 1.1 follows immediately from Lemma 2.1,
because for each vertex v ∈ ∂

⋃
C there exist θA, θB ∈ Ψ and levels iA, iB such that v

appears as a vertex in the corresponding set U(θA, θB, iA, iB), and because the number of
quadruples (θA, θB, iA, iB) is O(log2 n).

a (convave) p-arc γa (convex) p-arc γ

Figure 2: Two examples of sub-objects.

3 Proof of Lemma 2.1

We fix a quadruple (θA, θB, iA, iB), as above. We verify that θA = 3π/2 (the negative y-
direction) by rotating the plane if necessary. Let µ be a node in the iA’th level of T3π/2, and
let Iµ be the horizontal slab associated with µ. Let c be a subobject of Sµ, let p ∈ γ3π/2(c)∩Iµ

and let ∆ be a (3π/2)-oriented triangle of c at p. Note that ∆ is an α-fat triangle, and the
length of the y-span of c is at least the width of Iµ. Hence there is a constant integer l,
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Figure 3: The slab Iµ, the strip to which Iµ is split, and the function g
(i)
c (x)
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Figure 4: The upper envelope E
(i)
µ and some new sub-objects defined by its vertices. One

of the subobjects is shaded.

such that the length of the y-span of each edge of ∆ is at least 1/l times the width of Iµ.

We divide Iµ into a constant number of strips, I
(1)
µ , . . . , I

(l)
µ , of equal width. Thus, p lies in

a different strip than the other two vertices of ∆, See Figure 3. Thus, for each strip I
(i)
µ , we

can express all points of I
(i)
µ ∩ γ3π/2(c) as a graph of a function g

(i)
c (x) defined on the lower

boundary of the strip I
(i)
µ .

For each strip I
(i)
µ , consider the upper envelope E

(i)
µ (See Figure 4)) of the functions

g
(i)
c (x), for c ∈ Sµ. Let Eµ denote the union of these upper envelopes for all strips of Iµ,

and let EA denote the union of all these envelopes, taken over all nodes µ in the iA’th level
of TθA

. Repeat the same analysis for θB, and obtain a corresponding union EB of upper
envelopes (relative to the θB-direction).

Let v be a vertex of EA incident to the boundaries of sub-objects c1, c2 ∈ A. We add to
Pc1 a θA-critical triangle for c1 at v, and to Pc2 a θA-critical triangle for c2 at v (with an
appropriate construction, these are similar triangles with a common vertex and overlapping
edges). For each c ∈ Sµ and each p-arc γ of c we add θA-critical triangles at each point
where γ crosses a boundary of a strip of Iµ. We further refine the splitting of arcs into
p-arcs, so that no p-arc γ contains a vertex of any of the new triangles, except of course
for its endpoints. Sub-objects are split as well, so that each sub-object contains exactly one
new p-arc on its boundary. Observe that now each p-arc is contained in at most one strip
of Iµ.

We next remove from A all sub-objects that do not participate in EA. Thus each p-
arc of a remaining sub-object of A is fully contained in EA, and also fully contained in a
single strip of some Iµ. Analogously, we restructure the sub-objects and p-arcs for B, the
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Proof of Lemma 2.1 6

collections {Pb}b∈B and the union of envelopes EB. We list several important attributes of
this construction:

(A1) Two p-arcs of A (resp. B) are either disjoint, or intersect only at their endpoints.
Moreover, a p-arc γ of a sub-object a1 ∈ A might intersect the boundary of a different
sub-object a2 ∈ A only at an endpoint of γ, or at a point of ∂Pa2

. Similar attributes
hold for B.

(A2) A necessary condition for a vertex v to belong to U(θA, θB, iA, iB) is that v lies on
EA and on EB.

(A3) The complexity of EA and of EB are each O(λs+2(n)).

Consider the collections PA =
⋃

a∈A Pa, PB =
⋃

b∈B Pb. The result of [12] implies that
the complexity of ∂

⋃
PA and of ∂

⋃
PB are each O(λs+2(n) log log n), as each triangle in

these collections is an α-fat triangle (the constants of proportionality depend on α). Define
UP(A) as the set of all vertices that are either vertices of EA∩∂

⋃
(A∪PA∪PB), or vertices

of sub-objects of A or vertices of triangles in PA∪PB. We define UP(B) in a fully symmetric
manner, interchanging A and B.

We first state a slightly modified version of a lemma that appeared in [4]. The proof is
deleted from this extended abstract.

Lemma 3.1 [Efrat & Sharir, 97] Let Ka be the portion of a cap of some sub-object a ∈ Cθ,
enclosed between its p-arc γa and its chord ea, such that γa is convex. Let ∆b ∈ Pb be a
good triangle for some object b ∈ C, such that the edge eb of ∆b crosses γa. Then one of the
following cases must occur:

(i) ea crosses ∂∆b (as in Figure 5(i)).

(ii) Ka contains a vertex of ∆b that is an endpoint of eb (as in Figure 5(ii)).

(iii) ∆b contains a vertex of Ka (as in Figure 5(iii)).

(iv) ∂Ka and ∂∆b cross exactly twice, at two points that lie on ∂a and on eb, and ea is
disjoint from Ka ∩ ∆b.

Lemma 3.2 The number of vertices of UP(A) and of UP(B) is O(λs+2(n) log log n).

Proof: It suffices to prove the lemma for UP(B). Let v be a vertex of UP(B), lying on
an edge e of a triangle ∆ in PA ∪ PB and on a p-arc γ = γb contained in γθB

(b), for some
b ∈ B. (All other kinds of vertices are trivial to bound.) Let u1, u2 be the endpoints of
γb; See Figure 6. Assume again that θB = 3π/2, so the slabs of TθB

are horizontal. Let µ
be the node of TθB

, in the iB’th level, associated with the sub-object containing v on its
boundary. Let t1 and t2 be the triangles of Pb, which are θB-oriented for b at u1 and at

u2. Let F be the axis-parallel rectangle formed by intersecting I
(i)
µ with the vertical strip

spanned by γb (see Figure 6). Clearly v lies in F . If ∆ ∩ γb fully contains one of the two
portions of γb connecting v to one of its endpoints, we charge v to this endpoint. Since the
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∆b
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∆b
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∆b
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Figure 5: Illustrating the various cases in Lemma 3.1

Iµ
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u1 u2

γ

ζ

F

v
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t2

Figure 6: Illustrating the proof of Lemma 3.2; e is long
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number of endpoints is O(λs+2(n)) and each can be charged at most twice, the number of
vertices v of this kind is within the asserted bound. So assume this is not the case.

Recall that γb is either concave or convex, so e intersects γb either once or twice. We
call e a long edge if both its endpoints are outside F ; otherwise e is a short edge. If e is
short, we uniquely charge v to one of the endpoints of e inside F ; again, the number of such
endpoints is within the asserted bound. So let us assume that e is long.

If e intersects γb once, then either there is an endpoint of e inside the cap of γb, or (since
e is long) it must intersect t1, t2, or some other triangle of PA ∪ PB, at a point inside the
cap and on ∂

⋃
(PA ∪PB), so we can charge v to this intersection point (and the number of

such intersections is within the asserted bound). So assume that e intersects γb twice. If γb

is concave, then if we trace e from v into b, we reach a vertex of
⋃

(PA ∪ PB), to which we
can charge v. So we may assume that γb is convex, as depicted in Figure 6.

Let ∆ be the triangle of Pa incident to e, and let z be the vertex of ∆ that lies opposite
to e. We say that e is special if z lies inside F . Since we can charge v in this case to z, it
suffices to consider the case where e is non-special and long.

Applying Lemma 3.2 to e and the appropriate cap portion, we see that if any of the
cases (i)–(iii) arises, we can charge v to a vertex of ∂

⋃
(PA ∪ PB) inside the cap, as done

above. So we may assume that case (iv) arises.

We now claim that the number of long non-special edges e1, . . . , el incident to vertices on
γb and satisfying property (iv) of Lemma 3.2 is a constant. Indeed, let Γ(ei) be the portion
of γb spanned between its two intersection points with ei. It is impossible that Γ(ei) and

u1 u2

Γ(ej)

ζ

F

v

Γ(ei)

eiej

∆

Figure 7: If Γ(ei) and Γ(ej) are disjoint then ei and ej cross different pairs of edges of F .

Γ(ej) intersect. Indeed if Γ(ei) ∩ Γ(ej) 6= ∅, but neither Γ(ei) ⊆ Γ(ej) nor Γ(ej) ⊆ Γ(ej),
then ei and ej must intersect inside F (by the convexity of γ), thus they are not long. On
the other hand, it is impossible that one of them fully contains the other since they both
satisfy property (iv). Moreover, if Γ(ei) and Γ(ej) are disjoint (see Figure 7), then it is
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Proof of Lemma 2.1 9

easily verified that ei and ej intersect different pairs of edges of F . This concludes the proof
of the lemma. 2

We can now turn to the proof of Lemma 2.1. A vertex v of ∂(a ∩ b) is an irregular
vertex if the number of vertices in the connected component of a∩ b incident to v is at least
4. Otherwise, v is a regular vertex. We refer the reader to a slightly different definition of
regular and irregular vertices, and relevant combinatorial results, in [1] and [13].

We first bound the number of irregular vertices of U(θA, θB, iA, iB).

Lemma 3.3 The number of irregular vertices of U(θA, θB, iA, iB) is O(λs+2(n) log log n).

Proof: Let v be an irregular vertex of
U(θA, θB, iA, iB), incident to a p-arc γa and to another p-arc γb, for some a ∈ A, b ∈ B,
Let Iµ (for µ ∈ TθB

) be the strip containing b and assume again that θB = 3π/2, otherwise
rotate the plane. As in Lemma 3.2, let F be the rectangle formed by the intersection of
Iµ with the vertical strip spanned by γb. We call γa special if γa ∩ F contains either an
endpoint of γa, or a locally highest point, or a locally lowest point or a locally rightmost
point, or a locally leftmost point of γa. Note that if γa is special, we can charge v to one
of the extreme points listed above, since there is only a constant number of them on each
object of C.

Let µa and µb be the normals at v to γa and γb, pointing into a and b, respectively.
Let φ be the smaller angle between µa and µb. Let φ0 < π/10 denote the maximal turning
angle of any p-arc.

We distinguish between three cases:

* φ0 ≤ φ < π − φ0 (see Figure 8(i)). Clearly, in this case γa and γb have at most one
intersection point, which must be v itself. Indeed, construct a line ℓ that passes through v,
and forms angles φ/2 and −φ/2 with γa and γb, respectively. Since neither γa nor γb can
turn by more than φ, it follows that, apart from v, ℓ is disjoint from both γa and γb, so,
apart from v, ℓ separates γa from γb.

We follow γa from v in the direction in which it enters b. Since γa has entered the cap
of b bounded by γb and it does not intersect γb again, it either ends within the cap or meets
a triangle in PA ∪PB. In either case we can charge v to this endpoint or intersection point.
(Note that in the latter case, this intersection must be a vertex of UP(A).)

* φ > π − φ0 (see Figure 8(ii)). Without loss of generality, assume that the situation is as
shown in Figure 8(ii). That is, a lies above γa near v and b lies below γb near v, and as we
trace γa and γb to the left, each of them enters into the other object. If we reach in any
of these tracings a point on

⋃
(PA ∪ PB) then this is a vertex of either UP(A) or UP(B),

to which we can charge v. So assume this is not the case. Hence, γa and γb must intersect
again. It is obvious from the condition on the angles and the assumptions made so far that
in this case v is a regular vertex. We deal with this type of vertices later on.

* φ < φ0 (see Figure 8(iii)). This case is more involved. Observe that the tangent of every
point of γb is “almost horizontal”, that is, its orientation is in the range (−φ0, φ0). Thus the
orientation of every point of γα is inside F is in the range (−2φ0, 2φ0). Thus the triangles
of a are (3π/2)-oriented as well. Let ql, qr be the left and right endpoints of γb.

We follow γa from v in the direction inward b — say to the left (see Figure 9). If we
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F

(i) (ii)

(iii)

v

Figure 8:

reach a triangle of PA ∪PB, then this is a vertex u of UP(A) that we charge. Thus we may
assume that we reach another vertex v2 on γb ∩ γa, to the left of v. By attribute A1 we are
guaranteed that we have not enter an sub-object a′ ∈ A so far (in the portion of γa between
v and v2). Hence we deduce that v2 is also a point of U(θA, θB, iA, iB).

Let Jr (resp. Jl) be the portion of γb ∩ a adjacent to v (resp. v2). If Jl or Jr contain
a point of PA ∪ PB, then this is a vertex u of UP(B), which we can charge to v and to
v2, as u can be charged only a constant number of times in this way. Assuming this is
not the case. Let Ll and Lr be the portions of γa \ b adjacent to vr and v respectively.
Assume that Ll, (resp. Lr) passes above ql, the left (resp. qr, the right) endpoint of γb. It
is not hard to verify, by the way p-arcs were defined and the fact that the triangles of a are
(3π/2)-oriented (though not necessarily (3π/2)-critical), that either ql (resp. qr) is inside a,
or that by tracing γb to left (resp. right) from v2 (resp. v), we must encounter one of the
triangles of Pa, in a vertex of UP(B). In the former case, we deduce that v2 (resp, v) is the
leftmost (resp. rightmost) vertex of U(θA, θB, iA, iB) on γb, and we charge both v and v2 to
this endpoint in this case. Thus we assume that this is not the case.

If Ll ∩ F or Lr ∩ F contain a point of PA ∪ PB, then as above, this a vertex of UP(A)
that we can charge, as it is inside F . If on the other hand both La and Lb intersect the roof
edge of ∂F , then the portion of γa between v and v2 must contain a locally minimal point
u (lowest point) which is inside b, and we can charge u to v and v2. (In the case that u lies
inside F , then this is also a contradiction to our assumption that γa is not special.) Hence
at least one of Ll and Lr, say Ll, lies completely inside F . If Lr but not Ll lies completely
inside F , we reverse the direction by which we traverse γa. The other endpoint v3 of Ll

(or Lr if we have reversed the direction) must therefor also be a vertex of U(θA, θB, iA, iB),
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Proof of Lemma 2.1 11

otherwise γa would have a point of PA ∪ PB inside F . We continue following γa along
γa to the left direction, possibly meeting more vertices of U(θA, θB, iA, iB) that belong to
γa∩γb. Their number however is ≤ s. Thus this process must end after discovering at most
s vertices, and since the only way that the process ends is that we discover a vertex that
we can charge (to all ≤ s vertices of γa ∩ γb), we have obtained a bound on the number
of irregular vertices of U(θA, θB, iA, iB) in this case as well. This concludes the proof of
Lemma 3.3. 2

ql

F

γb

γa

v

v2

qr

v3

Jl

Jr

Lr

Ll

Figure 9: The third case of the proof of Lemma 3.3.

To complete the proof of Lemma 2.1, it remains to bound the number of regular vertices
in U(θA, θB, iA, iB). Set b ∈ B, and assume that γ1, . . . , γl are all the non-special p-arcs
belonging to (not necessarily distinct) respective sub-objects a1, . . . , al of A, each containing
a regular vertex vi of U(θA, θB, iA, iB) that lies on γb. For each i, define Γ(γi) as the portion
of γb ∩ ai incident to vi. Note that γi cannot intersect γj inside F (for any 1 ≤ i < j ≤ l)
because each γi is a non-special p-arc. It is not hard to show that there can be only a
constant number of pairs of p-arcs γi, γj , such that Γ(γi) ∩ Γ(γj) is empty, since each
such pair must intersect different edges of ∂F . Similarly there is no pair γi, γi such that
Γ(γi) ∩ Γ(γj) partially overlap (that is, Γ(γi) ∩ Γ(γj) 6= ∅ but neither Γ(γi) ⊆ Γ(γj) nor
Γ(γj) ⊆ Γ(γi)). On the other hand, it is impossible that Γ(γi) ⊆ Γ(γj), since this would
imply that vj is not a regular vertex. Indeed, the p-arc γb passes through γi to create vi,
gets out of ai in order to meet aj at vj , and returns to ai, which implies that there are at
least 4 intersection points in the same connected component of a ∩ b. This contradiction
concludes the proof of Lemma 2.1. 2

Remark 3.4: The bound of Theorem 1.1 improves if objects of C are roughly the same
size. Assume that there are constants d, κ, such that d ≤ diam(c) ≤ κd, for each object of
c ∈ C. Then the bounds of Theorem 1.1 improve to O(λs+2(n)). This follows by modifying
the preceding proof, and we will only comment on a few of the less trivial modifications
that are required.

For each orientation θA ∈ Ψ, we divide the plane into infinite parallel strips of width
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µd (for a sufficiently small constant µ that depends on s, α and β), orthogonal to the θA

direction, such that (as above) if ∆ is a θA-critical triangle to an object c at a point p ∈ ∂c,
then the other two vertices of ∆ do not lie in the strip containing p. We define A as the
union of sub-objects incident to p-arcs of γθA

(c), over all c ∈ C. The definitions of B and
of all the other notations used in the proof are analogous. We also use the fact that all the
oriented triangles in PA and PB are roughly of the same size, and thus the complexity of
their union is only O(n), as shown in [2].

4 Conclusions remarks

The definition of (α, β)-covered object is not the first attempt to define fatness for non-
convex objects; In [16], Frank van der Stappen gives the following definition to fatness. An
object C ⊆ R

d is δ-fat (for 0 < δ < 1) if for each d-dimensional ball B, whose center is inside
C but does not contain C completely, that the volume of (B ∩ C) is at least the volume of
B. Two questions that naturally arises, are (i) what is the relation between (α, β)-covered
object and δ-fat objects, and (ii), can one shows a bound on the complexity of the union
of δ-fat objects. Recently van der Stappen [15] answered both these questions: He showed
that the definition of δ-fat object is stronger than the definition of (α, β)-objects by showing
that each (α, β)-covered object is also a δ-fat object, for an appropriate parameter δ (that
depends on α and β). He also answered the second question by presenting a construction
showing that the boundary of the union of n δ-fat objects can has Ω(n2) vertices, implying
that δ-fatness is not suffices to provided sub-quadratic complexity.
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