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Abstrat

Natural neighbor interpolation is a weighted average in-

terpolation method that is based on Voronoi tessellation.

In this paper, we present and implement an algorithm for

performing natural neighbor interpolation using graphis

hardware. Unlike traditional software-based approahes

that proess one query at a time, we develop a sheme

that omputes the entire salar �eld indued by natural

neighbor interpolation, at whih point a query is a trivial

array lookup, and range queries over the �eld are easy to

perform.

Our approah is faster than the best known software

implementations and makes use of general purpose stream

programming apabilities of urrent graphis ards. We

also present a simple sheme that requires no advaned

graphis apabilities and an proess natural neighbor

queries faster than existing software-based approahes.

Finally, reognizing the limitation inurred by the

bounded size of graphis frame bu�ers, we propose a sub-

division approah that allows performing queries loally

in a subdivision of the input domain. This approah an

redue to a negligibly small degree (< 1%) the loss of pre-

ision aused by the naive saling method while still pro-

essing queries faster than the software-based approahes

when the number of sites is large.

1 Introdution

A problem often enountered in many appliations

is that of reonstruting ontinuous surfaes from

sampled data points. Many interpolation methods

have been developed for this problem, inluding min-

imum urvature splines, Kriging, bilinear and Bezier

pathes being among the methods that have been

used [24℄. Natural neighbor interpolation (NNI), also

alled area stealing interpolation, is one of the most

popular methods and has been widely used in geo-

physial modeling, surfae reonstrution, and even

omputational solid/uid mehanis [1, 5, 16, 21℄.

First introdued by Sibson [19, 20℄, NNI is a

weighted average method that onstruts the inter-
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polant by using natural neighbor oordinates based

on the Voronoi tessellation of a set of sites. Besides

being a fairly simple method to desribe, NNI yields

an interpolant that is C

0

everywhere and C

1

every-

where exept at the sample points. It is also non-

parametri, whih is attrative in many settings as it

thus assumes no speial properties of the data. How-

ever, sine NNI involves tessellating the Voronoi dia-

gram, it su�ers from the disadvantage of being om-

putationally ostly, espeially when the number of

sites is large.

Related work While extensive researh has

been onduted on the subjet of NNI [3, 16, 20, 23,

26, 24℄, there are only a few implementations pub-

lily available for general use [7, 14, 15, 25℄. Among

them, the \nngridr" pakage [25℄ developed by Wat-

son reeived reognition for the method that om-

putes all the Voronoi polygons required for one in-

terpolation operation using a single ombined alu-

lation. NatGrid [7℄, a software pakage by NCAR,

is based on the work of Watson and is not available

for free download. Owen [14℄ implemented both 2D

and 3D NNI in a pakage that was not released to the

publi. Reently, Sakov [15℄, implemented NNI based

on Shewhuk's Triangle pakage [18℄ for omputing

the underlying Delaunay triangulation.

The powerful omputational ability of modern

graphis ards has led to their use as a fast streaming

oproessor, solving many problems outside the realm

of omputer graphis. Notable examples inlude path

planning, ollision detetion, partile systems, and

physial simulation. Starting with the work of Ho� et

al. [10℄ on the omputation of Voronoi diagrams,

there are now fast hardware-assisted algorithms for

problems in data analysis, geometri optimization,

and solid modeling, among others [2, 10, 11, 12, 9, 13℄.

Our work In this paper, we extend the

paradigm of hardware-assisted omputation to the

area of natural neighbor interpolation. Our main on-

tributions are as follows.

� We present a simple approah that an answer



natural neighbor interpolation queries in one

rendering pass with a single readbak. (See Se-

tion 3 for de�nitions.) This sheme performs bet-

ter than urrent software implementations and

uses only standard features of modern graphis

ards.

� We present a more general sheme, based on

the latest generation of graphis arhitetures,

that an ompute natural neighbor interpolation

queries simultaneously for eah (disrete) point

within the onvex hull of the input point set.

This approah also leads to a sheme for per-

forming range queries on the natural neighbor

interpolation funtion; an example would be the

omputation of the average or maximum value

in a given range.

� We present a subdivision approah to redue

the loss of preision aused by the saling that

is usually required when the inputs are widely

spread over a large domain.

� We present a detailed experimental study of the

above approahes, omparing them to existing

software implementations.

The paper is organized as follows. Setion 2

introdues natural neighbor interpolation and Se-

tion 3 briey reviews hardware-assisted omputation

of Voronoi diagrams. We present a simple overlay-

based NNI interpolation sheme in Setion 4 and

demonstrate a general method for omputing NNI

over an entire range in Setion 5. Setion 7 presents

a detailed experimental study and future diretions

are disussed in Setion 8.

Figure 1: Area stolen after a query point is inserted

into a Voronoi diagram.

2 Natural Neighbor Interpolation

We are given a set S = fs

1

; : : : ; s

n

g of sites, and a

weight funtion f : S ! R. For a point q, the interpo-

lated value at q is estimated as f(q) ,

P

i

w

i

(q)f(s

i

),

where w

i

(q) is the weight of s

i

. This method is alled

weighted average interpolation. Di�erent interpola-

tion methods di�er by the way the weights are deter-

mined.

NNI relies on the onstrution of Voronoi dia-

grams. Here w

i

is de�ned as follows:

(2.1) w

i

=

Area(V

S[fqg

(q)

T

V

S

(s

i

))

Area(V

S[fqg

(q))

:

Here V

S

(s

i

) is the Voronoi ell of s

i

in Vor(S) (the

Voronoi diagram of S) and V

S[fqg

(q) is the Voronoi

ell of q in Vor(S [ fqg). (See Figure 1.) We refer to

the set of points fs

i

j V

S[fqg

(q) \ V(s

i

) 6= ;g as the

natural neighbors of q. In the sequel, when we refer to

f(q), it should be understood that the weight vetor

w

i

assoiated with f is de�ned as in Equation 2.1.

In our problem, the area of the Voronoi ell is

approximated by the number of pixels in the Voronoi

ell. Let N(V

S[fqg

(q)) be the number of pixels in the

Voronoi ell V

S[fqg

(q). Equation 2.1 an be losely

approximated by

(2.2) w

i

�

N(V

S[fqg

(q)

T

V

S

(s

i

))

N(V

S[fqg

(q))

3 Preliminaries

3.1 The Graphis Pipeline. The graphis

pipeline is often used as a rendering (or \drawing")

engine to failitate interative display of omplex

three-dimensional geometry. The input to the

pipeline is a set of geometri primitives and images,

whih are transformed and rasterized at various

stages of the pipeline to produe a stream of frag-

ments that is \drawn" on a two-dimensional grid

of pixels known as the frame bu�er. The frame

bu�er is a olletion of several individual dediated

bu�ers (olor, stenil, depth bu�ers, et.). The

user interats with the pipeline via a standardized

software interfae (suh as OpenGL or DiretX) that

is designed to mimi the graphis subsystem. For

more details, the reader may refer to the OpenGL

programming guide [27℄.

3.2 Computing Voronoi Diagrams and Over-

lays. It is well known that the Voronoi diagram of

a set of points in the plane an be omputed using

the graphis pipeline [10℄. Eah point is assigned a



spei� olor, and at the end of the alulation, eah

Voronoi region is represented as an area of the ap-

propriate olor in the olor bu�er. For the Eulidean

metri, this is ahieved by drawing right angled ones

with their apex at eah point, as seen from below.

The paper by Ho� et al. [10℄ has further details on

this proedure; sine ones are drawn by approximat-

ing their surfae with triangles, an appropriate num-

ber of triangles must be drawn to ensure that the

error inurred is less than one pixel.

We also need the depth �eld that the Voronoi

diagram indues. At eah pixel, the depth bu�er

ontains the height of the lowest one. Sine the

ones are right angled, this is also the distane of

the nearest Voronoi site to the pixel.

4 A Simple Overlay-Based Method.

In this setion, we present a simple algorithm for

natural neighbor interpolation of a funtion f(�). The

input inludes a set S = fs

1

; : : : ; s

n

g of n sites,

eah site with its funtional value f(s

i

), and a set

Q = fq

1

; : : : ; q

m

g of m query points. The algorithm

outputs the interpolated value f(q

i

) for eah q

i

.

Our algorithm is based on the following overlay

method:

Algorithm 1 Overlay Method for NNI queries

Compute Vor(S)

for Eah query q 2 Q do

Compute Vor(S [ fqg)

Compute the overlay of Vor(S) and V(q) (in

Vor(S [ fqg))

Determine the weights of the natural neighbors

of q from the overlay, and return f(q)

end for

We remark in passing that the running time of

this algorithm for a single query q, using standard

algorithms for Voronoi diagram omputation and

line segment intersetion, is O((n + k) logn) in a

traditional RAM model, where k is the number of

natural neighbors of q.

4.1 Implementation. The �rst step is easy to

implement (see Setion 3). It yields two two-

dimensional arrays. One ontains at eah pixel a

olor orresponding to the site whose Voronoi ell

that pixel lies in. The other ontains the distane

of the pixel from the orresponding site.

When we now proess a query point q by drawing

its orresponding one, an appropriate depth test will

ensure that pixels of this one will only be drawn

where this one is lower than all other ones, implying

that for all suh pixels, the query point is the losest

site.

If we lear the olor bu�er before this rendering

step, it will now ontain all (and only) the pixels in

the Voronoi ell of q. If we now read bak the olor

bu�er, and aess the olor (in the earlier olor bu�er)

of all drawn pixels (i.e., all pixels in V

S[fqg

(q)),

the number of pixels of eah olor represents the

stolen area from the orresponding site, and the total

number of pixels is a measure of the area of V

S[fqg

(q).

Given these quantities, f(q) an now be omputed.

This is a straightforward implementation of the

above algorithm, and as we shall see in Setion 7, per-

forms reasonably well in omparison with standard

software-based approahes. However, it su�ers from

two drawbaks. The number of generated fragments

is very large (see below for details) and to perform a

readbak for eah query is very expensive. In what

follows, we address these two issues.

4.2 Clustering queries. In the graphis pipeline,

eah geometri primitive is rasterized into fragments.

A sequene of per-fragment operations suh as depth

tests and stenil tests are subsequently performed on

all fragments after rasterization and only those frag-

ments that pass all the tests update their orrespond-

ing pixels in the frame bu�er. Generally speaking, the

larger the area of the primitive, the more fragments

generated and thus the more expensive the rendering.

Another issue peuliar to hardware-assisted algo-

rithms is the issue of read baks : extrating data from

the frame bu�er into main memory. This is typially

an expensive operation (graphis ards use a slow bus

for data transfer in this diretion), and is ostly both

in terms of its �xed ost as well as the bandwidth

available for transfer. It also stalls the pipeline for

future rendering passes.

The �rst observation that helps minimize the

number of rendered fragments is that the Voronoi

ones only need to be tall enough to detet every

Voronoi vertex. (As opposed to ones that are as

large as the whole frame bu�er.) It is easy to see that

the one height needs only be as large as the radius r

�

of the largest empty irle for the algorithm to detet

all Voronoi ells inside the onvex hull of the points.

The seond observation makes use of logial hard-

ware funtions. In the above algorithm, all the infor-

mation we need for a partiular query q is a bit that

determines for eah pixel whether it is in V

S[fqg

(q)

or not. Sine olor bu�ers have 32 bits (eight eah for



red, green, blue, and the alpha hannel), we an pro-

ess thirty two queries simultaneously using a hard-

ware operation that performs a bitwise OR of the

olors being rendered at a pixel. It is then a straight-

forward exerise to read these pixels bak and deter-

mine the stolen area osts for eah of the queries.

The idea of query lustering is to bath nearby

queries together and retrieve only a small portion

of the frame bu�er that suÆes to ompute the

interpolation funtion orretly for these queries. By

doing so, we avoid reading bak the whole frame

bu�er, whih is expensive. As desribed below,

with query lustering, we only need to retrieve the

aumulative stolen area of a region for answering

queries in that region, thus greatly reduing the

readbak time.

We subdivide the frame bu�er window into a

uniform grid. De�ne the aumulative stolen area

(ASA) of a grid ell as the union of the stolen areas

of all points in the ell. Suh a region ontains all

the information needed to proess natural neighbor

interpolation queries in the ell. The ASA of a ell

is equivalent to the Voronoi region of the ell, whih

an be eÆiently onstruted by rendering for eah

vertex of the ell a quarter one and for eah edge a

half \tent", a retangle growing upward in an angle

of 45 degree from that edge [10℄. The ASA is then

omputed by reading the frame bu�er bak into main

memory.

Combining queries that lie in this ell using

blending ompletes the proess. As we shall see in

setion 7, this optimization saves a signi�ant amount

of time in query proessing.

5 A General Approah To Compute f()

The algorithm of the previous setion employs a

simple hardware-based overlay method to answer a

single natural neighbor query. In this setion, we

present a more sophistiated sheme based on ertain

advaned features of urrent graphis ards that an

ompute the entire natural neighbor funtion over the

two dimensional grid. The key ingredient is a pseudo-

streaming algorithm to ompute the interpolant at

a query point, whih is based on the ompound

signed deomposition tehnique for natural neighbor

interpolation proposed by Watson [23℄.

We briey review Watson's algorithm. The basi

operation in omputing the natural neighbor weights

is to ompute areas of onvex polygons that are

stolen from the original Voronoi diagram. Instead

of triangulating the polygon to ompute the area,

Watson's method generates a triangle whih ontains

the polygon and eah of its edges ontains some edge

of the polygon. Further the portions of the bounding

triangle that are outside the polygon are triangles

themselves. This allows us to ompute the area of

the polygon as a signed expression involving the areas

of the above triangles. This is alled the ompound

signed deomposition.

Let us assume that we have the Delaunay trian-

gulation of the original point set and the triangle ver-

ties are in a anonial (antilokwise, for example)

order. Further, let us assume that for any query point

q, we an �nd all the Delaunay irles that ontain

q. Watson's algorithm takes a set of points P and

a query point q as inputs and outputs the natural

neighbor oordinates of q.

Algorithm 2 Watson's NNI Algorithm

for eah Delaunay triangle t = (p

0

; p

1

; p

2

) whose

irumirle C

t

ontains query q do

Let  be the enter of C

t

for eah i 2 f0; 1; 2g do

Let 

i

=irumenter(q, p

(i+1) mod 2

,

p

(i+2) mod 2

)

end for

for i = 0 to 2 do f/* for eah vertex of t */g

/* Compute area of two  with t



*/

Let A

t

i

= 0:5 �

Det(

(i+1) mod 2

; 

(i+2) mod 2

; )

A

i

= A

i

+A

t

i

end for

end for

Normalize all A

i

to ompute q's natural neighbor

oordinates

Running time Both Watson's implementation

of this algorithm and the implementation developed

by Sakov use a brute fore O(n) time proedure to

determine whih Delaunay irles ontain a given

point. In general, if we were to onstrut the

arrangement of Delaunay irles, we ould ahieve

a query time of O(log n) (via point loation) at the

ost of quadrati spae omplexity.

However, sine the point loation is performed on

an arrangement of irles, we an invoke the following

result:

Theorem 5.1. (Sharir [17℄, Theorem 4.3)

Given a olletion D of n diss in the plane, we an

preproess it in randomized expeted time O(n log

2

n)

into a data struture of expeted size O(n logn),

suh that for any query point x, the k diss of D



ontaining x an be reported in time O((k+1) logn).

It is easy to see by planarity arguments that the

number of natural neighbors of a query q is �(k), and

hene the above query time suÆes to determine all

natural neighbors of q as well.

A Streaming View Watson's algorithm pro-

vides an interesting deomposition sheme for om-

puting the ontribution of eah vertex. Instead of

overlaying two Voronoi diagrams (with and with-

out the query point) and omputing areas of irreg-

ular onvex polygons, we an perform simpler trian-

gle area omputations. Another observation is that

the algorithm separately maintains the ontribution

from eah of q's natural neighbors (potentially requir-

ing linear spae) before omputing the interpolated

value.

Observe that the interpolated value at q is

(5.3) f

q

=

P

i

f

i

A

i

P

i

A

i

=

P

i

f

i

P

q2C

t

A

t

i

P

i

P

q2C

t

A

t

i

;

where f

i

is the value at input site i. We an

ompute the interpolated value by maintaining the

numerator and denominator, i.e.,

P

i

P

q2C

t

f

i

A

t

i

and

P

i

P

q2C

t

A

t

i

.

With this modi�ation, Watson's method an

be rephrased as a streaming algorithm, where the

elements of the data stream are the Delaunay irles

of the input point set. Algorithm 3 then omputes the

natural neighbor interpolant in a streaming fashion,

using only onstant-sized temporary storage.

5.1 Computing the Salar Field using Graph-

is Hardware. Streaming algorithms are losely re-

lated to algorithms on graphis ards. The latest

generation of graphis ards provide the user with

the ability to write C-like programs alled fragment

programs that are exeuted by eah fragment. These

programs are stateless funtions - they merely op-

erate on and modify the state of the urrent frag-

ment (for example, its olor); arrying the state be-

tween fragment program invoation is not allowed.

The only way to maintain state between fragments

is through temporary storage in textures. Thus these

programs are (severely restrited forms of) multi-pass

streaming algorithms.

Another feature of urrent hardware is the ability

to perform full 32-bit signed oating point operations,

thus maintaining preision. This is important for our

omputation sine the intermediate values that are

aumulated an get fairly large.

Algorithm 3 Streaming algorithm for natural neigh-

bor interpolation

num = 0, den = 0

for eah Delaunay triangle t (with verties p

0

, p

1

and p

2

) do

Let (t



; t

r

) be the irumenter and irumradius

of t

if k q� t



k

2

< t

r

then fq is inside irumir-

le of tg

for i = 0 to 2 do



i

= irumenter(q, p

(i+1) mod 2

,

p

(i+2) mod 2

)

end for

for i = 0 to 2 do f/* eah vertex of t */g

/* Compute area of two irumenters

with t



*/

num = num + 0:5f

i

�

Det(

(i+1) mod 2

; 

(i+2) mod 2

; t



)

den = den + 0:5 �

Det(

(i+1) mod 2

; 

(i+2) mod 2

; t



)

end for

end if

end for

f

q

= num=den /* f

q

is the natural neighbor

interpolant at q */

For brevity, we will not go into the details of how

suh programs are implemented on a graphis ard.

Current developments in graphis programming have

led to the development of a C-like language alled

Cg [8℄ for programming these ards, and there are

higher level onstruts that allow for fully general

purpose stream programming [6℄. In the sequel we

will thus desribe our algorithm merely as a high level

stream algorithm.

The algorithm proeeds by drawing eah Delau-

nay irle and updating the interpolant value at all

points that lie inside the irle. When all the irles

are drawn, the value at eah pixel is its natural neigh-

bor interpolant. This produes the salar �eld. Let

eah point i in the input point set ontain its position

(x

i

; y

i

) and value f

i

.

Below in Figure 2, we show an example output

of the algorithm when presented with data points

sampled randomly from the unit square, with weight

values de�ned by the funtion

(5.4)

f(x; y) = 0:5 + 0:5 os(20

p

(x� 0:5)

2

+ (y � 0:5)

2

)

whih is radially symmetri around the point

(0:5; 0:5) and has range [0; 1℄.



Algorithm 4 Hardware-assisted algorithm for Nat-

ural Neighbor Interpolation

Preompute Delaunay triangulation (and orre-

sponding Delaunay irles) of the original point set.

Set initial salar �eld everywhere to zero and bind

to oating-point texture FP .

Enode input point set p

i

= (x

i

; y

i

; f

i

); i = 1 : : : n

as olor values and store in texture T .

Draw Delaunay irle C passing through p

l

, p

m

and

p

n

with olor value (l;m; n) that index T .

for eah Delaunay irle C do

Draw C diretly onto FP .

Fragments generated by C exeute the frag-

ment program in Algorithm 3 and update their

num; den and num=den values in red, green and

blue olor hannels of FP respetively.

end for

When all the irles are drawn, the blue hannel

has the interpolated value f

q

.

(a) A plot of the funtion

(b) The interpolated values (graysale: 0 (dark) to

1(white))

Figure 2: The salar �eld generated by our algorithm

We do not render points outside the onvex

hull of the input points, �rstly beause Watson's

algorithm is not valid in this region, and seondly

beause NNI interpolation itself does not make sense

outside the onvex hull of the input. As a simple

preproessing step, we ompute the onvex hull of

the input points and use a stenil mask to disable

rendering outside it.

6 Interpolation Over Large Domain

The main problem of using a bu�er-based approah

is the loss of auray involved. The loations of the

input sites have to be rounded to the next pixel of the

bu�er. This lost of auray tends to beome more

signi�ant as the number of input sites inreases,

sine the average distane between the sites and its

distane to the query points dereases. When the

number of input sites is large and the loss of auray

is not tolerable, it is reommended to break the

problem into several sub-problems using the method

we propose in the urrent setion.

Q

R

A

l

Figure 3: A uniform grid applied over the input

domain. A is the axis-aligned bounding retangle of

the aumulative stolen area of a subdivision Q and

R is a retangle whose points have distane at most

` from �A.

Lemma 6.1. Let Q be a region of the input domain

and let A be the aumulative stolen area of Q. Let

S

Q

= fs

i

2 SjV

S

(s

i

) \ A 6= ;g. Then, for any query

point q 2 Q, S

q

� S

Q

where S

q

is the set of natural

neighbors of q.

We omit the proof due to lak of spae.

Below is an outline of the algorithm. Partition

the input domain using a grid � and for eah ell Q

of � �nd a set of sites S

Q

that suÆe for any queries

in Q. This is done as follows:



1. Compute Vor

S[Q

(i.e the aumulative stolen

area of Q) and ompute the bounding retangle

A of the aumulative stolen area of Q in this

diagram, as desribe in Setion 4.2.

2. Read the depth bu�er into the main memory,

trae �A, and for eah pixel p 2 �A, �nd the

distane to its nearest site in this diagram. This

distane is the depth value of p in the depth

bu�er.

Let ` denote the maximum value ahieved. Gen-

erate the retangle R, de�ned as all points in the

plane whose distane from �A, under the L

1

norm is at most ` (see Fig. 3).

3. Compute S

Q

= S\R by heking for eah s 2 S

if it is inside R. Clearly S

Q

ontains all sites

whose Voronoi ell interset �A, and the sites

inside A. Thus, by Lemma 6.1 these are all

the sites that might partiipate in omputing the

value of the interpolated funtion in Q.

One R and S

Q

are found, we an onstrut

Vor

S

Q

and answer queries in Q safely with Vor

S

Q

.

The proess above is repeated until eah ell is

�nished.

Our implementation piks the size of the grid

ell of � as 1=2 of the size of the graphis window.

As we will see in setion 7, this approah inurs a

preision loss within a negligibly small degree while

still proessing queries faster than the software-based

implementations when the number of sites is large.

7 Performane Analysis

Code platform In this setion, we present an

empirial study of our approah. Our algorithms

were implemented in C/C++ and OpenGL 1.4. We

used two platforms for testing the ode. LINUX is 1

Ghz Pentium proessor with 256 MB of memory and

an Nvidia GeFore FX 5900 graphis ard running

Red Hat 9.0. WINDOWS is a Pentium M 1.4Ghz

laptop running Windows XP and Cygwin 1.5, with

an Nvidia GeFore Go FX 5650 graphis ard. The

laptop supports the WGL extensions required to run

the salar �eld alulation of Setion 5. In all ases,

we ompiled the ode using g++ -O3. We refer to

the area-based query algorithm of Setion 4 as Area,

the streaming salar �eld algorithm of Setion 5 as

Stream and the subdivision algorithm for large input

domain of Setion 6 as Subdivision. Note that

Stream urrently only runs on WINDOWS; this is due

to the lak of appropriate driver support on Linux.

Referene implementations To demonstrate

the performane of our algorithm, we hoose two

software-based implementations of natural neighbor

interpolation for omparison. The �rst one is nni,

Watson's implementation of NNI [22℄ (a standard

ode base) with slight modi�ation to allow it to

aept multiple queries. The seond one is nniT,

Sakov's [15℄ implementation of Watson's algorithm

that makes use of Jonathan Shewhuk's Triangle

pakage [18℄.

Test funtion The funtion we approximate

is the radially symmetri os(r) (Eq. (5.4)) from

Setion 5. The input sites and query points were

both randomly generated in a range of [0; 1℄

2

. Note

that are must be taken to ensure that query points

lie inside the onvex hull of the input points.

Running time For all experiments, we used a

rendering window size of 512�512. In Table 1 we

ompare the running times for Area, nniT and nni

on LINUX. nniT is initially superior to both Area

and nni, but as the number of sites inreases, Area

starts to dominate. It is worth noting that the

algorithmArea implements is a trivial one and nniT

is one of the best known software implementations to

date. Thus the fat that Area outperforms nniT is

signi�ant.

Table 2 presents a breakdown of the individual el-

ements of Area. It also demonstrates how lustering

queries improves the performane of the algorithm.

Breakdown Clustered Non-Clustered

Queries Queries

Preproess 0.16 0.0

VoronoiDraw 0.12 0.12

QueryDraw 0.17 0.25

Readbak 0.10 4.34

Counting 0.07 3.28

Total 0.62 7.99

Table 2: The breakdown of spei� steps in Area. Pre-

proess: Time spent on omputing readbak windows;

VoronoiDraw: Time spent on drawing Voronoi sites;

QueryDraw: Time spent on drawing query points; Read-

bak: Time spent on readbak; Counting: Time spent on

ounting stolen pixels. Numbers reported for a run with

10000 input points and 10000 query points.

Table 3 ompares nniT and Stream on WINDOWS.

We drop nni from this omparison, as its running

time is signi�antly worse even for a few queries.

Sine Stream omputes the entire salar �eld, we

ompare running times by making the same number

of queries (512�512) to nniT.



#Input Sites 5000 10000 20000

#Queries Area nniT nni Area nniT nni Area nniT nni

100 0.25 0.06 0.26 0.29 0.13 0.58 0.43 0.26 -

1000 0.27 0.11 2.18 0.35 0.20 5.87 0.44 0.41 -

5000 0.35 0.32 11.09 0.40 0.53 27.57 0.52 0.97 -

10000 0.49 0.58 24.27 0.50 0.94 56.45 0.65 1.61 -

20000 0.69 1.14 44.04 0.71 1.84 112.36 0.86 3.10 -

Table 1: Total Running time (in seonds) for Area, nniT, and nni on LINUX. The number of input points is taken

from f5000,10000,20000g, and the number of queries ranges from 100 to 20000.

#Input Sites 2000 40000 60000

#Queries Subdivision nniT Subdivision nniT Subdivision nniT

20000 14.47 2.98 15.40 13.91 16.39 38.73

40000 26.69 5.56 27.15 27.33 27.49 69.29

60000 35.40 8.24 38.71 40.67 39.08 129.72

Table 4: Total Running time (in seonds) for Subdivision and nniT on LINUX. The input domain is 2048 � 2048.

The number of input points is taken from f20000,40000,60000g, and the number of queries is taken from f20000,

40000, 60000g

#Inputs nniT Stream

5000 11.93 3.23

10000 13.71 5.6

20000 18.0 10.6

Table 3: Total running time (in seonds) for proessing

512�512 queries on WINDOWS

Table 4 ompares the running time for Subdi-

vision and nniT on LINUX over a large domain of

2048�2048. When the number of input sites is large,

Subdivision outperforms nniT.

Error analysis To determine the error inurred

by our approah, we use nniT as the referene

implementation, and measure the relative error of

queries to Area and Stream. Beause of the rapidly

hanging behavior of the funtion, and the inherent

oating point errors inurred in alulating it, for

values less than 0.01 we report absolute rather than

relative di�erenes.

Using a 512�512 window, Stream yields an av-

erage relative error of 2.6%, with a standard devia-

tion of 0.25. The median relative error is 3.9%. For

reported values of less than 0.01 in both the refer-

ene and Stream, the average absolute di�erene was

0.0004. A total of 53 observations were exluded from

this alulation beause they returned invalid values

(values greater than 1.0, or NaN).

Performing a similar analysis for Area, the re-

sults were similar. The average relative error was

3%, with a standard deviation of 0.29. The average

absolute error was 0.001. The median relative error
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Figure 4: The loss of preision inurred by the

subdivision method and the saling method

was muh smaller, at 0.4%. 28 values were rejeted

as invalid.

Figure 4 shows how the average error varies as the

number of sites inreases for the Subdivision and

the saling method. The loss of preision inurred

by Subdivision is always below 1% regardless of the

number of sites, thus negligible. For omparison, the

saling method yields quite notieable errors as the

number of sites inreases.

8 Disussion

The results presented in this paper demonstrate

that the use of graphis hardware an speed up the



proessing of natural neighbor interpolation queries.

Sine we an also ompute the salar �eld indued

by the natural neighbor funtion, it is possible to

do range searhing over a domain ompletely in

hardware.

One signi�ant problem that omes up when

we use graphis ards is the bounded size of frame

bu�ers. The loss of preision ould be fairly notie-

able, when the saling is required to plae widely

spread inputs over a large domain into the frame

bu�er window. We demonstrate that the subdivision

approah an redue the loss of preision to a negli-

gible degree while still proessing queries faster than

the software-based implementations in some ases.

This paper also demonstrates the expressive

power of fragment programs. As general purpose

stream programs, their potential is only now being

exploited, and it is likely that they an failitate pra-

tial and eÆient solution of many problems in om-

putational geometry. This is a fruitful area for future

exploration.
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