
Hardware-Assisted Natural Neighbor Interpolation

Quanfu Fan

�

Alon Efrat

y

Vladlen Koltun

z

Shankar Krishnan

x

Suresh Venkatasubramanian

{

Abstra
t

Natural neighbor interpolation is a weighted average in-

terpolation method that is based on Voronoi tessellation.

In this paper, we present and implement an algorithm for

performing natural neighbor interpolation using graphi
s

hardware. Unlike traditional software-based approa
hes

that pro
ess one query at a time, we develop a s
heme

that
omputes the entire s
alar �eld indu
ed by natural

neighbor interpolation, at whi
h point a query is a trivial

array lookup, and range queries over the �eld are easy to

perform.

Our approa
h is faster than the best known software

implementations and makes use of general purpose stream

programming
apabilities of
urrent graphi
s
ards. We

also present a simple s
heme that requires no advan
ed

graphi
s
apabilities and
an pro
ess natural neighbor

queries faster than existing software-based approa
hes.

Finally, re
ognizing the limitation in
urred by the

bounded size of graphi
s frame bu�ers, we propose a sub-

division approa
h that allows performing queries lo
ally

in a subdivision of the input domain. This approa
h
an

redu
e to a negligibly small degree (< 1%) the loss of pre-

ision
aused by the naive s
aling method while still pro-

essing queries faster than the software-based approa
hes

when the number of sites is large.

1 Introdu
tion

A problem often en
ountered in many appli
ations

is that of re
onstru
ting
ontinuous surfa
es from

sampled data points. Many interpolation methods

have been developed for this problem, in
luding min-

imum
urvature splines, Kriging, bilinear and Bezier

pat
hes being among the methods that have been

used [24℄. Natural neighbor interpolation (NNI), also

alled area stealing interpolation, is one of the most

popular methods and has been widely used in geo-

physi
al modeling, surfa
e re
onstru
tion, and even

omputational solid/
uid me
hani
s [1, 5, 16, 21℄.

First introdu
ed by Sibson [19, 20℄, NNI is a

weighted average method that
onstru
ts the inter-

�

Department of Computer S
ien
e, University of Arizona;

quanfu�
s.arizona.edu

y

Department of Computer S
ien
e, University of Arizona;

alon�
s.arizona.edu

z

Computer S
ien
e Division, University of California,

Berkeley; vladlen�
s.berkeley.edu

x

AT&T Labs { Resear
h; krishnas�resear
h.att.
om

{

AT&T Labs { Resear
h; suresh�resear
h.att.
om

polant by using natural neighbor
oordinates based

on the Voronoi tessellation of a set of sites. Besides

being a fairly simple method to des
ribe, NNI yields

an interpolant that is C

0

everywhere and C

1

every-

where ex
ept at the sample points. It is also non-

parametri
, whi
h is attra
tive in many settings as it

thus assumes no spe
ial properties of the data. How-

ever, sin
e NNI involves tessellating the Voronoi dia-

gram, it su�ers from the disadvantage of being
om-

putationally
ostly, espe
ially when the number of

sites is large.

Related work While extensive resear
h has

been
ondu
ted on the subje
t of NNI [3, 16, 20, 23,

26, 24℄, there are only a few implementations pub-

li
ly available for general use [7, 14, 15, 25℄. Among

them, the \nngridr" pa
kage [25℄ developed by Wat-

son re
eived re
ognition for the method that
om-

putes all the Voronoi polygons required for one in-

terpolation operation using a single
ombined
al
u-

lation. NatGrid [7℄, a software pa
kage by NCAR,

is based on the work of Watson and is not available

for free download. Owen [14℄ implemented both 2D

and 3D NNI in a pa
kage that was not released to the

publi
. Re
ently, Sakov [15℄, implemented NNI based

on Shew
huk's Triangle pa
kage [18℄ for
omputing

the underlying Delaunay triangulation.

The powerful
omputational ability of modern

graphi
s
ards has led to their use as a fast streaming

opro
essor, solving many problems outside the realm

of
omputer graphi
s. Notable examples in
lude path

planning,
ollision dete
tion, parti
le systems, and

physi
al simulation. Starting with the work of Ho� et

al. [10℄ on the
omputation of Voronoi diagrams,

there are now fast hardware-assisted algorithms for

problems in data analysis, geometri
 optimization,

and solid modeling, among others [2, 10, 11, 12, 9, 13℄.

Our work In this paper, we extend the

paradigm of hardware-assisted
omputation to the

area of natural neighbor interpolation. Our main
on-

tributions are as follows.

� We present a simple approa
h that
an answer

natural neighbor interpolation queries in one

rendering pass with a single readba
k. (See Se
-

tion 3 for de�nitions.) This s
heme performs bet-

ter than
urrent software implementations and

uses only standard features of modern graphi
s

ards.

� We present a more general s
heme, based on

the latest generation of graphi
s ar
hite
tures,

that
an
ompute natural neighbor interpolation

queries simultaneously for ea
h (dis
rete) point

within the
onvex hull of the input point set.

This approa
h also leads to a s
heme for per-

forming range queries on the natural neighbor

interpolation fun
tion; an example would be the

omputation of the average or maximum value

in a given range.

� We present a subdivision approa
h to redu
e

the loss of pre
ision
aused by the s
aling that

is usually required when the inputs are widely

spread over a large domain.

� We present a detailed experimental study of the

above approa
hes,
omparing them to existing

software implementations.

The paper is organized as follows. Se
tion 2

introdu
es natural neighbor interpolation and Se
-

tion 3 brie
y reviews hardware-assisted
omputation

of Voronoi diagrams. We present a simple overlay-

based NNI interpolation s
heme in Se
tion 4 and

demonstrate a general method for
omputing NNI

over an entire range in Se
tion 5. Se
tion 7 presents

a detailed experimental study and future dire
tions

are dis
ussed in Se
tion 8.

Figure 1: Area stolen after a query point is inserted

into a Voronoi diagram.

2 Natural Neighbor Interpolation

We are given a set S = fs

1

; : : : ; s

n

g of sites, and a

weight fun
tion f : S ! R. For a point q, the interpo-

lated value at q is estimated as f(q) ,

P

i

w

i

(q)f(s

i

),

where w

i

(q) is the weight of s

i

. This method is
alled

weighted average interpolation. Di�erent interpola-

tion methods di�er by the way the weights are deter-

mined.

NNI relies on the
onstru
tion of Voronoi dia-

grams. Here w

i

is de�ned as follows:

(2.1) w

i

=

Area(V

S[fqg

(q)

T

V

S

(s

i

))

Area(V

S[fqg

(q))

:

Here V

S

(s

i

) is the Voronoi
ell of s

i

in Vor(S) (the

Voronoi diagram of S) and V

S[fqg

(q) is the Voronoi

ell of q in Vor(S [fqg). (See Figure 1.) We refer to

the set of points fs

i

j V

S[fqg

(q) \ V(s

i

) 6= ;g as the

natural neighbors of q. In the sequel, when we refer to

f(q), it should be understood that the weight ve
tor

w

i

asso
iated with f is de�ned as in Equation 2.1.

In our problem, the area of the Voronoi
ell is

approximated by the number of pixels in the Voronoi

ell. Let N(V

S[fqg

(q)) be the number of pixels in the

Voronoi
ell V

S[fqg

(q). Equation 2.1
an be
losely

approximated by

(2.2) w

i

�

N(V

S[fqg

(q)

T

V

S

(s

i

))

N(V

S[fqg

(q))

3 Preliminaries

3.1 The Graphi
s Pipeline. The graphi
s

pipeline is often used as a rendering (or \drawing")

engine to fa
ilitate intera
tive display of
omplex

three-dimensional geometry. The input to the

pipeline is a set of geometri
 primitives and images,

whi
h are transformed and rasterized at various

stages of the pipeline to produ
e a stream of frag-

ments that is \drawn" on a two-dimensional grid

of pixels known as the frame bu�er. The frame

bu�er is a
olle
tion of several individual dedi
ated

bu�ers (
olor, sten
il, depth bu�ers, et
.). The

user intera
ts with the pipeline via a standardized

software interfa
e (su
h as OpenGL or Dire
tX) that

is designed to mimi
 the graphi
s subsystem. For

more details, the reader may refer to the OpenGL

programming guide [27℄.

3.2 Computing Voronoi Diagrams and Over-

lays. It is well known that the Voronoi diagram of

a set of points in the plane
an be
omputed using

the graphi
s pipeline [10℄. Ea
h point is assigned a

spe
i�

olor, and at the end of the
al
ulation, ea
h

Voronoi region is represented as an area of the ap-

propriate
olor in the
olor bu�er. For the Eu
lidean

metri
, this is a
hieved by drawing right angled
ones

with their apex at ea
h point, as seen from below.

The paper by Ho� et al. [10℄ has further details on

this pro
edure; sin
e
ones are drawn by approximat-

ing their surfa
e with triangles, an appropriate num-

ber of triangles must be drawn to ensure that the

error in
urred is less than one pixel.

We also need the depth �eld that the Voronoi

diagram indu
es. At ea
h pixel, the depth bu�er

ontains the height of the lowest
one. Sin
e the

ones are right angled, this is also the distan
e of

the nearest Voronoi site to the pixel.

4 A Simple Overlay-Based Method.

In this se
tion, we present a simple algorithm for

natural neighbor interpolation of a fun
tion f(�). The

input in
ludes a set S = fs

1

; : : : ; s

n

g of n sites,

ea
h site with its fun
tional value f(s

i

), and a set

Q = fq

1

; : : : ; q

m

g of m query points. The algorithm

outputs the interpolated value f(q

i

) for ea
h q

i

.

Our algorithm is based on the following overlay

method:

Algorithm 1 Overlay Method for NNI queries

Compute Vor(S)

for Ea
h query q 2 Q do

Compute Vor(S [fqg)

Compute the overlay of Vor(S) and V(q) (in

Vor(S [fqg))

Determine the weights of the natural neighbors

of q from the overlay, and return f(q)

end for

We remark in passing that the running time of

this algorithm for a single query q, using standard

algorithms for Voronoi diagram
omputation and

line segment interse
tion, is O((n + k) logn) in a

traditional RAM model, where k is the number of

natural neighbors of q.

4.1 Implementation. The �rst step is easy to

implement (see Se
tion 3). It yields two two-

dimensional arrays. One
ontains at ea
h pixel a

olor
orresponding to the site whose Voronoi
ell

that pixel lies in. The other
ontains the distan
e

of the pixel from the
orresponding site.

When we now pro
ess a query point q by drawing

its
orresponding
one, an appropriate depth test will

ensure that pixels of this
one will only be drawn

where this
one is lower than all other
ones, implying

that for all su
h pixels, the query point is the
losest

site.

If we
lear the
olor bu�er before this rendering

step, it will now
ontain all (and only) the pixels in

the Voronoi
ell of q. If we now read ba
k the
olor

bu�er, and a

ess the
olor (in the earlier
olor bu�er)

of all drawn pixels (i.e., all pixels in V

S[fqg

(q)),

the number of pixels of ea
h
olor represents the

stolen area from the
orresponding site, and the total

number of pixels is a measure of the area of V

S[fqg

(q).

Given these quantities, f(q)
an now be
omputed.

This is a straightforward implementation of the

above algorithm, and as we shall see in Se
tion 7, per-

forms reasonably well in
omparison with standard

software-based approa
hes. However, it su�ers from

two drawba
ks. The number of generated fragments

is very large (see below for details) and to perform a

readba
k for ea
h query is very expensive. In what

follows, we address these two issues.

4.2 Clustering queries. In the graphi
s pipeline,

ea
h geometri
 primitive is rasterized into fragments.

A sequen
e of per-fragment operations su
h as depth

tests and sten
il tests are subsequently performed on

all fragments after rasterization and only those frag-

ments that pass all the tests update their
orrespond-

ing pixels in the frame bu�er. Generally speaking, the

larger the area of the primitive, the more fragments

generated and thus the more expensive the rendering.

Another issue pe
uliar to hardware-assisted algo-

rithms is the issue of read ba
ks : extra
ting data from

the frame bu�er into main memory. This is typi
ally

an expensive operation (graphi
s
ards use a slow bus

for data transfer in this dire
tion), and is
ostly both

in terms of its �xed
ost as well as the bandwidth

available for transfer. It also stalls the pipeline for

future rendering passes.

The �rst observation that helps minimize the

number of rendered fragments is that the Voronoi

ones only need to be tall enough to dete
t every

Voronoi vertex. (As opposed to
ones that are as

large as the whole frame bu�er.) It is easy to see that

the
one height needs only be as large as the radius r

�

of the largest empty
ir
le for the algorithm to dete
t

all Voronoi
ells inside the
onvex hull of the points.

The se
ond observation makes use of logi
al hard-

ware fun
tions. In the above algorithm, all the infor-

mation we need for a parti
ular query q is a bit that

determines for ea
h pixel whether it is in V

S[fqg

(q)

or not. Sin
e
olor bu�ers have 32 bits (eight ea
h for

red, green, blue, and the alpha
hannel), we
an pro-

ess thirty two queries simultaneously using a hard-

ware operation that performs a bitwise OR of the

olors being rendered at a pixel. It is then a straight-

forward exer
ise to read these pixels ba
k and deter-

mine the stolen area
osts for ea
h of the queries.

The idea of query
lustering is to bat
h nearby

queries together and retrieve only a small portion

of the frame bu�er that suÆ
es to
ompute the

interpolation fun
tion
orre
tly for these queries. By

doing so, we avoid reading ba
k the whole frame

bu�er, whi
h is expensive. As des
ribed below,

with query
lustering, we only need to retrieve the

a

umulative stolen area of a region for answering

queries in that region, thus greatly redu
ing the

readba
k time.

We subdivide the frame bu�er window into a

uniform grid. De�ne the a

umulative stolen area

(ASA) of a grid
ell as the union of the stolen areas

of all points in the
ell. Su
h a region
ontains all

the information needed to pro
ess natural neighbor

interpolation queries in the
ell. The ASA of a
ell

is equivalent to the Voronoi region of the
ell, whi
h

an be eÆ
iently
onstru
ted by rendering for ea
h

vertex of the
ell a quarter
one and for ea
h edge a

half \tent", a re
tangle growing upward in an angle

of 45 degree from that edge [10℄. The ASA is then

omputed by reading the frame bu�er ba
k into main

memory.

Combining queries that lie in this
ell using

blending
ompletes the pro
ess. As we shall see in

se
tion 7, this optimization saves a signi�
ant amount

of time in query pro
essing.

5 A General Approa
h To Compute f()

The algorithm of the previous se
tion employs a

simple hardware-based overlay method to answer a

single natural neighbor query. In this se
tion, we

present a more sophisti
ated s
heme based on
ertain

advan
ed features of
urrent graphi
s
ards that
an

ompute the entire natural neighbor fun
tion over the

two dimensional grid. The key ingredient is a pseudo-

streaming algorithm to
ompute the interpolant at

a query point, whi
h is based on the
ompound

signed de
omposition te
hnique for natural neighbor

interpolation proposed by Watson [23℄.

We brie
y review Watson's algorithm. The basi

operation in
omputing the natural neighbor weights

is to
ompute areas of
onvex polygons that are

stolen from the original Voronoi diagram. Instead

of triangulating the polygon to
ompute the area,

Watson's method generates a triangle whi
h
ontains

the polygon and ea
h of its edges
ontains some edge

of the polygon. Further the portions of the bounding

triangle that are outside the polygon are triangles

themselves. This allows us to
ompute the area of

the polygon as a signed expression involving the areas

of the above triangles. This is
alled the
ompound

signed de
omposition.

Let us assume that we have the Delaunay trian-

gulation of the original point set and the triangle ver-

ti
es are in a
anoni
al (anti
lo
kwise, for example)

order. Further, let us assume that for any query point

q, we
an �nd all the Delaunay
ir
les that
ontain

q. Watson's algorithm takes a set of points P and

a query point q as inputs and outputs the natural

neighbor
oordinates of q.

Algorithm 2 Watson's NNI Algorithm

for ea
h Delaunay triangle t = (p

0

; p

1

; p

2

) whose

ir
um
ir
le C

t

ontains query q do

Let

 be the
enter of C

t

for ea
h i 2 f0; 1; 2g do

Let

i

=
ir
um
enter(q, p

(i+1) mod 2

,

p

(i+2) mod 2

)

end for

for i = 0 to 2 do f/* for ea
h vertex of t */g

/* Compute area of two

 with t

*/

Let A

t

i

= 0:5 �

Det(

(i+1) mod 2

;

(i+2) mod 2

;

)

A

i

= A

i

+A

t

i

end for

end for

Normalize all A

i

to
ompute q's natural neighbor

oordinates

Running time Both Watson's implementation

of this algorithm and the implementation developed

by Sakov use a brute for
e O(n) time pro
edure to

determine whi
h Delaunay
ir
les
ontain a given

point. In general, if we were to
onstru
t the

arrangement of Delaunay
ir
les, we
ould a
hieve

a query time of O(log n) (via point lo
ation) at the

ost of quadrati
 spa
e
omplexity.

However, sin
e the point lo
ation is performed on

an arrangement of
ir
les, we
an invoke the following

result:

Theorem 5.1. (Sharir [17℄, Theorem 4.3)

Given a
olle
tion D of n dis
s in the plane, we
an

prepro
ess it in randomized expe
ted time O(n log

2

n)

into a data stru
ture of expe
ted size O(n logn),

su
h that for any query point x, the k dis
s of D

ontaining x
an be reported in time O((k+1) logn).

It is easy to see by planarity arguments that the

number of natural neighbors of a query q is �(k), and

hen
e the above query time suÆ
es to determine all

natural neighbors of q as well.

A Streaming View Watson's algorithm pro-

vides an interesting de
omposition s
heme for
om-

puting the
ontribution of ea
h vertex. Instead of

overlaying two Voronoi diagrams (with and with-

out the query point) and
omputing areas of irreg-

ular
onvex polygons, we
an perform simpler trian-

gle area
omputations. Another observation is that

the algorithm separately maintains the
ontribution

from ea
h of q's natural neighbors (potentially requir-

ing linear spa
e) before
omputing the interpolated

value.

Observe that the interpolated value at q is

(5.3) f

q

=

P

i

f

i

A

i

P

i

A

i

=

P

i

f

i

P

q2C

t

A

t

i

P

i

P

q2C

t

A

t

i

;

where f

i

is the value at input site i. We
an

ompute the interpolated value by maintaining the

numerator and denominator, i.e.,

P

i

P

q2C

t

f

i

A

t

i

and

P

i

P

q2C

t

A

t

i

.

With this modi�
ation, Watson's method
an

be rephrased as a streaming algorithm, where the

elements of the data stream are the Delaunay
ir
les

of the input point set. Algorithm 3 then
omputes the

natural neighbor interpolant in a streaming fashion,

using only
onstant-sized temporary storage.

5.1 Computing the S
alar Field using Graph-

i
s Hardware. Streaming algorithms are
losely re-

lated to algorithms on graphi
s
ards. The latest

generation of graphi
s
ards provide the user with

the ability to write C-like programs
alled fragment

programs that are exe
uted by ea
h fragment. These

programs are stateless fun
tions - they merely op-

erate on and modify the state of the
urrent frag-

ment (for example, its
olor);
arrying the state be-

tween fragment program invo
ation is not allowed.

The only way to maintain state between fragments

is through temporary storage in textures. Thus these

programs are (severely restri
ted forms of) multi-pass

streaming algorithms.

Another feature of
urrent hardware is the ability

to perform full 32-bit signed
oating point operations,

thus maintaining pre
ision. This is important for our

omputation sin
e the intermediate values that are

a

umulated
an get fairly large.

Algorithm 3 Streaming algorithm for natural neigh-

bor interpolation

num = 0, den = 0

for ea
h Delaunay triangle t (with verti
es p

0

, p

1

and p

2

) do

Let (t

; t

r

) be the
ir
um
enter and
ir
umradius

of t

if k q� t

k

2

< t

r

then fq is inside
ir
um
ir-

le of tg

for i = 0 to 2 do

i

=
ir
um
enter(q, p

(i+1) mod 2

,

p

(i+2) mod 2

)

end for

for i = 0 to 2 do f/* ea
h vertex of t */g

/* Compute area of two
ir
um
enters

with t

*/

num = num + 0:5f

i

�

Det(

(i+1) mod 2

;

(i+2) mod 2

; t

)

den = den + 0:5 �

Det(

(i+1) mod 2

;

(i+2) mod 2

; t

)

end for

end if

end for

f

q

= num=den /* f

q

is the natural neighbor

interpolant at q */

For brevity, we will not go into the details of how

su
h programs are implemented on a graphi
s
ard.

Current developments in graphi
s programming have

led to the development of a C-like language
alled

Cg [8℄ for programming these
ards, and there are

higher level
onstru
ts that allow for fully general

purpose stream programming [6℄. In the sequel we

will thus des
ribe our algorithm merely as a high level

stream algorithm.

The algorithm pro
eeds by drawing ea
h Delau-

nay
ir
le and updating the interpolant value at all

points that lie inside the
ir
le. When all the
ir
les

are drawn, the value at ea
h pixel is its natural neigh-

bor interpolant. This produ
es the s
alar �eld. Let

ea
h point i in the input point set
ontain its position

(x

i

; y

i

) and value f

i

.

Below in Figure 2, we show an example output

of the algorithm when presented with data points

sampled randomly from the unit square, with weight

values de�ned by the fun
tion

(5.4)

f(x; y) = 0:5 + 0:5
os(20

p

(x� 0:5)

2

+ (y � 0:5)

2

)

whi
h is radially symmetri
 around the point

(0:5; 0:5) and has range [0; 1℄.

Algorithm 4 Hardware-assisted algorithm for Nat-

ural Neighbor Interpolation

Pre
ompute Delaunay triangulation (and
orre-

sponding Delaunay
ir
les) of the original point set.

Set initial s
alar �eld everywhere to zero and bind

to
oating-point texture FP .

En
ode input point set p

i

= (x

i

; y

i

; f

i

); i = 1 : : : n

as
olor values and store in texture T .

Draw Delaunay
ir
le C passing through p

l

, p

m

and

p

n

with
olor value (l;m; n) that index T .

for ea
h Delaunay
ir
le C do

Draw C dire
tly onto FP .

Fragments generated by C exe
ute the frag-

ment program in Algorithm 3 and update their

num; den and num=den values in red, green and

blue
olor
hannels of FP respe
tively.

end for

When all the
ir
les are drawn, the blue
hannel

has the interpolated value f

q

.

(a) A plot of the fun
tion

(b) The interpolated values (grays
ale: 0 (dark) to

1(white))

Figure 2: The s
alar �eld generated by our algorithm

We do not render points outside the
onvex

hull of the input points, �rstly be
ause Watson's

algorithm is not valid in this region, and se
ondly

be
ause NNI interpolation itself does not make sense

outside the
onvex hull of the input. As a simple

prepro
essing step, we
ompute the
onvex hull of

the input points and use a sten
il mask to disable

rendering outside it.

6 Interpolation Over Large Domain

The main problem of using a bu�er-based approa
h

is the loss of a

ura
y involved. The lo
ations of the

input sites have to be rounded to the next pixel of the

bu�er. This lost of a

ura
y tends to be
ome more

signi�
ant as the number of input sites in
reases,

sin
e the average distan
e between the sites and its

distan
e to the query points de
reases. When the

number of input sites is large and the loss of a

ura
y

is not tolerable, it is re
ommended to break the

problem into several sub-problems using the method

we propose in the
urrent se
tion.

Q

R

A

l

Figure 3: A uniform grid applied over the input

domain. A is the axis-aligned bounding re
tangle of

the a

umulative stolen area of a subdivision Q and

R is a re
tangle whose points have distan
e at most

` from �A.

Lemma 6.1. Let Q be a region of the input domain

and let A be the a

umulative stolen area of Q. Let

S

Q

= fs

i

2 SjV

S

(s

i

) \ A 6= ;g. Then, for any query

point q 2 Q, S

q

� S

Q

where S

q

is the set of natural

neighbors of q.

We omit the proof due to la
k of spa
e.

Below is an outline of the algorithm. Partition

the input domain using a grid � and for ea
h
ell Q

of � �nd a set of sites S

Q

that suÆ
e for any queries

in Q. This is done as follows:

1. Compute Vor

S[Q

(i.e the a

umulative stolen

area of Q) and
ompute the bounding re
tangle

A of the a

umulative stolen area of Q in this

diagram, as des
ribe in Se
tion 4.2.

2. Read the depth bu�er into the main memory,

tra
e �A, and for ea
h pixel p 2 �A, �nd the

distan
e to its nearest site in this diagram. This

distan
e is the depth value of p in the depth

bu�er.

Let ` denote the maximum value a
hieved. Gen-

erate the re
tangle R, de�ned as all points in the

plane whose distan
e from �A, under the L

1

norm is at most ` (see Fig. 3).

3. Compute S

Q

= S\R by
he
king for ea
h s 2 S

if it is inside R. Clearly S

Q

ontains all sites

whose Voronoi
ell interse
t �A, and the sites

inside A. Thus, by Lemma 6.1 these are all

the sites that might parti
ipate in
omputing the

value of the interpolated fun
tion in Q.

On
e R and S

Q

are found, we
an
onstru
t

Vor

S

Q

and answer queries in Q safely with Vor

S

Q

.

The pro
ess above is repeated until ea
h
ell is

�nished.

Our implementation pi
ks the size of the grid

ell of � as 1=2 of the size of the graphi
s window.

As we will see in se
tion 7, this approa
h in
urs a

pre
ision loss within a negligibly small degree while

still pro
essing queries faster than the software-based

implementations when the number of sites is large.

7 Performan
e Analysis

Code platform In this se
tion, we present an

empiri
al study of our approa
h. Our algorithms

were implemented in C/C++ and OpenGL 1.4. We

used two platforms for testing the
ode. LINUX is 1

Ghz Pentium pro
essor with 256 MB of memory and

an Nvidia GeFor
e FX 5900 graphi
s
ard running

Red Hat 9.0. WINDOWS is a Pentium M 1.4Ghz

laptop running Windows XP and Cygwin 1.5, with

an Nvidia GeFor
e Go FX 5650 graphi
s
ard. The

laptop supports the WGL extensions required to run

the s
alar �eld
al
ulation of Se
tion 5. In all
ases,

we
ompiled the
ode using g++ -O3. We refer to

the area-based query algorithm of Se
tion 4 as Area,

the streaming s
alar �eld algorithm of Se
tion 5 as

Stream and the subdivision algorithm for large input

domain of Se
tion 6 as Subdivision. Note that

Stream
urrently only runs on WINDOWS; this is due

to the la
k of appropriate driver support on Linux.

Referen
e implementations To demonstrate

the performan
e of our algorithm, we
hoose two

software-based implementations of natural neighbor

interpolation for
omparison. The �rst one is nni,

Watson's implementation of NNI [22℄ (a standard

ode base) with slight modi�
ation to allow it to

a

ept multiple queries. The se
ond one is nniT,

Sakov's [15℄ implementation of Watson's algorithm

that makes use of Jonathan Shew
huk's Triangle

pa
kage [18℄.

Test fun
tion The fun
tion we approximate

is the radially symmetri

os(
r) (Eq. (5.4)) from

Se
tion 5. The input sites and query points were

both randomly generated in a range of [0; 1℄

2

. Note

that
are must be taken to ensure that query points

lie inside the
onvex hull of the input points.

Running time For all experiments, we used a

rendering window size of 512�512. In Table 1 we

ompare the running times for Area, nniT and nni

on LINUX. nniT is initially superior to both Area

and nni, but as the number of sites in
reases, Area

starts to dominate. It is worth noting that the

algorithmArea implements is a trivial one and nniT

is one of the best known software implementations to

date. Thus the fa
t that Area outperforms nniT is

signi�
ant.

Table 2 presents a breakdown of the individual el-

ements of Area. It also demonstrates how
lustering

queries improves the performan
e of the algorithm.

Breakdown Clustered Non-Clustered

Queries Queries

Prepro
ess 0.16 0.0

VoronoiDraw 0.12 0.12

QueryDraw 0.17 0.25

Readba
k 0.10 4.34

Counting 0.07 3.28

Total 0.62 7.99

Table 2: The breakdown of spe
i�
 steps in Area. Pre-

pro
ess: Time spent on
omputing readba
k windows;

VoronoiDraw: Time spent on drawing Voronoi sites;

QueryDraw: Time spent on drawing query points; Read-

ba
k: Time spent on readba
k; Counting: Time spent on

ounting stolen pixels. Numbers reported for a run with

10000 input points and 10000 query points.

Table 3
ompares nniT and Stream on WINDOWS.

We drop nni from this
omparison, as its running

time is signi�
antly worse even for a few queries.

Sin
e Stream
omputes the entire s
alar �eld, we

ompare running times by making the same number

of queries (512�512) to nniT.

#Input Sites 5000 10000 20000

#Queries Area nniT nni Area nniT nni Area nniT nni

100 0.25 0.06 0.26 0.29 0.13 0.58 0.43 0.26 -

1000 0.27 0.11 2.18 0.35 0.20 5.87 0.44 0.41 -

5000 0.35 0.32 11.09 0.40 0.53 27.57 0.52 0.97 -

10000 0.49 0.58 24.27 0.50 0.94 56.45 0.65 1.61 -

20000 0.69 1.14 44.04 0.71 1.84 112.36 0.86 3.10 -

Table 1: Total Running time (in se
onds) for Area, nniT, and nni on LINUX. The number of input points is taken

from f5000,10000,20000g, and the number of queries ranges from 100 to 20000.

#Input Sites 2000 40000 60000

#Queries Subdivision nniT Subdivision nniT Subdivision nniT

20000 14.47 2.98 15.40 13.91 16.39 38.73

40000 26.69 5.56 27.15 27.33 27.49 69.29

60000 35.40 8.24 38.71 40.67 39.08 129.72

Table 4: Total Running time (in se
onds) for Subdivision and nniT on LINUX. The input domain is 2048 � 2048.

The number of input points is taken from f20000,40000,60000g, and the number of queries is taken from f20000,

40000, 60000g

#Inputs nniT Stream

5000 11.93 3.23

10000 13.71 5.6

20000 18.0 10.6

Table 3: Total running time (in se
onds) for pro
essing

512�512 queries on WINDOWS

Table 4
ompares the running time for Subdi-

vision and nniT on LINUX over a large domain of

2048�2048. When the number of input sites is large,

Subdivision outperforms nniT.

Error analysis To determine the error in
urred

by our approa
h, we use nniT as the referen
e

implementation, and measure the relative error of

queries to Area and Stream. Be
ause of the rapidly

hanging behavior of the fun
tion, and the inherent

oating point errors in
urred in
al
ulating it, for

values less than 0.01 we report absolute rather than

relative di�eren
es.

Using a 512�512 window, Stream yields an av-

erage relative error of 2.6%, with a standard devia-

tion of 0.25. The median relative error is 3.9%. For

reported values of less than 0.01 in both the refer-

en
e and Stream, the average absolute di�eren
e was

0.0004. A total of 53 observations were ex
luded from

this
al
ulation be
ause they returned invalid values

(values greater than 1.0, or NaN).

Performing a similar analysis for Area, the re-

sults were similar. The average relative error was

3%, with a standard deviation of 0.29. The average

absolute error was 0.001. The median relative error

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
ea

n
re

la
tiv

e
er

ro
r

number of sites

Subdivision
Scaling

Figure 4: The loss of pre
ision in
urred by the

subdivision method and the s
aling method

was mu
h smaller, at 0.4%. 28 values were reje
ted

as invalid.

Figure 4 shows how the average error varies as the

number of sites in
reases for the Subdivision and

the s
aling method. The loss of pre
ision in
urred

by Subdivision is always below 1% regardless of the

number of sites, thus negligible. For
omparison, the

s
aling method yields quite noti
eable errors as the

number of sites in
reases.

8 Dis
ussion

The results presented in this paper demonstrate

that the use of graphi
s hardware
an speed up the

pro
essing of natural neighbor interpolation queries.

Sin
e we
an also
ompute the s
alar �eld indu
ed

by the natural neighbor fun
tion, it is possible to

do range sear
hing over a domain
ompletely in

hardware.

One signi�
ant problem that
omes up when

we use graphi
s
ards is the bounded size of frame

bu�ers. The loss of pre
ision
ould be fairly noti
e-

able, when the s
aling is required to pla
e widely

spread inputs over a large domain into the frame

bu�er window. We demonstrate that the subdivision

approa
h
an redu
e the loss of pre
ision to a negli-

gible degree while still pro
essing queries faster than

the software-based implementations in some
ases.

This paper also demonstrates the expressive

power of fragment programs. As general purpose

stream programs, their potential is only now being

exploited, and it is likely that they
an fa
ilitate pra
-

ti
al and eÆ
ient solution of many problems in
om-

putational geometry. This is a fruitful area for future

exploration.

Referen
es

[1℄ Abramov, O. An evaluation of interpolation meth-

ods for mola data. In Meeting of the Ameri
an Geo-

physi
al Union (AGU) (2001). Poster.

[2℄ Agarwal, P., Krishnan, S., Mustafa, N., and

Venkatasubramanian, S. Streaming geometri

optimization using graphi
s hardware. In 11th Eu-

ropean Symposium on Algorithms (2003).

[3℄ Anton, F., Gold, M. C., and Mio
, D. Lo
al

oordinates and interpolation in a voronoi diagram

for a set of points and line segments. In The Voronoi

Conferen
e on Analyti
 Number Theory and Spa
e

Tillings (1998), pp. 9{12.

[4℄ Arya, S., Mount, D. M., Netanyahu, N. S.,

Silverman, R., and Wu, A. An optimal algorithm

for approximate nearest neighbor sear
hing. In

Pro
. 5th ACM-SIAM Sympos. Dis
rete Algorithms

(1994), pp. 573{582.

[5℄ Boissonnat, J.-D., and Cazals, F. Smooth sur-

fa
e re
onstru
tion via natural neighbour interpola-

tion of distan
e fun
tions. In Symposium on Com-

putational Geometry (2000), pp. 223{232.

[6℄ Bu
k, I., and Hanrahan, P. Data parallel
ompu-

tation on graphi
s hardware. In Graphi
s Hardware

(2003).

[7℄ Clare, F. http://ngwww.u
ar.edu/ngdo
/ng/

ngmath/natgrid/nnhome.html.

[8℄ Fernando, R., and Kilgard, M. The Cg Tuto-

rial: The De�nitive Guide to Programmable Real-

Time Graphi
s. Addison-Wesley, 2003.

[9℄ Guesgen, H. W., Hertzberg, J., Lobb, R.,

and Mantler, A. Bu�ering fuzzy maps in gis.

Spatial Cognition and Computation (Spe
ial Issue

on Vagueness, Un
ertainty and Granularity) 3, 2&3

(2003), 207{222.

[10℄ Hoff, K., Culver, T., Keyser, J., Lin, M.,

and Mano
ha, D. Fast
omputation of generalized

voronoi diagrams using graphi
s hardware. Pro
eed-

ings of ACM SIGGRAPH 1999 (1999).

[11℄ Hoff, K., Culver, T., Keyser, J., Lin, M.,

and Mano
ha, D. Intera
tive motion planning us-

ing hardware-a

elerated
omputation of generalized

voronoi diagrams. In Pro
. IEEE International Con-

feren
e on Roboti
s and Automation (2000).

[12℄ Krishnan, S., Mustafa, N., and Venkatasub-

ramanian, S. Hardware-assisted
omputation of

depth
ontours. In Pro
. 13th ACM-SIAM Symp. on

Dis
rete Algorithms (January 2002), pp. 558{567.

[13℄ Mustafa, N., Krishnan, S., Varadarajan, G.,

and Venkatasubramanian, S. Dynami
 simpli�-

ation and visualization of large maps. Intnl. Jor-

nal of Geographi
 Information Systems (2004, to ap-

pear).

[14℄ Owen, S. J. An implementation of natural neighbor

interpolation in three dimensions. Master's thesis,

Brigham Young University, 1992.

[15℄ Sakov, P. http://www.marine.
siro.au/

~sakov/.

[16℄ Sambridge, M., Braun, J., and M
Queen, H.

Geophysi
al parameterization and interpolation of

irregular data using natural neighbors. Geophysi
al

Journal International 122 (1995), 837{857.

[17℄ Sharir, M. On k-sets in arrangements of
urves and

surfa
es. Dis
. Comput. Geom 6 (1991), 593{613.

[18℄ Shew
huk, J. R. Triangle: Engineering a 2D

Quality Mesh Generator and Delaunay Triangula-

tor. In Applied Computational Geometry: Towards

Geometri
 Engineering, M. C. Lin and D. Mano
ha,

Eds., vol. 1148 of Le
ture Notes in Computer S
i-

en
e. Springer-Verlag, May 1996, pp. 203{222. From

the First ACMWorkshop on Applied Computational

Geometry.

[19℄ Sibson, R. A ve
tor identity for the Diri
hlet

tessellation. Math. Pro
. Camb. Phil. So
 87 (1980),

151{155.

[20℄ Sibson, R. Interpreting Multivariate Data. John

Wiley & Sons, 1981,
h. A brief des
ription of

natural neighbour interpolation, pp. 21{36.

[21℄ Sukumar, N. The natural elemend method in solid

me
hani
s. Intnl. Journal for Numeri
al Methods in

Engg. 43, 5 (1998), 839{888.

[22℄ Watson, D. http://www.iamg.org/

naturalneighbour.html.

[23℄ Watson, D. F. Computing the n-dimensional

Delaunay tesselation with appli
ation to Voronoi

polytopes. The Computer Journal 8, 2 (1981), 167{

172.

[24℄ Watson, D. F. Contouring: a guide to the analysis

and display of spatial data. Pergamon Press, 1992.

[25℄ Watson, D. F. nngridr: An implementation of

natural neighbour implementation, vol. 1 of Natural

Neighbour Series. David Watson, 1994.

[26℄ Watson, D. F., and Phillip, G. M. Neighbour

based interpolation. Geobyte 2, 2 (1987), 12{16.

[27℄ Woo, M., Neider, J., Davis, T., and Shreiner,

D. OpenGL(R) Programming Guide: The oÆ
ial

guide to learning OpenGL, Version 1,2,3. Addison-

Wesley, 1999.

