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Abstract

We show that, using the L

1

metric, the minimum Hausdor� distance under trans-

lation between two point sets of cardinality n in d-dimensional space can be computed

in time O(n

(4d�2)=3

log

2

n) for 3 < d � 8, and in time O(n

5d=4

log

2

n) for any d > 8.

Thus we improve the previous time bound of O(n

2d�2

log

2

n) due to Chew and Kedem.

For d = 3 we obtain a better result of O(n

3

log

2

n) time by exploiting the fact that the

union of n axis-parallel unit cubes can be decomposed into O(n) disjoint axis-parallel

boxes. We prove that the number of di�erent translations that achieve the minimum

Hausdor� distance in d-space is �(n

b3d=2c

). Furthermore, we present an algorithm

which computes the minimum Hausdor� distance under the L

2

metric in d-space in

time O(n

d3d=2e+1+�

), for any � > 0.

1 Introduction

We consider the problem of �nding the resemblance, under translation, of two point sets in

d-dimensional space for d � 3. In many matching applications, objects are described by d

parameters; thus a single object corresponds to a point in d-dimensional space. One would

like the ability to determine whether two sets of such objects resemble each other. A 3D

example comes from molecular matching, where a molecule can be described by its atoms,

represented as points in 3-space.

The tool that we suggest here for measuring resemblance is the well-researched minimum

Hausdor� distance under translation. The distance function we use (except in Section 8) is

�
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the L

1

metric. One advantage of using the Hausdor� distance is that it does not assume

equal cardinality of the point sets. It measures the maximal mismatch between the sets when

one point set is allowed to translate in order to minimize this mismatch. Two point sets are

considered to be similar if this mismatch is small. To simplify our presentation, we assume

that the cardinalities of the sets are n and m = O(n) and we express our results in terms of

n.

There have been several papers on the subject of point set resemblance using the minimum

Hausdor� distance under translation. Huttenlocher et al. [9, 10] �nd the minimum Hausdor�

distance for point sets in the plane in time O(n

3

log n) under the L

1

, L

2

, or L

1

metrics. For

point sets in 3-dimensional space their algorithm, using the L

2

metric, runs in time O(n

5+"

).

The method used in [10] cannot be extended to work under L

1

.

Chew and Kedem [6] show that, when using the L

1

metric in the plane, the minimum

Hausdor� distance can be computed in time O(n

2

log

2

n). This is a somewhat surprising

result, since there can be 
(n

3

) di�erent translations that achieve the (same) minimum

[6, 14]. They [6] further extend their technique to compute the minimum Hausdor� distance

between two point sets in d-dimensional space using the L

1

metric, achieving a time bound

of O(n

2d�2

log

2

n) for a �xed dimension d.

We show in this paper that, using the L

1

metric, the minimum Hausdor� distance

between two point sets can be found in timeO(n

3

log

2

n) for d = 3, and in timeO(n

5d=4

log

2

n)

for d > 3. In an earlier version of this paper [5], we have shown how a time bound of

O(n

(4d�2)=3

log

2

n) can be achieved for d > 3. For 3 < d < 8, the time bound of [5] is slightly

better than the one we present here.

To estimate the quality of the time complexity of our algorithms, it is natural to seek

the number of di�erent translations that achieve the minimum Hausdor� distance. More

precisely, the number of connected components in the set of feasible translations in the d-

dimensional translation space. We show that this number is �(n

b3d=2c

) in the worst case.

Note that, as for the planar case solved in [6], the runtime of the algorithms which we present

for a �xed d � 3 is signi�cantly lower than the number of the connected components in the

d-dimensional translation space.

Many optimization problems are solved parametrically by �nding an oracle for a decision

problem and then using this oracle in some parametric optimization scheme. In this paper we

follow this line by developing an algorithm for the Hausdor� distance decision problem (see

de�nition in the next section) and then using it as an oracle in the Frederickson and Johnson

[8] optimization scheme. For the oracle in 3-space we prove that a set of n unit cubes can be

decomposed into O(n) disjoint axis-parallel boxes. We then apply the orthogonal partition

trees (OPTs) described by Overmars and Yap [13] to �nd the maximal depth of disjoint

axis-parallel boxes. We show that this su�ces to answer the Hausdor� distance decision

problem in 3-space. For d > 3 there is a super-linear lower bound on the number of boxes

obtained by disjoint decomposition of a union of boxes (see [3]); thus we cannot use a disjoint

decomposition of unit hypercubes. Instead, we build a decision-problem oracle by developing

and using a modi�ed, nested version of the OPT.

When using L

2

as the underlying metric we show that there can be 
(n

b3d=2c

) connected

components in the translation space, and that the complexity of the space of feasible trans-

lations is O(n

d3d=2e

). We present an algorithm which computes the minimum Hausdor�
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distance under the L

2

metric in d-space in time O(n

d3d=2e+1+�

) for any � > 0.

The paper is organized as follows: In Section 2 we de�ne theminimum Hausdor� distance

problem, and describe the Hausdor� distance decision problem. In Section 3 we show that

the union of n axis-parallel unit cubes in 3-space can be decomposed into O(n) disjoint

axis-parallel boxes, and use the orthogonal partition trees of [13] to solve the Hausdor�

distance decision problem in 3-space. For d > 3, our algorithm is more involved and hence

its description is separated into two sections: Section 4 contains a relaxed version of our

data structures and an oracle which runs in time O(n

3d=2�1

log n); in Section 5 we modify

the data structures of the relaxed version and obtain an O(n

5d=4

log n) runtime oracle. In

Section 6 we show brie
y how we plug the decision algorithm into the Frederickson and

Johnson optimization scheme. Bounds on the number of translations that minimize the

Hausdor� distance are presented in Section 7. The algorithm for the minimum Hausdor�

distance under the L

2

metric is discussed in Section 8. Conclusions and open questions

appear in Section 9.

Since all the spatial objects we deal with in this paper are axis-parallel cubes, axis-parallel

boxes and axis-parallel cells, we omit from now on the words `axis-parallel' and talk about

cubes, boxes and cells. We call a box in d-space a d-box.

2 The Hausdor� Distance Decision Problem

The well-known Hausdor� distance between point sets A and B is de�ned as

H(A;B) = max(h(A;B); h(B;A))

where the one-way Hausdor� distance from A to B is

h(A;B) = max

a2A

min

b2B

�(a; b):

Here, �(�; �) represents a familiar metric on points: for instance, the standard Euclidean

metric (the L

2

metric) or the L

1

or L

1

metrics. In this paper, unless otherwise noted, we

use the L

1

metric. In dimension d, an L

1

\sphere" (i.e., a set of points equidistant from a

given center point) is a d-cube.

The minimum Hausdor� distance between two point sets is the Hausdor� distance mini-

mized with respect to all possible translations of the point sets. Huttenlocher and Kedem [9]

observe that the minimum Hausdor� distance is a metric on point sets (and more general

shapes) that is independent of translation. Intuitively, it measures the maximum mismatch

between two point sets after the sets have been translated to minimize this mismatch. For

the minimum Hausdor� distance the sets do not have to have the same cardinality, although

to simplify our presentation, we assume that both point sets are of size �(n).

As in [6] we approach this optimization problem by using the Hausdor� distance decision

problem with parameter " > 0 as a subroutine for a search in a sorted matrix of " values. We

de�ne the Hausdor� distance decision problem for a given " to be the question of whether the

minimum Hausdor� distance under translation is bounded by ". We say that the Hausdor�

distance decision problem for sets A and B and for " is true if there exists a translation t

such that the Hausdor� distance between A and B shifted by t is less than or equal to ".
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We follow the approach taken in [6], solving the Hausdor� distance decision problem by

solving a problem of the intersection of unions of cubes in the (d-dimensional) translation

space. Let A and B be two sets of points as above, let " be a positive real value, and let C

"

be a d-dimensional cube, with side size 2" and with the origin at its center (the L

1

\sphere"

of radius "). We de�ne the set A

"

to be A � C

"

, where � represents the Minkowski sum.

Consider the set A

"

� (�b) where �b represents the re
ection of the point b through the

origin. This set is the set of translations that map b into A

"

. The set of translations that

map all points b 2 B into A

"

is then \

b2B

(A

"

� (�b));

we denote this set by S(A; ";B). It can be shown [6] that the Hausdor� distance decision

problem for point sets A and B and for " is true i� S(A; ";B) \ �S(B; ";A) 6= ;. We

restrict our attention to the problem of determining whether S(A; ";B) is empty; extending

our method to determining whether the intersection of this set with �S(B; ";A) is empty is

reasonably straightforward.

Another way to look at the Hausdor� distance decision problem is to assign a di�erent

color, call it i, to each b

i

2 B, i = 1; : : : ; n. Now we can look at A

"

��b

i

as a union of cubes

of one color which we call a layer. We thus have n layers in n di�erent colors, one layer for

each point b

i

2 B. A point p 2 R

d

is covered by a color i if p 2 A

"

��b

i

. The color-depth of

p is the number of layers that cover p. Our aim is thus to determine if there is a point p of

color-depth n.

3 The Decision Problem in 3 Dimensions

Overmars and Yap [13] address the question of determining the volume of a union of N

d-boxes (all boxes are axis-parallel). Using a data structure they call an orthogonal partition

tree, which we abbreviate as OPT, they achieve a runtime of O(N

d=2

logN). They also

observe that their data structure can be used to report other measures within the same time

bound. One problem that can easily be solved using their data structure is the maximum

coverage for a set S of N d-boxes. De�ning the coverage of a point p 2 R

d

to be the number

of (closed) d-boxes that contain p, the maximum coverage is maxfcoverage(p)kp 2 R

d

g.

Maximum coverage is almost what we need for the Hausdor� distance decision problem,

but instead we need the maximum color-depth. The di�erence is that maximum coverage

counts the number of di�erent boxes while we need to count the number of di�erent colors

(layers). These two concepts are the same if, for each color, all the boxes of that color are

disjoint. Actually it is enough to require that all the boxes of the same color are disjoint in

their interiors. To achieve this, we �rst decompose each layer into O(n) boxes disjoint in

their interiors; then we apply the OPT method to compute the maximum coverage (which

will now equal the maximum color-depth).

Theorem 1 The union of n unit cubes in R

3

can be decomposed, in time O(n log n), into

O(n) boxes whose interiors are disjoint.

Proof: We slice the 3-dimensional space by planes parallel to the z axis at z = 0; 1; 2; : : :

(without loss of generality, all cubes have nonnegative coordinates). For each integer i, let

n

i

denote the number of cubes intersected by the plane z = i. Surely

P

n

i

� n � 2

P

n

i

. Let
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E be the portion of the union of cubes that lies within the (closed) slab bounded by z = i

and z = i+ 1. It is known (e.g., [3]) that the complexity of the boundary of the union of n

unit 3-cubes is linear in the number of cubes. Therefore, the complexity of the boundary of

E is O(n

i

+ n

i+1

).

To end the proof, we show how to decompose E into O(n

i

+ n

i+1

) boxes with disjoint

interiors. As all cubes are unit cubes, the intersection of any vertical line (parallel to the

z-axis) with E is either empty, a unit segment, or up to two \short" segments emanating

either from the plane z = i or from the plane z = i + 1. Let the silhouette of E be the

projection on both z = i and z = i+ 1 of all such vertical lines whose intersection with E is

one unit long. Clearly the complexity of the silhouette of E is O(n

i

+ n

i+1

).

z=i

z=i+1

Figure 1: E is shaded, E

0

and E" are the thick lines on z = i and z = i + 1 resp., F

0

and

F" consist of the black points on z = i and z = i+ 1 resp.

Consider E

0

, the intersection of E with the plane z = i (see Figure 1 for a 2-dimensional

illustration). For every point p of E

0

, observe the vertical segment emanating from p towards

the opposite boundary of E. Let F

0

be all points p of E

0

at which the length of the vertical

segment changes. Clearly F

0

forms a rectilinear shape of up to O(n

i

+ n

i+1

) vertices and

edges (which are not self intersecting) on the plane z = i. We perform in time O((n

i

+

n

i+1

) log(n

i

+ n

i+1

)) a vertical decomposition of F

0

and extend this decomposition in the z

direction until we either hit an end of a short segment or we hit the other plane z = i+ 1.

Similarly, we can form E

00

(the intersections of E with the plane z = i + 1) and F

00

;

F

00

forms a rectilinear shape of up to O(n

i

+ n

i+1

) vertices and edges (which are not self

intersecting) on the plane z = i+1. We can form a vertical decomposition of F

00

and extend

this in the z direction (toward the plane z = i). Note that the parts of F

0

and F

00

due

to the silhouette of E are identical. Since the silhouette of E appears in both the planar

arrangements it is clear that the unit long-segments' vertical decompositions coincide while

the short-segments' decompositions are disjoint.

This produces a decomposition of the slab E into O(n

i

+ n

i+1

) disjoint boxes. Summing

over all the slabs produces the �nal decomposition of O(n) disjoint boxes. 2

Applying this theorem to each of the n colors, we decompose each layer (recall that a

layer is the union of all cubes of a single color) into O(n) disjoint boxes, getting a total

5



of N = O(n

2

) boxes, where boxes of the same color do not overlap in their interiors. We

can now apply the Overmars and Yap algorithm on these boxes, getting an answer to the

Hausdor� distance decision problem in time O(n

3

log n). This gives us the following theorem.

Theorem 2 For point sets in 3-space, the Hausdor� distance decision problem can be an-

swered in time O(n

3

log n).

4 Higher Dimensions: the Relaxed Version

The decomposition method used for 3-space cannot be extended e�ciently to work for d > 3,

since as Boissonnat et al. [3] have recently shown, the complexity of the union of n d-

dimensional unit cubes is �(n

bd=2c

); thus a single layer (the union of cubes for a single color)

cannot be decomposed into O(n) disjoint boxes. Note that we cannot use the Overmars and

Yap data structure (OPT) and algorithm directly for the set of n

2

colored cubes because of

the possible overlapping of cubes of the same color. Our method is therefore to augment the

OPT adding capabilities that e�ciently handle the overlapping of same-color cubes.

We describe very brie
y the OPT of Overmars and Yap [13]. Let Q = fq

1

; : : : ; q

N

g be a

set of N boxes contained in d-space. An OPT T de�ned for Q is a binary tree such that each

node � is associated with a box-like d-cell C

�

that contains some part of the d-space. For

each node �, the cell C

�

is the disjoint union of the cells associated with its children. Note

that the ancestor/descendent relation in the tree T corresponds to the containment relation

between cells.

Consider a cell C of the OPT and a box q 2 Q. If C � q we say that q covers C. We say

that box q is a pile with respect to a cell C if (1) q does not cover C and (2) for at least d�1

of the axes, the projection of q on these axes contains the projection of C (see Figure 2).

Intuitively, q is a pile with respect to C if q \looks like" a simple planar slab (a thickened

plane or hyperplane) from within C. A pile q divides a cell C into at most three parts: (1)

q \C, (2) the portion of C \above" q, and (3) the portion of C \below" q. Some attributes

of the OPT are ([13]):

(A1) Each cell C stores those boxes of Q that cover C, but don't cover the parent of

C. (In this way, the OPT is an extension of the well known segment tree.)

(A2) Every leaf-cell also stores the boxes of Q that partially cover it (as piles) and for

each leaf cell there are O(

p

N) such boxes.

(A3) Each box q partially covers O(N

(d�1)=2

) leaf-cells. Each q is a pile with respect to

those leaf cells that it partially covers.

(A4) The height of the OPT tree is O(logN). The number of nodes in the tree is

O(N

d=2

).

(A5) A box q ofQ can be inserted into or deleted from the OPT in timeO(N

(d�1)=2

logN).

Overmars and Yap use the OPT to compute the measure of the union of N d-boxes in

time O(N

d=2

logN) by treating this static d-dimensional problem as a dynamic problem in

dimension d � 1. They build an OPT of dimension d� 1, then they use it to sweep d-space

6



C

q

Figure 2: The box q is a pile with respect to the cell C in 3-space. The grey part represents

the intersection between q and C.
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using a hyperplane h of dimension d�1. The set Q of boxes that they use to build the OPT

is the set of projections of their original d-boxes onto the (d�1)-hyperplane h. During the

sweep, each box q is inserted into the OPT when it starts intersecting h and is deleted as h

sweeps past it. Note that, because the OPT is of dimensions d� 1 (and not d), the time to

insert/delete a single box q is O(N

(d�2)=2

logN). Both insertions and deletions involve some

computation concerning the required measure.

We would like to implement a type of OPT for N = O(n

2

) colored cubes (n cubes in

each of the n colors) to �nd whether there is a point covered by n colors. It is easy to use

the OPT to count straightforward coverage, but we need to know the color-depth. The fact

that cubes of the same color can overlap makes this di�cult. To determine color-depth, we

use secondary OPTs, one for each leaf of a primary OPT. Our primary tree will be an OPT

of dimension d (instead of d� 1 as used by Overmars and Yap).

First, note that our Hausdor� problem is more restricted than the measure problem

solved by Overmars and Yap in the sense that we don't have boxes of arbitrary size. Instead

we have only cubes. In addition they are all unit cubes. (The \unit" here is 2" where " is

the size parameter of our Hausdor� distance decision problem.)

Second, we don't have to look at all of d-space. As a matter of fact we can restrict

our attention to a single unit d-cube. This is because, given point sets A and B and given

parameter ", any translation t that makes the minimum Hausdor� distance between A and

B+ t less than " must also bring the minimum x-value of A within " of the minimum x-value

of B + t. The same holds true for each of the d axes. Thus, in translation space, the set of

translations that could potentially bring A and B within Hausdor� distance " of each other

is restricted to a single unit d-cube, a cube of size 2".

Third, since leaf cells are small (smaller than a unit d-cube as shown above), the cubes

that partially cover a leaf cell C (the piles of C) intersect C in a more restricted way. Here,

a pile q will divide a cell C into at most two parts since if any part of C is \above" q then,

since q is large with respect to C, there cannot be any part of C \below" q. Intuitively, a

pile q with respect to C \looks like" a half-space from within C.

This last observation implies that, if we restrict our attention to one color, say green,

then the part of leaf-cell C that is not-green (the portion left after all intersections of C with

green cubes have been removed) is a single d-box within C. Similarly, for each color i, the

not-i portion of leaf-cell C is a single d-box within C. We refer to the d-box within C that

is not-i as G

i

. Note that it is possible for a particular G

i

to be empty or to equal the entire

cell C.

Now observe that there exists a point p within C that is covered by all colors if and only

if there is a point in C that is outside all boxes G

i

. This question, in turn, is equivalent to

determining whether the measure of the union [

i

G

i

is equal to the measure of C. By posing

the problem in this way we have converted our color-depth problem into a set of measure

problems in d space which can be answered by applying the algorithm of Overmars and Yap

on each leaf cell separately. This gives us the following straightforward algorithm for the

Hausdor� distance decision problem.

1. Using the set Q of N = O(n

2

) colored d-cubes, determine the O(N

d=2

) leaf-cells of the

OPT of Q (restricted to a unit d-cube as explained above).

8



2. For each cell C:

(a) For each color i, determine the d-box G

i

� C that is not-i.

(b) Determine (using a secondary OPT) whether the measure of [

i

G

i

is equal to the

measure of C. If not then report True and halt.

3. Report False and halt.

Time and Space Analysis

Overmars and Yap have shown that their algorithm can work using only O(N) space. This

is done by creating one leaf cell at a time and then performing the measure computation for

this leaf cell. In our case the space requirement can be improved to just O(n) space, even

though there are N = �(n

2

) d-cubes. This is because, for the Hausdor� distance decision

problem, the N cubes are generated from just O(n) points; thus, the N cubes can be stored

implicitly in O(n) space.

We can a�ord to be a bit sloppy in the time needed to build the primary OPT since this

portion of the algorithm is far from the most time-consuming part. We attempt to keep

space costs low. Instead of building all leaf-cells at once, we build each one as we need it,

taking time O(N) for each leaf-cell. By property (A2), the space needed to store a cell C

along with the list of those d-cubes that partially cover C is O(

p

N) = O(n). In addition,

we need to retain the list of colors that completely cover C, requiring O(n) additional space.

The not-i d-boxes G

i

can be built in time O(n) and there are of course n of them, one for

each color.

Once we have all the boxes G

i

, we build secondary OPTs to compute the measure of

their union. For each leaf-cell C of the primary OPT, this takes time O(n

d=2

log n) and space

O(n) [13]. Multiplying this time by the number of primary-OPT leaf-cells O(N

d=2

) = O(n

d

),

we get the following intermediate result (which we improve in the next Section).

Lemma 3 For d > 3, the Hausdor� distance decision problem can be answered in time

O(n

3d=2

log n) using O(n) space.

5 Higher Dimensions: the Improved Version

In this section we improve the relaxed algorithm described in Section 4. In the relaxed

algorithm we used two classes of OPT: a primary OPT and, for each leaf cell, a secondary

OPT. Our �nal time bound was due to multiplying O(n

d

), the number of leaf cells in the

primary OPT, by O(n

d=2

), the time needed to compute the measure of a union of n d-boxes

using a secondary OPT. We develop an improved algorithm by �nding a better balance

between these two quantities. The idea is to decrease the number of cells in the primary

OPT, thus making more work for the secondary OPTs.

Decreasing the number of leaf cells in the primary OPT has two e�ects: (1) there are

more boxes per leaf cell and (2) some of the boxes that partially cover a leaf-cell are nonpiles.

(Recall that for a standard OPT, each box that intersects a leaf cell either completely covers

9



the cell or intersects it as a pile; see Property (A3) in Section 4.) We show that, as long as

the number of nonpile boxes is relatively small, secondary OPTs can be built without severe

performance penalty.

To explain our technique, we �rst discuss the way in which a standard OPT is built [13].

To make the O(N

d=2

) leaf-cells, we �rst divide d-space into 2

p

N slabs by cutting with (d�1)-


ats perpendicular to axis x

1

. This is done in such a way that there are

p

N 1-boundaries

in each slab (an i-boundary is a cube boundary | a (d�1)-
at | that is perpendicular to

axis x

i

). Now we split each of these slabs with respect to x

2

. We �rst split at every

p

Nth

2-boundary of those d-boxes that intersect the slab. In addition, for each slab, we split at

all those 2-boundaries that are boundaries of d-cubes that have a 1-boundary in the slab;

there are O(

p

N) of these. Intuitively, this ensures that the subslabs contain no \corners."

After both these kinds of splits, each slab has been divided into O(

p

N) subslabs, each of

which contains O(

p

N) 2-boundaries and O(

p

N) 1-boundaries. This process continues. At

dimension i, we �rst split at every

p

Nth i-boundary. In addition, we split at all those i-

boundaries that are boundaries of d-cubes that have a j-boundary (for j < i) in the current

slab; there are O(

p

N ) of these. The end result is a structure that satis�es properties (A1)

through (A5) in Section 4. See [13] for additional details.

We modify this construction. We �rst divide d-space, with (d�1)-
ats perpendicular to

axis x

1

, into N

�

slabs where each slab contains O(N

1��

) 1-boundaries; � is a parameter

representing a �xed constant whose value will be determined later in the proof. Now we

split each of these slabs with (d�1)-
ats perpendicular to axis x

2

. We �rst split at every

N

1��

th 2-boundary, creating O(N

�

) subslabs. In addition, for each slab we split at some

of those 2-boundaries of d-cubes with 1-boundaries in the slab. We cannot a�ord to split

at all such boundaries as we did in the construction of the standard OPT, since we want to

have the same number of splits (O(N

�

)) for each type of split. So we have to use O(N

�

)

splits, leaving O(N

1�2�

) of these cube corners (the 2-boundaries of cubes that also have

1-boundaries within the slab) within each subslab. In a sense, these cube corners disrupt

the OPT structure, so our solution is to set these aside. In other words, as we continue

subdividing the current slab, we will ignore these O(N

1�2�

) disrupting cubes. That's not to

say that these cubes are gone forever: they are only ignored for this current slab and, even

though ignored for the rest of the construction, they remain associated with the current slab

(so we can �nd them later).

A similar construction method is used for the other dimensions. At dimension i, working

on a single slab, we divide the slab with (d�1)-
ats perpendicular to axis x

i

. We create

O(N

�

) subslabs each containing N

1��

i-boundaries and O(N

1�2�

) cube corners. The cube

corners disrupt the OPT structure so they are set aside and the construction continues.

When this process ends, we have O(N

d�

) leaf-cells, each having (well-behaved) partial

intersections with O(N

1��

) cubes; these are the cubes that intersect a leaf-cell to form piles.

In addition, we have all the disrupting cubes that were set aside during the construction

process. Each cell inherits O(N

1�2a

) of these from each dimension i, giving a total of

O(dN

1�2a

). We can ignore the constant factor of d, absorbing it into the big-O notation.

So each leaf cell has O(N

1�a

) \good" cubes (piles) that partially intersect it and O(N

1�2a

)

\bad" cubes that partially intersect it.

Now, as we did before, we want to build a secondary OPT for each leaf-cell. There are

10



N

1=2

colors, so if we didn't have to worry about the bad cubes, we could build a standard

OPT structure and check the leaf-cell for color depth in time O(N

d=4

logN) (there is one box

G

i

for each of the colors i, i = 1; : : : ; N

1=2

). The key observation is that the bad cubes can be

handled in a naive way without signi�cantly messing up the structure of our secondary OPT.

During the building of the secondary OPT we do some extra splitting: basically, we split

slabs at every bad cube boundary. Thus, each slab is split O(N

max(

1

4

;1�2�)

) times: N

1

4

due to

the standard construction for N

1

2

boxes, N

1�2�

due to splitting at the bad-cube boundaries.

In the end we have O(N

d�max(

1

4

;1�2�)

) secondary leaf-cells. Note that by splitting the slabs

in this way, there are no partial intersections of secondary leaf-cells with bad cubes: for each

secondary leaf-cell and for each bad cube, either the cube completely covers the leaf-cell or

they don't intersect at all. Thus color-depth for a primary leaf-cell can be determined in

time O(N

d�max(

1

4

;1�2�)

logN).

The total time for the Hausdor� distance decision problem comes from the number

of leaf-cells in the primary OPT structure (O(N

d�

)) multiplied by the time to determine

color-depth in the secondary OPT structure (O(N

d�max(

1

4

;1�2�)

logN)). Total time is thus

O(N

d�max(�+

1

4

;1��)

logN). The optimal time is where �+

1

4

and 1�� are equal. This occurs

at � =

3

8

. Total time is then O(N

5d=8

logN) or, in terms of n, O(n

5d=4

log n).

This gives us the following theorem. As in Lemma 3, we keep our space requirement low

by never building all the primary OPT leaf-cells at once. Instead, we build each leaf-cell

only as it is needed.

Theorem 4 For d > 3, the Hausdor� distance decision problem can be answered in time

O(n

5d=4

log n) using O(n) space.

Combining this result with the 2-dimensional result [6], with our 3-dimensional result

from Section 3 and with results descibed in an earlier version of this paper [5], we summarize

the best time bounds known.

Theorem 5 The Hausdor� distance decision problem can be answered in time O(n

d

log n)

for dimension d = 2 and d = 3, in time O(n

(4d�2)=3

log n) for dimensions 4 � d � 8 and in

time O(n

5d=4

log n) for dimensions d � 8.

6 Finding the Minimum Hausdor� Distance

Now we want to determine the minimum " for which the intersection is still non-empty. It

is easy to see that the desired minimum value is achieved at some "

0

for which two cubes

just touch each other.

We need to search among all possible values of " where two cubes touch at their bound-

aries. We compute the pairwise distances for the cubes for each axis separately. We thus

perform d searches, each over a set of O(n

4

) " values, and �nd for each axis the smallest

" for which the intersection is not empty. The largest " of these d minima is the required

minimum Hausdor� distance.

We can a�ord to use a simple binary search on these values for dimension d � 4 (note

though that this raises the space requirement to �(n

4

)) because the algorithm for �nding

11



the maximal color-depth is of the same complexity as for sorting all the pairwise distances.

For d = 3, however, this is too costly, since the Hausdor� distance decision problem is solved

in time O(n

3

log n). Hence we apply here, as in [6], the method of Frederickson and Johnson

[8] for solving an optimization problem by using a sorted matrix (stored implicitly): Given a

sorted matrix of size N by N it takes time O(N+D logN) to solve the optimization problem

where D is the runtime of the decision problem. For us, N = n

2

and D = O(n

3

log n).

Theorem 6 Using the L

1

metric, the minimum Hausdor� distance under translation be-

tween point sets A and B in d-space can be determined in time O(n

3

log

2

n) if d = 3,

in time O(n

(4d�2)=3

log

2

n) if 3 < d � 8, and in time O(n

5d=4

log

2

n) if d � 8, where

n = maxfjAj; jBjg.

Proof: The proof follows directly from the discussion above and Theorem 5. 2

7 Combinatorial Bounds

In this section we show combinatorial results on the region (in translation space) of all those

translations that minimize the Hausdor� distance between two point sets.

Theorem 7 Let L = fL

1

; : : : ; L

m

g be a collection of layers in d-space where each layer L

i

is

the union of n unit cubes, and let T denote the intersection of the layers. Then the number

of vertices of T is O(m

d

n

bd=2c

).

Proof: Assume for simplicity that the cubes are in general position. Let v be a vertex of

T , and let L

0

� L denote the d or fewer layers which contain v on their boundary. Surely,

v is a vertex of the intersection of the layers of L

0

. However, v is also a vertex of the union

of the layers of L

0

, since v cannot lie in the interior of any of the layers of L

0

. Thus, each

vertex of T is also a vertex of a union of at most d layers of L.

The proof now follows from a simple counting argument. There are O(m

d

) subsets of

L containing d or fewer of the layers. Each subset contains at most dn cubes, and by the

result of [3] cited above, the union of dn unit cubes in d-space has complexity O((nd)

bd=2c

).

Hence the total number of vertices generated in the union of d or fewer layers of L is

O(m

d

) � O((dn)

bd=2c

) which is the bound we are after. Note that factors involving only d

can be treated as constant and absorbed into the big-O notation. 2

Observe that since the regions of T are all axis-parallel, the bound on the number of

vertices of T also bounds the complexity T , and of course the number of connected regions

of T . We now show that this bound is tight in the worst case.

Theorem 8 Let L and T be de�ned as in Theorem 7. Then the number of connected regions

in T is 
(m

d

n

bd=2c

).

12



Proof: Our construction extends an earlier construction due to Rucklidge [14] that he

developed for the two-dimensional case. We �rst show how to construct 
(m

2

n) connected

regions in T for d = 2. We de�ne a corridor of color i as the region enclosed between

two stairs of squares of color i, as shown in Figure 3(a). We are assuming that layer L

i

corresponds to the union of all squares of color i. Each step of the \stairs" is of size �, where

� > 0 is a small �xed parameter (depending on n) choosen to ensure that the entire corridor

�ts within a single one of our unit squares. The corridor is generated by n cubes and has

n=2 stairs. We refer to this �rst corridor as the base corridor.

δ

δ

δ/2

a corridor of color  i

Figure 3: Lower bound construction

We generate two batches ofm=2 layers, where each layer has its own corridor: a translated

copy of the base corridor. Note that for layer L

i

, L

i

's corridor is a narrow region that is not

covered by color i. The ith corridor in the �rst batch (for i = 1; : : : ;m=2) is generated by

shifting the base corridor by i�

0

(in both the x and y directions) where �

0

= �=2m. The ith

corridor of the second batch (for i = m=2 + 1; : : : ;m) is generated by translating the �rst

batch by �=2 in both the x and y directions. See Figure 3(b).

Note that each corridor in batch one intersects each corridor in batch two 
(n) times,

yielding 
(m

2

n) distinct maximally-colored regions. Most of these regions (all but O(mn)

of them) are convex, rectangle-shaped, and adjacent along all four sides to corridors. These

rectangular regions are the ones we use in the d-dimensional construction.

We turn to the proof in R

d

. Let us �rst assume that d is even, and set k = d=2. As

before, we associate layer L

i

with color i. We divide our m colors into k groups, each of size

m

0

= m=k. Note that we can choose m so that it is divisibe by k.

For each group of m

0

colors, we build a set of m

0

n d-cubes in R

d

so that, for group j

(j = 1; : : : ; k), the projection of the cubes on the 2j and 2j + 1 axes produces a set of

squares and corresonding corridors identical to the two-dimensional Rucklidge construction

13



given above. The other d� 2 coordinates of the cube centers are identically zero. Note that

for each group j, there is a set of maximally colored (colored with all m

0

color of group j)

d-bricks that are rectangles when projected on the 2j and 2j +1 axes. These d-bricks are of

unit size along all axes except for axes 2j and 2j + 1. By the earlier construction, there are


((m

0

)

2

n) = 
(m

2

n) such d bricks for each group j.

Our claim is that there are 
(m

2

kn

k

) connected components of T where T is the inter-

section of the layers and each layer L

i

corresponds to the union of all the cubes of color i.

To verify this claim, consider the number of d-bricks generated as the cross-product of our

2-dimensional rectangles. It's easy to see that there are 
(m

2k

n

k

) = 
(m

d

n

d=2

) of these.

If d is odd, we embed the even-dimensional construction in the �rst d� 1 dimensions of

R

d

, but we use just m=2 of the colors (this a�ects only the constant in the big-omega nota-

tion) | all cubes have center-coordinate zero for the dth axis. The remaining m=2 colors are

used to create a \striped" pattern on the dth axis. For each of these colors, we create two

cubes, centered along all axes except the dth. Along the dth axis the two cubes have a very

small gap between them. The gap for each color is in a slightly di�erent place leading to

the result that, for these m=2 colors, there are 1 +m=2 intervals along the dth axis that are

covered by all the m=2 colors, separated by m=2 gaps where each gap is missing a di�erent

color. It's easy to see that each of the bricks created in the even-dimensional construction

is cut into 
(m) pieces by these gaps. This is enough to give us the desired bound for the

theorem. 2

The bounds of Theorems 7 and 8 actually show that there can be �(n

b3d=2c

) translations t

that minimize the one-way Hausdor� distance between A and B+ t, where A and B contain

n points each. One can show, by slightly modifying the proofs, that the same bounds hold

for the number of translations that minimize the two-way Hausdor� distance.

If the cubes de�ning L are axis-parallel but not necessarily of the same size, then the

proofs of Theorems 7 and 8 can be modi�ed to obtain the larger (upper and lower) bound

of �(m

d

n

dd=2e

).

Theorem 9 Let L = fL

1

; : : : ; L

m

g be a collection of layers, where each layer L

i

is the union

of n axis-parallel cubes of arbitrary size in R

d

. Then the complexity of \

i

L

i

is �(m

d

n

dd=2e

).

Proof: The upper bound follows in a straightforward way from [3], cited above, where it

is shown that the complexity of the union of dn such cubes in d-space is O( (dn)

dd=2e

). To

show the matching lower bound, we modify the proof of Theorem 8. First, note that no

change is necessary for d even. For d odd, we modify the construction used to create gaps

along the dth axis. The idea is to use small cubes to create more gaps along the dth axis.

For a particular color, we can use n small cubes of that color, arranged one after the other

along the dth axis, with small gaps between them. Similar versions, shifted slightly along

the dth axis can be arranged for each of the other colors. Combining these we create 
(mn)

all-color intervals separated by gaps. By choosing �, the stair-step size, su�ciently small,

we can ensure that our d bricks are cut by these gaps, completing the proof of the theorem. 2
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8 Hausdor� Distance under the L

2

Norm

Our upper bound technique described above is useful for showing similar bounds for balls

instead of cubes. The following theorem turns out to have important algorithmic implica-

tions.

Theorem 10 Let L = fL

1

; : : : ; L

m

g be a collection of m layers, where each layer L

i

is the

union of n balls of arbitrary size in R

d

. Then the complexity of \

i

L

i

is O(m

d

n

dd=2e

).

Proof: The standard lifting transformation � : R

d

! R

d+1

is de�ned by �((x

1

; : : : ; x

d

)) �

(x

1

; : : : ; x

d

; x

2

1

+ : : :+ x

2

d

) (see, e.g., [7]). The vertices of the union of balls in each layer can

be expressed as (a subset of) the vertices of the upper envelope of n hyperplanes in R

(d+1)

.

The number of such vertices is O(n

b(d+1)=2c

) = O(n

dd=2e

) [7]. The remainder of the proof is

similar to that of Theorem 7. 2

Let A = fa

1

; : : : a

n

g and B = fb

1

; : : : b

n

g be two sets of points in d-space, for d � 4, and

let H

2

(A;B) denote the Hausdor� distance between them, when L

2

is the underlying metric.

In [9, 10] an O(n

5+�

)-time algorithm

1

for �nding a translation t that minimizes H

2

(A;B+ t)

when A;B � R

3

was presented. In this section, we extend this result for higher dimensions,

by obtaining an O(n

d3d=2e+1+�

)-time algorithm for the case that A and B are in R

d

, for d � 4.

Our algorithm is analogous to the one in Section 2. Let "

�

be min

t

H

2

(A; t + B), for

t 2 R

d

, and let " be a given �xed number. Our goal is to determine whether " is equal to,

smaller or larger than "

�

. Let D

"

denote a ball (under the L

2

norm) of radius " centered at

the origin. Let

�

T (") � \

b2B

(b� (A�D

"

))

\

\

a2A

((B �D

"

)� a)

As discussed in Section 2,

�

T (") is empty, if and only if " < "

�

. For every a

i

2 A let us de�ne

the layer L

i

(") � (B�D

"

)�a

i

to be the union of the "-balls about b

j

�a

i

(for all b

j

2 B). We

denote these balls by B(L

i

). We obtain an oracle for determining whether T (") =

T

i

L

i

(") is

empty. Determining whether

�

T (") is empty is obtained in a straightforward way. The oracle

consists of two phases; In the Generation Phase, we generate a set S of points which is a

superset of the vertices of T ("). In the second phases, the Decision Phase, we check if any

element of S lies in (the closure of) T ("), which implies that T (") 6= ;.

The Generation Phase: Following the proof of Theorem 7 and Theorem 10, for each

subset L

0

� L of d or less layers, we compute S

0

, the set of all vertices of the union of

the balls of B(L

0

). Under the lifting transform �(�) described in the proof of Theorem 10,

the boundary of each ball of B(L

0

) is transformed into a region in a hyperplane in R

d+1

. A

vertex of S

0

corresponds to a vertex of the upper envelope of these hyperplanes. We use

the algorithm of Seidel [16], to generate this upper envelope in time O(n

dd=2e

log n) for each

such L

0

. Let S denote the union of these vertices generated for each such L

0

� L. The

upper envelope, however, might contain edges not containing a vertex. Such an edge could

be created, for example, in the case where

T

L consist only of the intersection of less than

1

Throughout the section, � stands for a positive constant which can be chosen arbitrarily small with an

appropriate choice of other constants of the algorithms.
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d balls. For each such edge e appearing on the upper envelope of hyperplanes, we pick an

arbitary point on e, and add this point to S. The time required for generating S is therefore

d

 

n

d

!

�O(n

dd=2e

log n) = O(n

d3d=2e

log n) :

As shown in the proof of Theorem 10, the vertices of T (") (if it is not empty) are contained

in S.

The Decision Phase: Here we check each point q 2 S to �nd if it lies in T ("). The

transformation �(�) transforms each ball b of B(L

i

) into a halfspace �(b) � R

d+1

. Let

H

i

denote the intersection of the complements of these halfspaces (for i = 1 : : : n). Surely,

q 2 L

i

if and only if �(q) =2 H

i

. To check this condition, we preprocess H

i

in time O(n

dd=2e+�

)

into a point-location data structure D

i

, of Matou�sek [11], so that determining if q 2 H

i

is

obtained in time O(log n). Hence determining if q 2 T (") is obtained in time O(n log n).

We perform this query for each point of S (in time O(n

d3d=2e+1

log n). Note that D

i

needs to

be constructed only for a single L

i

, since the layers are just translation copies of each other.

This completes the description of the oracle.

Optimization:

We turn now to the problem of �nding "

�

. Note that a ball in d-space is determined by d+1

points, and hence there are 
(n

2(d+1)

) critical values " at which the layer structures combi-

natorially changes. So in contrast to the L

1

-case, we cannot generate all the critical values.

To overcome this di�culty, we use the parametric searching paradigm of Megiddo [12]. We

assume familiarity of the reader with the technique, and refer to [1] for a description of the

technique and some of its geometric applications. The technique requires the construction

of a parallel version of the oracle. Consider the Generation Phase. Constructing all subsets

L

0

� L can be performed sequentially, since this process is not e�ected by ". For a subset

L

0

, we need to construct the vertices of the intersection of the halfspaces �(b) (in R

d+1

) for

each ball b 2 B(L

0

). Under the \standard" primal-dual transformation, this intersection is

transformed into the convex hull (in R

d+1

) of the points dual to hyperplanes bounding these

halfspaces. It is computed using the algorithm of Amato et al. [2] in O(log n) parallel steps,

using O(n

dd=2e

log

c

n) processors, for some constant c > 0 (these bounds refer to d-space for

d � 4). Applying this procedure in parallel to each L

0

� L, we can generate S in O(log n)

parallel steps using O(n

d3d=2e

log

c

n) processors.

Turning to parallel implementation of the Decision Phase. The data structure D

i

can

be constructed in O(n

�

) parallel steps, using similar construction as in [4]. Performing the

O(n

d3d=2+1e

) queries in D

i

is trivially done in O(log n) parallel steps. Plugging the parallel

algorithm into the parametric search paradigm, we observe that the algorithm performs

O(n

�

) parallel steps, consulting the oracle O(log n) times at each step. Hence the total

time spent for consulting the oracle is O(n

d+dd=2e+1+�

), which bounds the total time of the

algorithm. Thus we have

Theorem 11 Let A and B be two point-sets of n points each in d-space, (d � 4) Then a

translation t minimizing H

2

(A; B + t) can be found in time O(n

d3d=2e+1+�

), for every � > 0.
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9 Conclusions and Open Problems

For point sets in dimension d the minimum Hausdor� distance under translation can be

found in time O(n

5d=4

log

2

n) when L

1

is the underlying metric and in time O(n

d3d=2e+1+�

)

for any � > 0 when the underlying metric is L

2

. For d = 3 under the L

1

metric, we obtain

the better result of O(n

3

log

2

n). For 3 < d < 8 under the L

1

metric, we can obtain a

slightly better result of O(n

(4d�2)=3

log

2

n) as shown in our earlier paper [5].

There are some interesting questions that remain open.

� Are L

1

Hausdor� distance decision problems inherently easier than the ones for L

2

?

Is there a single technique that solves both types of problems e�ciently, perhaps with

better time bounds than those achieved here?

� Given a d-dimensional box C and n boxes G

1

; : : : ; G

n

lying inside C, is it possible to

determine if [

n

1

G

i

= C in time o(n

d=2

)? Finding such a technique would immediately

improve the running time of the relaxed version of our L

1

algorithm and would be

likely to speed up the improved version as well.

� For large d, our time bounds|and our constant factors, hidden by the big-O|are

such that our exact algorithms are likely to be impractical. What kinds of nontrivial

approximations are useful?

� The set of cubes for one color is really just a translation of the set of cubes for each

other color. Our algorithm uses this fact to reduce the storage capacity, but not to

improve the running time. Is there some way to use this information to design a faster

algorithm?

Our algorithms can be modi�ed within the same asymptotoic time bounds to tackle the

problem of pattern matching in the presence of spurious points, sometimes called outliers. In

this problem we seek a small subset X � A[B of points (whose existence is perhaps a result

of noise) containing at most a pre-determined number k of points, such that A n X can be

optimally matched, under translation, to B n X. The modi�cation needed is the following:

In the algorithm we used the assumption that our attention could be restricted to a single

unit cube in the translation space. This assumption is not valid if we assume the existence

of spurious points. To overcome this di�culty, we divide the translation d-space into unit

cubes, and solve our problem independently in each such non-empty cube. This does not

increase the overall running time, since each original cube hits just O(2

d

) of these new unit

cubes.
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