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Abstract: Global positioning systems (GPS) and mobile phone networks are making it

possible to track individual users with an increasing accuracy. It is natural to ask whether this

information can be used to maintain social networks. In such a network each user wishes to be

informed whenever one of a list of other users, called the user’s friends, appears in the user’s

vicinity. In contrast to more traditional positioning based algorithms, the computation here

depends not only on the user’s own position on a static map, but also on the dynamic position

of the user’s friends. Hence it requires both communication and computation resources. The

computation can be carried out either between the individual users in a peer-to-peer fashion

or by centralized servers where computation and data can be collected at one central location.

In the peer-to-peer model, a novel algorithm for minimizing the number of location update

messages between pairs of friends is presented. We also present an efficient algorithm for the

centralized model, based on region hierarchy and quadtrees. The paper provides an analysis of

the two algorithms, compares them with a naive approach, and evaluates them on user motions

generated by the IBM City Simulator system.
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1 Introduction

Global positioning systems and mobile phone networks make it possible to track individual users

with an increasing accuracy. One attractive application of knowing the geographic location of

users is to compute and maintain social networks. In these networks, each user may specify

or be associated with a group of other users, called the user’s friends. Whenever a friend

moves into the user’s vicinity, both users are notified by a proximity alert message. In a more

general context, a social group is one that is predefined by enrollment or by matching the

personal profiles of users. A group may refer to a list of individuals but also to other groups of

individuals.

We use the term vicinity to refer to a region around the user. In this paper, a vicinity is

represented by a circle of a pre-specified radius, which can be uniform for all users, or defined

for each pair of friends. The proposed algorithm for the peer-to-peer model can naturally

accommodate a different vicinity radius for each pair of friends, as well as other convex vicinities.

Other definitions of vicinity, and even dynamically changing definitions, are possible. For

example, the radius might change between daytime and night time, it might depend on the

user’s location, and it might be a non-circular shape.

The problem of maintaining social networks is a form of a dynamic, continuous query into

a database of multiple moving entities. In some applications this could as well be part of

a “find” query, coupled with other properties, such as profession, employer, user profile or

calendar scheduling constraint. A natural example is of a traveling businessman who attends

a large conference and would like to be alerted and possibly meet other colleagues if they
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happen to be around. Other examples could be a road side service, where service cars need

to be dynamically assigned to new customers, or a surveillance system which tracks multiple

suspects and directs security personnel. Note, however, that if one would try to implement

such a query in a traditional database, this would require continuous updating of the locations

of all moving entities, or users, as well as a repetitive computation of all friend’s distances after

each such location update. This would be a very inefficient process.

Maintaining social networks based on user locations is an interesting problem from the

aspect of computational geometry and from a database perspective. It is also interesting from

the point of view of a distributed system; the process is computationally expensive, but there

is an efficient way to split the computational task among different geographic locations.

We distinguish between two different computational frameworks. In the centralized compu-

tation model, users send their location information to a centralized server which keeps track

of each user’s location and list of friends and is responsible for computing and sending the

alert messages to all pairs of friends. The second, peer-to-peer computation model, involves no

central server. Instead, each pair of friends is responsible for keeping each other informed about

their location, detecting vicinity events, and transmitting alert messages.

The peer-to-peer model suggests several benefits, including:

Privacy. This model ensures that a user’s location is only known by the user and its friends.

At any time, a user may exchange location update messages with only those specific users it

wishes to.

Energy efficiency. In general, battery drainage of small mobile devices resulting from

communications is far more significant than the energy needed for computing. For example, it

was shown [19] that under Rayleigh fading and fourth power distance loss, the energy cost of

transmitting 1 KB a distance of 100 m is approximately the same as executing three million

instructions on a 100 MIPS/W processor. The peer-to-peer model minimizes the number of

location update messages sent by the user, at the expense of a much-less-costly increase in
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computation.

Localization, flexibility. The peer-to-peer algorithm may be implemented by a group

of mobile devices users without any need to modify the infrastructure of the communication

provider. All they need is to agree upon a protocol to exchange location messages and to apply

the proposed algorithm. This approach is best suitable for ad-hoc networks.

Under both frameworks there is a need for communication resources as well as for com-

putational resources. Communication is required to deliver location updates and alerts. We

characterize the amount of communication by the number of messages being exchanged, as-

suming that all the messages are of fixed length (i.e., a location update sent to k users, for

example, would require O(k) messages). A message between two users is assumed to cost the

same as a message between a user to a centralized server, although some implementations might

have a constant factor between them. In addition, computational resources are needed, either

on the server or on the participating moving devices, to keep and maintain data structures

and to generate proximity alerts. In this paper we consider both the communication and the

computation resources. We focus, however, on reducing the communication complexity, as air

time and battery life seems to be the more expensive and restrictive implications in building a

real system.

There are several considerations that impact both computational and communication com-

plexities. A major consideration is the maximum expected velocity of users and the desired

time/distance accuracy of alerts. Let us consider two users who wish to get an alert when

the distance between them becomes smaller than R. Obviously, one cannot guarantee such an

exact alert, as this would require an infinitely large number of location updates and distance

computations to find the exact moment at which the users reach a separation of R. To over-

come this problem we introduce a distance tolerance into the task. An alert needs to be sent

before they are within a distance R of each other, but not earlier than a distance of R+ε. This

model allows us to compute how many messages would be required to achieve any desired alert
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accuracy. Last, it is assumed that messages are transferred with no delay. This is equivalent

to the assumption v· tdelay < ε, for v representing the velocity and thus a distance tolerance at

the time of receiving the alert, R − ε, can naturally incorporate such practically small delays.

The evaluation of an algorithm for maintaining social networks is an important issue. The

number of messages would depend not only on the number of users, n, the distances between

them, the vicinity radius R and the desired tolerance ε, but also on the nature of their mo-

tion trajectories and relations between them. In the computational geometry literature, the

kinetic model (see [9, 13]) is a common paradigm for evaluating the efficiency of algorithms

for maintaining dynamic structures. In this paradigm, the role of the evaluated algorithm is

to maintain some geometric properties for sets of moving elements, where each element moves

along a low-degree algebraic curve. From time to time, an event occurs, in which new elements

may be inserted and existing elements may be deleted or may change their trajectories. The

number of changes in the data structure is evaluated as a function of the number of events in the

dynamic input data set. This part of our analysis is not shown here due to space constraints,

and is found in [6].

In cellular networks (e.g. mobile phone networks), a partial approach for maintaining social

networks is to try to make advantage of the natural cells structure imposed by the network. If

R is approximately the radius of a cell, then one needs to keep track of friends registered to the

user’s own cell and neighboring cells. However, in general this approach may be unsatisfactory

because the cell sizes vary greatly, ranging from large macro cells in rural areas to tiny pico cells

in metropolitan areas and buildings. Different users might as well define different vicinity radii

for different friends, and these might even change when they move from one place to another.

For example, a marketing manager does not want to be alerted in his office of all his colleagues

who are close by in the office, but may want such alerts when the same colleagues are within

a city block distance on an overseas trip, as this is a chance encounter. Also note that not all

wireless communication is based on cellular networks in the first place.
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1.1 Related work

Algorithms for tracking moving objects are found in mobile computing literature, both in the

database community, and in the mobile communications community. Much of the work assumes

that moving objects are represented by simple point objects whose locations are continuously

updated in an index. This however requires continuous updating of the locations of all users,

which would necessitate a huge number of location messages. Trajectory-based algorithms are

becoming increasingly popular [20, 21]. Storing and indexing trajectories facilitates not only

efficient spatial range queries, but also time-and-space range queries [2]. See also [1, 22]. The

paper [23] discusses time-parameterized bounding rectangles and extends trajectory information

with expiration information.

There is a large body of literature on maintaining a specific property of moving objects. For

example, a randomized algorithm for maintaining the binary space partition of moving objects

is discussed in [3], and the maintenance of the dynamic Voronoi diagram of a set of moving

points in a plane is presented in [14]. For maintaining and querying a database of moving

objects, see [28]. The paper [18] suggested the method of safety zones, in a method similar to

the one suggested in our paper. The idea is to divide the plane into regions with the property

that as long as point do not enter safety zone, no message need to be exchanged between the

points.

Various algorithms have been provided for indexing moving points. A quadtree based algo-

rithm for indexing is given by [27]. Their main idea is to use a linear function of time for each

of the dynamic attributes of the object, and to provide methods to regenerate the quadtree. An

R∗-tree based algorithm is given by [24]. Their algorithm provides indexing of objects moving

in 1, 2 or 3 dimensions. For other work in query processing for moving points, see e.g. [12],

which proposes algorithms for range query and k nearest neighbors.

While the dynamic data structures or databases mentioned above may be efficient for other

types of queries, the task in hand is not efficiently handled by any of them. For example, some
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of these data structures might be used for querying which of a user’s friends are in his vicinity a

particular time. Consider that today there are hundreds of millions of mobile phone users in the

world. Continuously tracking all users and querying their vicinities in such a large population

requires a huge number of messages to be exchanged as well as a lot of computation and is very

inefficient. To the best of our knowledge, the problem of maintaining social networks has not

been addressed before. The algorithms and data structures proposed in this paper are designed

to efficiently handle this task. However they might not be as efficient for other, traditional

types of spatial queries, thus being complementary to the above previous work. This work is

also complementary to the problem of finding people whose personal profiles match. For this

problem, commercial solutions have been offered (see e.g. [16]).

1.2 Our results

We present a novel distributed algorithm, denoted as the strips algorithm, in which a pair

of moving friends make an agreement about a static buffer region between them. After the

agreement is made, they do not need to track each others location until one of them enters the

buffer region for the first time. By doing so, the agreement is terminated. Hence they exchange

a location update message between them, check if they are within the R-vicinity of each other,

and otherwise make a new agreement on a new static buffer region. We provide both an exact

and an approximate strips algorithm, supported by analytical and empirical results that show

their efficiency.

When analyzing an algorithm for such a problem, one has to consider both communication

and computation complexity. For this distributed algorithm we focus on reducing the commu-

nication complexity, or the required “air time”, which has a significant impact on the battery

lifetime of a mobile communication device. It is shown that the number of messages is logarith-

mic in the distance between the users when they start to approach each other from far away.

It is also logarithmic in 1/ε when they are getting closer, where ε is the desired tolerance for
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producing the proximity alert. Hence we consider it to be a very efficient algorithm.

A second, quadtree based algorithm is presented for the centralized approach. This algo-

rithm aims at reducing the computational cost, assuming that all users periodically update the

server with their location as they move. Somewhat surprisingly, we found that the quadtree

based centralized algorithm is inferior to a centralized implementation of the strips algorithm

on such a central server.

2 The Strips algorithm

In this distributed, peer-to-peer model, it is assumed that each user carries a wireless device

that knows its own location and has enough computational power for a local computation. In

order to compute its distance from a friend it needs to get the location of that friend, and this

requires a location update message to be sent. Our objective is to minimize the communication

complexity, or the number of location update messages exchanged with devices of other users.

Let a, b be two users whose Euclidean distance, denoted |b − a|, is larger

than R. Let `(a, b) denote the bisector of the line connecting a and b; i.e., the

b

a

S(a, b)

bisector `(a.b)

R

line consisting of all points of equal distance from a and b (see Figure 1-left).

Let S(a, b) denote the infinite strip of width R whose central axis is `(a, b). Let

ei denote the line bounding S(a, b) on the side closer to a. Note that while a

might move continuously, the strip S(a, b) is not being updated unless a specific event occurs

that requires this update. Hence the strip update is a discrete event in time.

When a new user a is added to the system, he communicates with each of his friends

{b1 . . . bn}, queries their locations, and announces its own location to them. For each bi for

which |a − bi| > R, we insert the strip S(a, bi) into the data structures maintained by a and

of bi, denoted D(a) and D(bi), respectively. Setting a new strip is illustrated in Figure Figure

1-left. The strip S(a, bi) divides the planes into 3 regions, namely the strip S(a, bi) itself, the
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b

a

S(a, b)

bisector `(a.b)

R

b2

a S(a, b2)

bisector `(a, b1)

R

b4
b1

b3

S(a, b2)S(a, b2)S(a, b2)S(a, b2)S(a, b2)S(a, b2)S(a, b2)S(a, b2)

S(a, b3)

S(a, b4)S(a, b4)S(a, b4)

`(a, b2)

`(a, b4)`(a, b4)

Figure 1: Left: setting a new static strip of width R around the bisector between two mobile
users. Right: user a does not need to update strips while moving inside the internal region (P ).

region S+(a, bi) containing a, and the region S−(a, bi) containing bi. The idea behind this

method is that as long as neither a or bi enters S(a, bi), they do not need to exchange location

update messages. The strip serves as a static buffer region between a and bi and ensures that

as long as they are on both sides neither one of them is in the vicinity of the other. It provides

maximum motion to each user on its side of the strip, and postpone as much as possible the

event of a or bi intersecting with it. Since the strip is static, there is no need to exchange

location or any other messages before an intersection event occurs.

Once a (resp. bi) enters S(a, bi), it communicates with bi (resp. a), sending a location

update message to it, and receiving a location update message from bi (resp. a). Note that

all other bj, j 6= i remain intact and exchange no messages with a. Next, a and bi both

check if the distance between them is ≤ R + ε, and if so, an alert message about their mutual

proximity is triggered. If the distance between them is still larger than R + ε, then they

compute a new strip, S(a, bi), using their current new locations, and update S(a, bi) in their

data structures. The algorithm is summarized in Figure 2. The interested reader may download

a Java implementation of our algorithms at www.cs.arizona.edu/people/alon/cell.

The Strips algorithm demonstrates a peer-to-peer paradigm, where a strip S(a, bi) may be

interpreted as an agreement between a and bi. As long as this agreement is not invalidated, i.e.
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SelfMotion() {
do // repeat while moving

a=ReadSelfLocation()

Test(D(a))
if (a enters S(a, bi),

(for some i))

or MsgReceived(bi))

StripUpdate(bi)

enddo }

StripUpdate(bi) {
send a’s location to bi.

receive bi’s location.

if |a − bi| < R + ε

ProximityAlert("bi is nearby")

Delete( D(a),S(a, bi))
else

Compute S(a, bi)
Update D(a), D(bi) with S(a, bi)

end

}

Figure 2: Pseudo code of the Strips algorithm, as is ran by user a.

both of them stay outside S(a, bi), there is no need to exchange any further messages.

2.1 The data structure D(a) for the Strips algorithm

Let P = ∩iS
+(a, bi) denote the region which contains a as shown in Figure 1-right. Clearly,

as long as a stays inside P , and no bi enters Si(bi, a), there is no need for a to exchange any

messages. P is a convex polygon of at most n edges, where n is the number of a’s friends. The

edges of P are segments from {ei}n
1 . Below we describe how to efficiently find in time O(log n)

whether a exits P through any of the edges, say ei. Moreover, once a exits through the edge

ei, (i.e. a new S(a, bi) should be computed) we show how to update S(a, bi) in D(a) in time

O(log n).

The data structure is based on the standard dual transformation, defined in Computational

Geometry (see [10]). It transforms a point p = (a, b) in the primal plane to the line p∗ = ax+ b

in the dual plane, and the line ` : y = mx + n in the primal plane to the point `∗ = (m,−n) in

the dual plane. We divide the set of lines {ei}n
1 into two sets: U , the lines above a, and D, the

lines below a. Lines which are vertical are treated separately. Let U ∗ and D∗ denote the sets

of points in the dual plane which are the dual of U and D, respectively. If a happens to cross

line ei which belongs to U , while still in the closure of P , then the corresponding line a∗ would
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intersect the point e∗i , which must be a vertex of the convex hull of U ∗. In this case, we delete

S(a, bi) from D(a) and insert a new strip S ′(a, bi). This corresponds to deleting the vertex e∗i

from the convex hull of U ∗, and inserting the point e′∗i , where e′i is the line bounding S(a, bi)

on the side closer to a. Hence we need to maintain the convex hulls U ∗, D∗ in a dynamic way,

so that their intersection with a query line, as well as deleting and inserting points from and to

the convex hulls, can be accomplished efficiently. We use the data structure of [11], where an

update can be handled in (amortized) O(log n) time and a query can be done in O(logn) time.

Once two friends entered the vicinity of each other, the algorithm needs to detect when

they get apart, at which point the system would return to its original state by establishing a

new strip. When two friends are found to be at distance less then R from each other, a circle

of radius R/2 + 2ε, centered at the midpoint of the line connecting the two friends, is created.

This circle is treated much the same way as a strip in that so long as both users remain within

the circle, it is guaranteed that they are within a distance of less than R + 4ε from each other.

When one of the users leaves the circle, a location update message must be exchanged between

the friends. If the friends are still within a distance smaller than R+2ε from each other, a new

circle is computed. Otherwise, a state change occurs, the friends are again apart, and a new

strip is computed.

It is natural to assume that if two friends have been notified of their proximity to each other

they will meet if they choose to do so, without need for further messages. Hence the bounding

circle could be made of a radius much larger than R/2+2ε without diminishing the usability of

the system. An alternative to using a circle could be to exchange messages every fixed amount

of time, or after increasing periods of time. In the simulations we did not count for messages

exchanged while the friends are in the vicinity of each other, as we are much more interested

in efficiently detecting the proximity event than detecting the separation event.
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2.2 An approximated Strips algorithm

The Strips algorithm requires computing a dynamic convex hull, which might be challenging if

the computational power of the mobile device is limited.

The approximated Strips algorithm proposed here relaxes the vicinity definition to simplify

the computation algorithm. Rather than maintaining a convex region of possibly Θ(n) edges,

for n friends, it maintains an approximated polygon of a fixed number of edges, at fixed,

predetermined slopes. The following description is for the case of using only four edges, i.e. a

bounding rectangle region. This case is of a particular interest, as it can be handled by a very

simple data structure. In this case, strips can only be horizontal or vertical. The strip between

a and bi is horizontal if |xa − xbi
| < |ya − ybi

|, and vertical otherwise.

In either case, the strip is located so that its distance from a is equal to its distance from bi.

The boundaries of all vertical strips are maintained in a balanced search tree, sorted by their

x values. Similarly, the boundaries of all horizontal strips are maintained in a second balanced

search tree, sorted by their y values. This data structure is of course much simpler than the

dynamic convex hull described in Section 2.1.

User a may move within the rectangular region around a without issuing any location

updates. A (practical) update time of O(log n) is obtained in the balanced tree. At the time

of an update, the strip that was hit is removed from its tree, a new strip is computed based

on the updated locations, and inserted into the appropriate tree based on its (new) direction.

If no strip of size R can be placed between the two users in any of the fixed slopes (i.e., in

this case, neither the horizontal nor vertical distance between the users is larger than R + ε) ,

then an meeting alert is generated. The distance at the time of a meeting alert is smaller than
√

2(R + ε). This approximated bound gets closer to the original R + ε requirement as the fixed

number of directions is set higher.

Experimental comparison results between the exact and the approximated Strips algorithms
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is presented in Section 5.

3 Analysis of the strips algorithm

In this section we provide analytical and numerical analysis of basic cases to illustrate the

efficiency of the strips algorithm.

3.1 The role of ε in the Strips algorithm

The selection of ε determines a tradeoff between the desired distance accuracy in generating

alerts and the required number of location update messages. First we address an obvious, yet

an important stability aspect of the algorithm, which depends on ε.

Corollary 3.1 Two users have to move a total distance of at least 2ε between any two proximity

alerts they generate.

In order to generate two proximity alerts, one user has to enter the vicinity of the other,

then exit the vicinity, and then enter it again. Hence the users are at most R + ε apart when

the first proximity alert is invoked, then they are at least R+2ε apart when they get apart, and

then at most R + ε apart when the second proximity alert is invoked. This corollary ensures

that the algorithm state will not change back and forth in infinitely small time periods when

the two users are moving around the boundary of the vicinity region.

Next we illustrate the role of ε in the algorithm termination criteria (i.e., announcing a

proximity alert). Consider a simple case of two users a and b. Let user a be stationary, and

let user b be moving on a straight line towards user a. Denote the initial distance between a

and b by R + x, for a positive x. When user b hits the strip, its distance from user a would

be x+R
2

+ R
2

= x
2

+ R (half the initial distance x plus the width of the strip, R). Similarly,

the next strip will be located such that b will hit its boundary at a distance from user a
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of
x

2
+R

2
+ R

2
= x

4
+ R. Hence it is clear that this sequence of strip-update events forms a

series of distances which is the sum of one constant component, R, and a geometric series,

x
2k , k = 1, 2, 3, . . .. The termination condition for this series of strip-update events is when

R + x
2k < R + ε, or just x

2k < ε. Hence we can find k by the following corollary.

Corollary 3.2 The number k of strip-update events performed by a stationary user a and a

user b moving on a straight line towards a from a distance x + R is k =
⌊

log2
x
ε

⌋

+ 1

Hence the number of messages exchanged between users a and b is logarithmic with the

initial distance between them, and is also logarithmic with 1/ε, the inverse desired tolerance.

This reflects the tradeoff between the desired accuracy and the required number of location

update messages. It is a very small number of updates, demonstrating the efficiency of the

algorithm. As indicated earlier, as ε decreases to zero, the number of messages k increases to

infinity. That is, an alert at the exact time would require an infinitely large number of location

update messages. By introducing a tolerance ε > 0 into the model we avoid this undesired case.

3.2 Moving along a k-curves.

Attempting to realistically model the motion of a user, in a way that enable us to make some

conclusions about the behavior of our algorithms, we propose the notion of motion along a k-

curve. We define a k-curve, as a curve γ that has the property that every straight line interests

γ no more than k times. Note that every algebraic curve of degree k is a k-curve, but not vise

versa. Lemma 3.3 relates motion along k-curves with number of strip updates.

Lemma 3.3 Let γ be a k-curve, and assume that a is static and b moves along γ. Then the

number of strip updates is O(1 + k log(d0/R)) where d0 is the initial distance between a and b.

Here we assume that we stop updating the strip once the distance between a and b is less than

2R.

Buddy Tracking July 5, 2006



Analysis of the strips algorithm 15

Proof: we divide the plane into 6 conical sections of opening angles of 60 degrees, by passing

3 lines through a, so the angles that these line create with each other is 60 degrees. Let C be

one of these cones. Refer to Figure 3. Since γ intersects these lines a total of at most 6k times,

we can restrict our attention to the number of strips updates occurring while b moves along

a connected portion γ ′ of γ inside one of the cones. Let C denote this cone, and assume it

is bounded by two rays, rdown and rup. Let s1, s2 . . . be the sequence of strips obtained as b

moves along γ′, and let di denote the distance from a to the middle axis of si (for i = 1, 2 . . .).

We show that di+1 ≤ di/
√

2. Indeed, the smallest decease of di is obtained when b touches si

(for i = 1, 3, 5 . . .) when b is on one of the rays bounding C, say rdown, and b touches si (for

i = 2, 4, 6 . . .) when b it is on rup For example, in Figure 3, s1, s3 . . . are defined by rdown while

s2, s4 . . . are resulted from events when b in on rup. Now assume that si was created when b

was on rdown, and si+1 was created when b is on rup. In this case it is easy to check that

di

2di+1
= cos 45 = 1/

√
2 or di+1 = di/

√
2 .

This implies that as b moves along C, the maximum number of strip updates is ≤ O(d0/R).

To get to bound of the total number of strip update, this number need to be multiplied by the

total number of times that b visits each of the 6 cones, which O(6k).

3.3 The general case of moving on a straight line

Next we consider a more general case in which b is moving on a straight line, but the stationary

user a is located at distance d from the line. Figure 4 shows a typical sequence of updates. The

point b is moving from right to left along the y = 0 line, and its positions at the times of hitting

the strips are marked by small circles, labeled with the update serial number. The strips are

shown in dashed lines, and are similarly numbered. For instance, when user b hits strip number

1 it defines the location of point 2, and so on. In this example b passes nearby a but out of
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si

si+1

b

a

`i+1

`i

C

rup

rdown

di+1

di

di+1

Figure 3: The proof of Lemma 3.3

its vicinity and no proximity alert is produced. After the 8th update b would continue to move

and no more updates will be done.
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Figure 4: A sample series of strips for a user b moving on the x axis from right to left, where
user a is at (0, d).

The user b starts at point (x, 0). The intersection with the strip occurs at (x′, 0), where

x′ = x
2
− d2

2x
+ R

2

√

1 + d2

x2 . This process repeats iteratively until one of two termination cases

occurs. One is as illustrated in Figure 4, where no alert is produced, and the other one is when

d < R + ε, in which case b enters the vicinity of a and a proximity alert is produced. Figure

5 shows the number of updates as function of d/R and ε. As can be seen, the highest number

of messages is required when b passes very close to a, but still keeps out of its R-vicinity.
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The region in the graph for which d < R terminates with a proximity alert after producing a

number of strings which is linear with log(1/ε) (note the logarithmic axis, which represents ε

values between 0.00001 and 10.0). The region in the graph for which d > R corresponds to

cases where there is no proximity alert, and thus after getting away from the transition area

along d = R, the number of messages does not depend on ε at all. Hence we see that for long

distances the number of messages is logarithmic with the distance, and for short distances the

number of messages is logarithmic with 1/ε. We consider it to be a very efficient property of

the algorithm.

We further analyze this behavior for the case of ε = R, which is later used in some of the

simulations. Let a and b be two users, with a staying at a fixed position and b moving in a

straight, vertical trajectory towards a point c. Let d denote the horizontal distance of b from a,

and let v be the vertical distance of b from a. Assume also for simplicity that users exchange

location update messages when they hit the center of the strip. Theorem 3.4 upper bounds the

number of location update messages sent.

Theorem 3.4 The number of times that the strip is updated is ≤ log2(v/R) + 1 if d <
√

3R,

and is ≤ log2(v/d) + 1 if d≥
√

3R.

Proof: We consider the two cases:

d <
√

3R Consider Figure 6 (ii). Let g be the middle point of the segment ab, and let f

be the intersection point of the middle axis of the strip passing through g, with the

segment bc. Since user b is moving in a vertical direction the first strip update takes place

when b reaches the center of the strip which in our case is point f . The triangle 4fgb

is right angled since 6 fgb is also right angled. Since 4fgb and 4abc are right angled

and share the angle 6 abc, they are similar triangles. Hence |gb|/|bc| = |fb|/|ab|. But

|gb| = |ab|/2, since we are taking the middle of the strip. Hence |fb| = |ab| · |gb|/|bc|, or
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|fb| = |ab| · |ab|/(2|bc|). Since |bc| ≤ |ab|, we deduce that |fb| ≥ |bc| · |bc|/(2|bc|) or

|fb| ≥ |bc|/2

So every time user b hits the strip the vertical distance is reduced at least by half. This

recalculation continues until the vertical distance reduces to 2R, at which point the users

exchange an alert message (the maximum horizontal distance is now
√

3R, the vertical

distance is R and so the Euclidean distance between users is ≤ 2R). Therefore, the

maximum number of times a location update message is sent is ≤ log2(v/R) + 1, as

claimed.

d >
√

3R In this case the users might or might not exchange alert messages at all. If the

horizontal distance d is ≥ 2R they would never exchange alert messages. In any case,

irrespective of whether they exchange alert message or not, the maximum possible update

messages is finite because once user b moves above user a the slope of the strip would

change in sign (as shown in Figure 6d) and user b would never hit the strip with its current

trajectory.
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Figure 6: Proof of Theorem 3.4
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To determine the maximum possible number of update messages, we calculate when the

sign of the slope of the strip changes. This takes place in a situation as shown in Figure 6c.

When user b reaches point ’f’, the slope of the strip changes in sign. We now determine

the point when the intersection of the strip with the trajectory of b is above user a.

Let v′ denote the distance between user b and the point at which it reaches the center of

the strip (the length of the segment |bf | in Figure 6c). Let x = |ab|, as depicted in Figure

6c.

As above by similarity of triangles (4abc and 4fgb are similar) we get |gb|/|cb| =

|fb|/|ab|. Substituting the notations introduced above, we obtain x/(2v) = v ′/x. There-

fore x2 = 2vv′. But x2 = v2 + d2, therefore v2 + d2 = 2vv′. Thus

v′ = (v2 + d2)/(2v).

Now two interesting cases arise.

case 1: v > d. Here v′ < (v2 + v2)/(2v), so v′ < v, and the strip update continues.

case 2: v ≤ d. Here v′ ≥ (v2 + v2)/(2v), or v′ ≥ v. Hence the intersection point of the

center of the strip with the trajectory of b goes above agent a. Since with each strip

recalculation the vertical distance |v| reduces by at least half (as claimed in the first

part of the proof) and the recalculation has to be continued until the orientation of

the strip changes its sign, the recalculation takes place ≤ log2(v/d) + 1 times.

For the same scenario in the approximated Strips algorithm the following theorem could be

proved using the similar tools.

Theorem 3.5 The number of times that the strip is updated is ≤ log(v/(d−R)) if d > R, and

is ≤ log(v/R) if d< R.
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Remark 3.6 Users who move on arbitrary paths may cause an increasing number of strip

updates over time. In the worst case, a user has to move at least ε/2 between two location

update messages. This is a tight bound, achieved when one user follows a friend on a straight

line, at the same speed, and with a distance slightly larger than R + ε.

4 Centralized algorithms for social networks

The Strips method, which we have thus far described in a peer-to-peer distributed fashion,

is very efficient even if implemented on a central computational facility. It allows the radius

of vicinity to be different from user to user, and even allows a different and an asymmetric

vicinity definition between pairs of users. It is, however, worth mentioning an alternative

approach, which might be useful if the radius of vicinity is the same between all pairs of users,

and the user is willing to accept a rough level of approximation in the radius of vicinity. This

approach is based on a quadtree representation, a regular data structure which is commonly

used in GIS. This approach seems better suited cellular networks where each cell or a cluster

of cells are capable of performing some computation.

For the sake of simplicity we assume here that the “friendship model” is symmetric; that

is, user a is a friend of user b if and only if user b is a friend of user a. Note, however, that

this assumption is not critical, and can be removed, by maintaining for every user a two lists,

namely the friends of a, and the lists of users that have a as a friend. The algorithm described

in this section is guaranteed to send a proximity alert message if the distance between friends

is approximately R. More precisely, it guarantees to send a message if the distance is ≤ R, and

not to send a message if the distance is ≥ 2
√

2R. This is equivalent of selecting ε = (2
√

2−1)R.

As with the Strips algorithm, whenever the distance between two friends is larger than R and

smaller than R + ε, there is no guarantee about sending or not sending a proximity alert.

The centralized scheme is designed for the case where the wireless devices carried by users
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do not have much computational power, or if for other reasons we prefer to perform the compu-

tation at a central site. In particular, there might be cases where the center knows the location

of all the users at all times and does not need to send special messages to ask them for location

updates at all.

4.1 The “naive” quadtree algorithm.

Let Γ be a partition of the plane into regions, defined recursively as follow

• Initially Γ consists of a single square region, covering the entire area of operation

• Let c be a region of Γ. If c either contains ≤ 1 users, or its edge-length is ≤ R, stop. Oth-

erwise, replace c with 4 equal-size squares R1, R2, R3, R4, representing its four quadrants.

This division imposes a quadtree data structure T (see [25, 26]), with the property that every

leaf-region whose size is larger than R contains at most one user. We call a region containing

more than a single user a live region. Hence live regions are always of same edge length, ≤ R,

and from here on we assume their size is exactly R. We augment T so that it is a balanced and

a netted quadtree [25]. That is, the difference in size between two neighboring leaf regions is at

most a factor of 2, and each leaf region maintains pointers to all of its neighboring regions.

For every user bi let F (bi) denote the list of friends of bi. For every region c ∈ Γ let U(c)

denote the users currently inside c. The basic idea is as follows. Once user bi registers with the

system and reports its location, the system seeks friends of bi in the region c ∈ Γ containing bi,

and in the neighboring regions of c. Note that there are at most 8 neighboring cells of c, since

T is a balanced quad-tree. When bi moves from region c to a new region c′, we only need to

check if any friend(s) of bi are found in any of the new neighboring cells. We next explain each

stage in detail.

Finding the region c containing bi . Let h denote the height of the quad-tree T . A simple

approach would be to use T itself for this point location task. It requires tracing the path of
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length ≤ h from the root of T and to the leaf associated with c. Alternatively, we can use the

point location technique of [5] that requires only O(log log h) time. However, in many cases, we

can do better; Note that the size of all live regions containing two or more users is exactly R.

The coordinates of the left lower corner of such cells is (mxR, myR), where mx, my are integers.

We refer to the pair (mx, my) as the index of c. Note that for every point p = (x, y), the index

of the live leaf region containing p, if one exists, is given by (bx/Rc , by/Rc). Hence we store

all the live regions in a hash table where the key is the index of the live region. We maintain

a pointer from the hash cell to the leaf of T associated with this region. Hence finding users

within the same region as user p is done in expected time O(1). Once this region is found, then

by using the properties of the netted quadtree, finding the neighbor regions is done by following

the links to the neighbors, in O(1) worst-case time.

Finding if there are any friend of bi in its vicinity. For each live region c we maintain a

hash table of all the users currently inside c. For each user bi we also maintain a hash table of

its friends. When bi enters a new region c′, we compare the length of the friends list with the

length of the combined lists of occupants in the (up to four) neighboring regions to c′ which

are not neighbors of c. If the friends list is shorter, we check the distance to every friend of bi.

Otherwise, we check for all occupants of the neighboring regions which of them is a friend of

bi. Thus the running time is O(min{|F (bi)|, |U(c)|}) (in the expected sense, due to the use of

hash tables).

4.2 Improved centralized quadtree algorithm

The purpose of the improved algorithm is to reduce the size of the list of friends that bi needs

to check upon entering a cell c. Let q1, q2 and π(q1, q2) denote two nodes in T and the path in

T from q1 to q2, respectively. Let p, Rp denote a node in the tree and the region in the plane

associated with it, respectively.
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We define the lists Fp(ci) in a bottom up fashion. If p is the leaf node, we define Fp(bi) to

denote the set friends of bi which are in Rp. If p is not a leaf node, we define Fp(bi) to denote

the friends of bi, which are not in Fp′ for any decedent node p′ of p. In other words bi ∈ Fp(a) if

and only if p is the lowest common ancestor of the leaves nodes containing a and bi. We divide

each list into at most 4 sublists, maintaining the 4 lists of the users in each of the 3 children

of p corresponding to the regions that do not contain bi. An intuitive way to understand this

definition is to think of Fq(bi) as all the friends of bi who are in the same city as bi but are not

in the neighborhood of bi.

Entering a new user. When a new user bi registers into the system (e.g., by turning on

its cellular phone), we find the leaf region Rp containing bi, check the list F (bi) of bi’s friends,

check their location in T , and create the lists Fp(bi). Each such update, of entering bi into

Fp(b(j) for a friend bj of bi, is followed by inserting bi into Fp(bj). All these operations can be

done efficiently in expected time O(h + |F (bi)|), where h is the height of T . The running time

is obtained only in the “expected” sense since we use hash table to access the different users.

Handling a cell crossing event. An event happens when bi moves from one leaf-region Rq

to another leaf-region Rq′ . If Rq′ contains already at least one user, we might need to split Rq′ ,

depending on if its size is larger than R. We traverse up the tree T from q until we reach θ,

the lowest node of T for which Rθ contains both Rq, Rq′ and all their neighboring leaf regions.

We find all friends of bi that occupant Rq′ or any of its neighboring leaf regions new to bi by

checking for all friends that are stored in one of the lists Fp(bi), for p ∈ π(q′, θ). Let L denote

this list of friends (that is, L = F(bi) ∪ ∪p∈π(θ,q′)Fp(bi) ) A proximity alert is sent to each such

friend that we find.

Next, for each friend a which is checked, we also need to update its lists of friends, to inform

them about the change in the location of bi. For this, we delete (resp. insert) bi from (to) the

lists Lp for all p ∈ π(θ, q′). Then we update these lists.
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While this data structure is more complicate than the naive quadtree, it allows us to derive

some theoretical bounds on the number of updates which will occur for certain families of

motion trajectories. These support our claim that this data structure is efficient.

Theorem 4.1 Let γ be a k-curve in the plane, and assume that user b moves along γ, and

that all its friends are stationary. Then the total number of checks and updates done by the

improved centralized algorithm is only O(nhk), where n is the number of friends of b, and h is

the height of T . This bound is tight in the worst case.

Proof: As b crosses boundaries of regions, his friends are moved from one friends-list Fp(b)

to another. Consider a friend bi of b. Let π = {p1, . . . ph} denote the path in T from the leaf

node p1 containing bj to the root ph of T . We first bound the number of times that bj is shifted

down into the list of a lower node on π. Observe that bj is shifted from Fp(bi) to Fp′(bi) (where

p,′ p ∈ π and p is higher than p′) only when b enters Rp. This can happen only 4k times, for

each of the 4 lines containing the edges of Rp. Since there are only h nodes on π, this sums

to O(kh) (for bi only) or O(khn) for all friends of b. The number of times that bj is shift up

along π is at most h plus the number times it is shift down, which is within the asserted bound.

Finally we need to update the lists Fp′(bi) and move b from one such list Fp′(bi) to another (say

Fp′′(bi)), but each such update can be charged to one of the updates of the lists Fp(b). Hence

the upper bound is obtained.

The lower bound (demonstrated in the scenario for k = 1) is reached in the following case.

Assume all the friends of b are located in one small cell of size R and assume that b moves

on a straight line across this cell and through the entire region covered by the quadtree. This

will cause the moving of all the n friends from the root level of the tree to the leaf level in h

separate steps.

Theorem 4.1 shows that for complexity-bounded motion trajectories the number of updates

is also bounded. It is harder to give any complexity bounds if all friends of bi are allowed to
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move arbitrarily. For example, it seems that if all of them move together with bi, then there is

nothing we can do in this algorithm except checking all of them each time bi enters a new cell.

However, if most of them are located far away from bi, for most of the time, then we expect

this algorithm to be quite efficient.

5 Experimental Results

We conducted simulation experiments with the Strips algorithm and the quadtree methods on

synthetic dynamic location data. Location trace data was created with the City Simulator [17],

a toolkit that simulates an arbitrary number of mobile users moving in a city, driving on streets

or walking on sidewalks and entering buildings. Several aspects of the toolkit and trace can

be controlled, including traffic flow patterns, traffic congestion, and blocked streets and routes.

The position (location report) of each user is computed at fixed intervals and output to a trace

file. For these experiments we created a trace with 2000 users and 200 location reports per

user.

In Figure 7 we show the number of proximity alert messages, plotted against R, the radius

of user’s vicinity. Note that this simulation is independent of the algorithm used. It can be seen

that the number of alerts reaches a maximum at a midpoint, for R = 275. This is expected, as

if R is very small then getting two friends close enough has very small chance. On the other

hand, if R is very large, then nearly everyone are in the vicinity of all their friends, and thus

very few new meeting events are likely to occur. In between, for mid range R values, there is

a higher chance for a pair of users to alternately get close enough to each other and then get

apart from each other. This might occur several times while they move along their traces.

Figure 8 shows the total number of cell-crosses by all users, in the quadtree algorithm. This

number decreases as R increases, because the minimal cell size is also R. Note that this number

represents the number of times the algorithm needs to check the neighboring cells for friends
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Figure 7: Number of Proximity Alert Messages Generated as a Function of R
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Figure 8: Total number of cell crossing in the centralized quadtree-based algorithm.
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Figure 9: Total number of strip updates in the distributed Strips algorithm

of the user who crosses cells.

Figure 9 shows the number of strip updates, each corresponding to one location update

message in the Strips algorithm. In general, increasing R causes a lesser number of strip updates

to occur. It is analogous to shortening the traces, as the actual length of the trace should be

measured with respect to ε, here equal to R. Although this is somewhat similar to the result

for the quadtree algorithm, shown in Figure 8, note that here we count all the communications

between pairs, while in the previous graph we count only the individual’s events of passing from

cell to cell. One depends on the number of friends, while the other does not.

The exact and approximate Strips algorithms.

Figure 10 compares the number of messages sent by the exact Strips algorithm and by

the approximated Strips algorithm with bounding rectangles. The experiment was repeated

for various values of R, plotted on the horizontal axis. As expected, the number of messages
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Figure 10: Comparison of Exact Strips and Approximated Strips approach

transmitted by the approximated Strips algorithm is higher than the (exact) Strips algorithm.

The approximated Strips algorithm turns out to send approximately 1.8 times more location

update messages than the exact Strips algorithm. While requiring more messages and being

less accurate, the approximate Strips algorithm uses a simpler data structure, less memory and

less computational resources than the exact one.

The Strips algorithm vs. the quadtree algorithm. Comparing these two algorithms

is not as obvious a task as it might at first appear. The Strips algorithm, designed for peer-

to-peer operation, aims at minimizing the communication complexity, namely the number of

location update messages being sent between pairs of users. On the other hand, the centralized,

quadtree-based algorithm, aims at minimizing the computational complexity, assuming that it

knows where are all the users at all times (or, at least at all cell crossing events). Also note

that the Strips algorithm accommodates any values of R and ε, while the quadtree algorithm

is constrained to a uniform R value and a single, rough tolerance criteria, ε = (2
√

2 − 1)R.

These differences limit the ability to compare between the two algorithms. We compare be-
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tween the two by counting basic operations in both, thus mixing between computational and

communication complexities for the sake of plotting one combined graph.

Figure 11 shows the number of basic operations relative to the number of friends per user,

for the Improved quad tree approach, naive quadtree approach, and Strips approach. A basic

operation in the Strips algorithm is the transmission of a location update message, which

also correspond to one strip update. A basic operation in the centralized algorithm is checking

whether a particular friend of the user is in any of the nearby cells. Thus each time a user crosses

a cell boundary, the number of basic operations performed by his cell phone is equal to the

minimum of the number of friends and the number of neighbors the user has. The graph shows

that the number of basic operations is about linear with the number of friends in all the three

cases. Note however that, depending on the number of users in the neighboring cells, the number

of operations could grow slower than linear. Also notice that the number of basic operations in

the strips algorithm is much lower than the quadtree based algorithms. It is apparent from the

figure that Strips algorithm performs better than the improved quadtree approach which in turn

performs better than the naive quadtree approach. If we put the communication aspect aside,

this means that the Strips algorithm also requires less computations of the distances between

user pairs. Thus when implemented on a centralized server, the Strips algorithm will be more

efficient than the quadtree algorithm. Thus we see that the Strips algorithm outperforms the

quadtree algorithm in both centralized and distributed settings.
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Figure 11: Total number of basic operations (distance computation) in the three methods

6 Conclusions

In this paper we present a problem that arises in large networks of mobile wireless devices. Each

mobile device knows its own location information, and it would like to initiate a contact with

others based on their relative locations. In particular we focus on the problem of determining

when pairs of pre-specified “friends” get closer then a distance R of each other. A natural

scenario for this case is of people carrying cellular phones who want to be aware of other

people, such as business colleagues, customers, family and friends.

Two novel distributed algorithms are proposed, denoted as the Exact and the Approximated

Strips algorithms. In both algorithms a pair of moving friends agree on a static buffer region

between them. After the agreement is made, they do not need to know about each other’s

location until one of them enters the buffer region for the first time. By doing so, they invalidate

the agreement. They then exchange location update messages, check if they are within the R-

vicinity of each other, and if not, make a new agreement on a new buffer region. We provide
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an analysis of the case where these regions are bisection strips. This selection of the region

maximizes the expected time to the next message if we do not know anything about the users’

direction and velocities. However, other shapes of regions may apply if more information is

provided.

When analyzing an algorithm for such a problem, one has to consider both communication

and computation complexity. For this distributed algorithm we focused on reducing the com-

munication complexity, or the required “air time”. It is shown that the number of messages

is logarithmic with the distance between the users when they start to approach each other

from far away. It is also logarithmic with 1/ε when they are getting closer, where ε is the

desired tolerance for producing the proximity alert. Hence we consider it to be a very efficient

algorithm.

Further, the dynamic properties of the problem require appropriate analysis tools to be

used. We analyze it under the Kinetic Data Structure framework and we conduct simulations

using the City Simulator data generator. Both show the superiority of the Strips algorithm

over the quadtree-based centralized algorithm.

In cellular networks (e.g. mobile phone networks), a partial solution is to try to take

advantage of the natural cellular structure imposed by the network. If R is approximately the

radius of a cell, then one needs to keep track of friends registered in the user’s own cell and

neighboring cells. However, in general this solution might be unsatisfactory because cell sizes

vary greatly, ranging from large macrocells in rural areas to tiny picocells in metropolitan areas

and buildings. Different users might also want to define different vicinity radii for different

friends, and these can even change when they move from one place to another (e.g., an office

worker does not want to be alerted for the many colleagues who are very close by in the office,

but may want alerts when the same colleagues are within the same distance on an overseas

trip, as this is a chance encounter). Also, not all wireless communication is based on cellular

networks in the first place.

Buddy Tracking July 5, 2006



33

The case of a large group of users that forms a clique of friends is an interesting special case

that we did not address in this paper and is an open question. One could expect to be able to

reduce the number of communications and operations based on the dependencies between user’s

locations. That is, each member of the group only has to know about its neighbors, benefiting

from the fact that others cannot get closer to him without passing first in the vicinity of one

or more of them.
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