
Sweeping Simple Polygons with a Chain of Guards

Alon Efrat∗ Leonidas J. Guibas† Sariel Har-Peled‡ David C. Lin§

Joseph S. B. Mitchell¶ T. M. Murali‖

October 22, 1999

Abstract

We consider the problem of locating a continuously-moving target using a group of guards
moving inside a simple polygon. Our guards always form a simple polygonal chain within
the polygon such that consecutive guards along the chain are mutually visible. We develop
algorithms that sweep such a chain of guards through a polygon to locate the target. Our two
main results are the following:

1. an algorithm to compute the minimum number r∗ of guards needed to sweep an n-vertex
polygon that runs in O(n3) time and uses O(n2) working space, and

2. a faster algorithm, using O(n log n) time and O(n) space, to compute an integer r such
that max(r − 16, 2) ≤ r∗ ≤ r and P can be swept with a chain of r guards.

We develop two other techniques to approximate r∗. Using O(n2) time and space, we show how
to sweep the polygon using at most r∗ +2 guards. We also show that any polygon can be swept
by a number of guards equal to two more than the link radius of the polygon.

As a key component of our exact algorithm, we introduce the notion of the link diagram
of a polygon, which encodes the link distance between all pairs of points on the boundary of
the polygon. We prove that the link diagram has size Θ(n3) and can be constructed in Θ(n3)
time. We also show link diagram provides a data structure for optimal two-point link-distance
queries, matching an earlier result of Arkin et al.

As a key component of our O(n log n)-time approximation algorithm, we introduce the notion
of the “link width” of a polygon, which may have independent interest, as it captures important
structural properties of simple polygons.

∗Computer Science Dept., Stanford University, 353 Serra Mall, Stanford CA 94305. Email: alon@cs.stanford.edu.
Supported by a Rothschild Fellowship and by NSF research grant CCR-96-23851.

†Computer Science Dept., Stanford University, 353 Serra Mall, Stanford CA 94305. Email:
guibas@cs.stanford.edu. Partially supported by DARPA grant DAAE07-98-C-L027 and by ARO MURI grant
DAAH04-96-1-007.

‡School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel. Email: sariel@math.tau.ac.il.
§Computer Science Dept., Stanford University, 353 Serra Mall, Stanford CA 94305. Email: dlin@cs.stanford.edu.

Supported by DARPA grant DAAE07-98-C-L027 and by ARO MURI grant DAAH04-96-1-007.
¶Dept. Applied Math, University at Stony Brook, Stony Brook, NY 11794-3600. Email: jsbm@ams.sunysb.edu.

Partially supported by NSF (CCR-9732220), and grants from Hughes Research Labs, ISX Corporation, Seagull
Technologies, NASA, and Sun Microsystems.

‖Computer Science Dept., Stanford University, 353 Serra Mall, Stanford CA 94305. Email: mu-
rali@cs.stanford.edu. Supported by DARPA grant DAAE07-98-C-L027.

1

1 Introduction

Both visibility and motion planning questions have instigated fruitful investigations in compu-
tational geometry and given rise to well-studied areas, such as art-gallery problems [16, 23, 31],
ray-shooting queries of various sorts [2, 7, 10, 25], and the combinatorics and algorithms of arrange-
ments [1, 13, 14]. Little work, however, has been done at the interface between these two areas,
where visibility becomes a tool, or a goal of motion planning. Perhaps the most classic example of
such work is the computation of “watchman tours” inside a simple polygon [4, 6, 8]; a watchman
tour of a polygon is a closed path inside the polygon such that every point of the polygon is visible
from some point on the tour.

In this paper, we focus on multiple mobile guards whose motion planning goal is to explore a
2-D workspace, which in our case is a simple polygon. In this polygon, there may be one or more
moving targets; nothing is known about the location of the targets or their motion abilities, except
that their motion must be continuous. The goal of the guards is to “see” the targets, or to verify
that no target is present in the polygon. The guards see a target when there is an unobstructed
line-of-sight between it and one of the guards. We may impose various limitations on the viewing
frustum and the range of the vision sensors of the guards.

Parsons [24] and Megiddo et al. [22] study a similar problem in the context of pursuit-evasion
in a graph; in this scenario, the guards and target can move from vertex to vertex of a graph, until
a guard and the target eventually lie in the same vertex. In our geometric setting, what makes this
problem challenging is the issue of recontamination: a particular region of the polygon may have
been cleared by the guards, but if the target can find a way to enter the region again, it becomes
recontaminated and must again be cleared. Thus, unless one has sufficiently many guards, the target
finding problem is not always solvable. Crass et al. [9], Suzuki and Yamashita [28], Guibas et al. [12],
and LaValle et al. [21] study various versions of this problem where the guards move independently.
Guibas et al. prove that for a simple polygon with n vertices and h holes, Θ(

√
h + log n) guards

are needed in the worst case to detect all targets. They also prove that computing the smallest
number of guards needed to find a moving target in a polygonal environment is NP -hard.

In this paper, we look at a more constrained but still realistic model of how a polygon might
be cleared by a group of guards. We assume that the guards always form a simple polygonal chain
through the polygon; the guards at the ends of the chain are always on two edges of the polygon,
while the rest are at internal vertices of the chain. All links in the chain are segments inside the
polygon. Thus the guards are mutually visible in pairs and are all linked together. Such a guard
configuration has obvious advantages for safety and communication, if this target-finding operation
happens in adversarial settings. Our goal is to sweep the polygon with a continuously moving chain
of guards, so that, at any instant, the chain of guards partitions the polygon into a “cleared” region
and an “uncleared” region. In the end, we would like to ensure that every point of the polygon has
been swept over an odd number of times. This property guarantees that if any targets are present
in the polygon, they will have to be swept over by the guard chain and thus discovered.

There has been considerable work on the class of polygons that can be swept with a chain of
only two observers—these polygons are called streets [15, 17, 20, 30]. In the framework of Icking
and Klein [17], the guards are required to start at a point p on the boundary of the polygon and
finish at a point q also on the boundary of the polygon. One guard moves clockwise from p to q
and the other moves counterclockwise from p to q. Given p and q, Icking and Klein show how to
check whether the polygon can be swept by the two guards under these constraints in O(n log n)

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

2

time. If a sweep exists, they construct it in O(n log n + k) time, where k is the number of “walk”
instructions given to the guards to implement the sweep. Heffernan [15] shows that O(n) time
suffices to check whether a sweep by two guards exists between p and q. Tseng et al. [30] consider
the problem of finding two points p and q on the boundary of the polygon such that a straight
walk or a straight counter-walk exists between p and q that sweeps the polygon (the guards are not
allowed to backtrack in a straight walk, whereas in a straight counter-walk, one guard moves from p
to q and the other from q to p without backtracking). They check if two such points exist (and
output a pair) in O(n log n) time. Based on initial work by Suzuki and Yamashita [28], Tan [29]
describes techniques to check in O(n2) time if a chain of two or three guards can sweep a polygon
and to produce such a sweep in O(n3) time.

While these results are restricted to streets and to polygons that can be swept by three guards,
we are interested in sweeping polygons that may require more than three guards. Let P be a
polygon with n vertices and let r∗ be the minimum number of guards needed to sweep P . Our aim
is to compute r∗ (or to find a good approximation to r∗) and to determine a search schedule of
small complexity for the guards to perform the sweep (we formally define a search schedule and its
complexity later). In this paper, we describe the following results:

1. We compute r∗ in O(n3) time, using O(n2) working space, and generate a search schedule of
size O(r∗n3);

2. Using O(n2) time and O(n2) space, we compute an integer r ≤ r∗ +2 such that we can sweep
P using r guards with a search schedule of size O(rn2). We can also compute in O(n2r log r)
time a search schedule of size O(rn2) for P that uses r + 4 guards;

3. Using O(n log n) time and O(n) space, we compute an integer r such that r ≤ r∗ + 16, and
we can sweep P using r guards; and

4. We show how to sweep P using r guards, where r is two more than the link radius of P , and
generate a search schedule of size O(rn). (We omit the proof of this result from this abstract.)

The primary difficulty in planning motions for greater than two guards is that the guards at the
internal vertices of the chain can be located anywhere in the interior of P . To solve this problem,
we introduce a structure called the “link diagram” (we formally define this notion later), which
represents the link distance and minimum-link paths between all pairs of points on the boundary
of P . As far as we are aware, this structure appears to be a new concept. We prove that the link
diagram has Θ(n3) size and describe an algorithm to construct it in O(n3) time. In the full version
of the paper, we also show how to use the link diagram to answer link-distance and minimum-link-
path queries between two points in P in optimal time, matching the earlier result of Arkin et al. [5].
Our query algorithm is especially simple and avoids the case analysis of the algorithm of Arkin et al.

Our first approximation algorithm (with an additive error of two) is based on the observation
that we can approximate the link diagram of P by the link distances between the O(n2) pairs of
vertices of P , if we are willing to tolerate a small additive error (of at most two). Our second,
more efficient, approximation algorithm (also with a small additive error) is based on an interesting
relationship we establish between r∗ and the “link width” of P . Suprisingly, we can show that r∗

is bounded from above and from below by the link width (ignoring additive constants).
In the next section, we give some basic definitions, introduce the concept of the “link diagram,”

and review some facts about window partitions. The following sections describe the main results,

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

3

first for exact optimization, then for approximation. Due to lack of space, we defer most proofs to
the full version of the paper; some proofs are contained in the appendices.

2 Geometric Preliminaries

Let P be a simple polygon in the plane. Let G = {G1, G2, . . . , Gr} be a set of point guards
in P . For a guard Gi ∈ G, let γi(t) denote the position of Gi in P at time t; we require that
γi(t) : [0,∞) → P be a continuous function. A configuration of G at time t, denoted Γ(t) is the set
of points {γi(t) | 1 ≤ i ≤ r}. We say that Γ(t) is legal if

1. γ1(t) and γr(t) both lie in ∂P , and

2. for every 1 ≤ i < r, the segment γi(t)γi+1(t) does not intersect the exterior of P .

From now on, we will use the term configuration to mean legal configuration. A useful way to
think of a configuration of G is as a piecewise-linear path connecting the points γ1(t) and γr(t) that
“cuts” through P and does not intersect the exterior of P .

A motion strategy (γ,G) = {γi, 1 ≤ i ≤ r} is a specification of γi, for each guard Gi ∈ G. We
assume that each guard can follow an algebraic path, once the path is specified. Thus, each γi is a
piecewise-algebraic function. The complexity of γi is the number of algebraic functions needed to
define it. The complexity of a motion strategy is the total complexity of the γi’s.

In order to formalize the notion of sweeping a polygon, we assume that the chain corresponding
to the configuration of the guards is oriented from G1 to Gr. For a motion strategy (γ,G), let AP (t)
denote the fraction of the area of P to the right of the configuration Γ(t); AP (0) = 0. We say that
a motion strategy (γ,G) is a search schedule for P if AP (t) = 1, for some t > 0. Finally, we say
that P is r-searchable if a search schedule that uses at most r guards exists for P . See Figure 1 for
an example of such a sweep. In Appendix A, we show that there are n-vertex polygons that are
not o(n)-searchable.

(a) (b) (c) (d)

G_1

(e) (f)

Figure 1: A search schedule with three guards. The unswept region is shown shaded.

We assume without loss of generality that all of the guards start at the same point in ∂P at the
beginning of the sweep and converge at another point of ∂P at the end of the sweep. The following
lemma characterizes when a motion strategy is a search schedule:

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

4

Lemma 2.1 Given a motion strategy (γ,G), let d1 (resp., d2) denote the total distance that G1

(resp., Gr) travels in the counterclockwise (resp., clockwise) direction during γ, divided by the
perimeter of P . If |d1 + d2| = 1, then (γ,G) is a search schedule for P .

Using this lemma, it is easy to show that in any search schedule, each point in P is swept over an
odd number of times.

In all of our algorithms, we construct search schedules where each configuration of the guards
corresponds to a “minimum-link” path between the first and last guards. We now give some
standard definitions related to such paths. Given two points p, q ∈ P , a minimum-link path between
p and q is a piecewise-linear path between p and q that does not intersect the exterior of P and has
the minimum number of line segments; the link distance dL(p, q) between p and q is the number of
line segments in such a path.

We now define the link diagram of P , a structure that is central to our algorithm for com-
puting r∗. We first select an arbitrary point o ∈ ∂P as the origin of ∂P and parameterize every
point p ∈ ∂P by the clockwise distance from o to p along ∂P , divided by the perimeter of P .
Let f : [0, 1) → ∂P denote the bijective function corresponding to this parameterization; thus, f()
maps every point in ∂P to a dual point in the interval [0, 1). For any point (x, y) in the dual unit
square, let dL(x, y) : [0, 1) × [0, 1) → N denote the link distance between the points f(x) ∈ ∂P
and f(y) ∈ ∂P . The link diagram LP is the graph of the function d(). See Figure 2 for an example
of LP . A face of LP is a maximally-connected region where the function d() assumes the same
value; an arc of LP separates two different faces of LP (the values of d() in these two faces differ
by 1); and a node of LP is a point on the boundary of four or more faces of LP or a point adjacent
to two different arcs that separate the same pair of faces.1 Note that LP is symmetric since d() is
a symmetric function.

p1 p5

p2 p4

p3

p6

(a)

p6

p5

p3

p2

p1

p4

(b)

Figure 2: (a) A polygon P and (b) its link diagram. Shaded areas correspond to pairs of points
on ∂P with link distance two.

Given two points p, q ∈ P , we say that p and q see each other if the segment pq does not
intersect the exterior of P . Given two points p, q ∈ P that see each other, let ℓ be the line passing
through p and q. Then the extension of (p, q) is the connected component of ℓ ∩ P that contains
the segment pq.

1A node of LP cannot be adjacent to an odd number of faces; if it is, then one of the arcs adjacent to the node
separates faces where the value of d() differs by zero or at least by two, which is impossible.

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

5

The window partition Wp of a p ∈ P is a partition of P into maximal regions of constant link
distance from p. An edge of Wp is either a portion of an edge of P or is a segment that separates
two regions of Wp; we call such a segment a window of Wp. If a window w ∈ Wp has endpoints x
and y, then one endpoint of w (say, x) is a reflex vertex v of P and the other endpoint (y) lies on
an edge e of P ; x is closer to p than y in terms of geodesic distance. We say that the combinatorial
type of w is the vertex-edge pair (v, e). The combinatorial type of Wp is a list of the combinatorial
types of all its windows. The planar dual of Wp is the window tree, Tp. Suri [27] introduced the
notion of window partition and showed that it can be constructed in time and space O(n). The
definitions of window partition and window tree extend naturally to the case when the source is a
line segment, instead of a point.

We can use the window partition Wp to compute a min-link path from p to any other point
in P . In general, min-link paths are not unique. The canonical min-link path πL(p, q) between
p ∈ ∂P and q ∈ ∂P is a path that uses only extensions of windows in Wp, with the last link chosen
to pass through the last vertex of the geodesic shortest path between p and q. We define the
combinatorial type of a link of πL(p, q) (except, possibly, the last link) to be the combinatorial type
of the window of Wp of which it is an extension. Each link of πL(p, q) passes through a reflex vertex
of P (the reflex vertex is also a vertex of the geodesic shortest path between p and q). We say that
a link of πL(p, q) is pinned if it passes through two reflex vertices of P such that the vertices lie on
opposite sides of the link.

Let p = f(t), for some t ∈ [0, 1), let λ be a window in Wp with combinatorial type (v, e), and
let q be the endpoint of λ lying on e. Suppose that the canonical min-link path πL(p, q) from p to
q does not contain any pinned edge. We can show that we can parameterize the position of q as
a homography q = g(t) = (A + Bt)/(C + Dt).

3 The Link Diagram

In this section, we prove an O(n3) bound on the size of the link diagram LP of a n-vertex polygon
P and describe an algorithm to construct LP in O(n3) time. We also show how to compute r∗ by
searching LP and produce a search schedule of O(r∗n3) complexity for P using r∗ guards.

We first sketch the proof for bounding the size of LP . The first property we establish is that
every vertical (or horizontal) line intersects the arcs of LP at O(n) points; if the line passes through
the point (t, 0), then these intersections correspond to the endpoints of the windows of Wf(t). We
then show that if we sweep a vertical line across the plane, the line intersects nodes of LP exactly
at values of t such that the combinatorial type of Wf(t) changes. At each such value of t, the line
intersects O(n) nodes of LP . Arkin et al. [5] show that the combinatorial type of Wf(t) changes
at O(n2) value of t. These facts imply that LP has O(n3) size. An interesting implication of these
arguments is that the nodes of LP lie in a total of O(n2) vertical (or horizontal) lines.

Below, we describe the proof in some more detail. We first introduce some notation. Let ℓ(t)
be the vertical line through the point (t, 0) in the dual plane. Throughout this section, we will
use ε > 0 to denote a sufficiently small real number. We will abuse notation and use Wt, where
t ∈ [0, 1), to denote Wf(t) and use πL(t, u), where t, u ∈ [0, 1), to denote πL(f(t), f(u)). We first
state a simple lemma that relates arcs of LP to window partitions of points on ∂P .

Lemma 3.1 Suppose the vertical line ℓ(t) does not intersect any nodes of LP . The line ℓ(t) inter-
sects an arc of LP at a point (t, u) iff f(u) is the endpoint of a window of Wt.

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

6

Using the above lemma, it is not difficult to establish the following:

Lemma 3.2 Let t, u ∈ [0, 1) be such that no nodes of LP are contained in the vertical strip bounded
by ℓ(t) and ℓ(u). Then the combinatorial types of the window partitions Wt and Wu are identical.

The above lemma implies that if we sweep a vertical line ℓ(t) across LP , then at every value
of t such that the combinatorial types of the window partitions Wt−ε and Wt+ε are different, ℓ(t)
intersects a node of LP . We now prove that the converse is also true, i.e., if ℓ(t) intersects a node
of LP , then the combinatorial types of the window partitions Wt−ε and Wt+ε are different. In order
to prove this fact, we first prove some more properties of the arcs and nodes of LP . The next two
lemmas establish precise conditions for a point on an arc of LP to be a node of LP .

Lemma 3.3 Suppose that the point (t, u) is on an arc of LP and πL(t, u) does not contain a pinned
link. The point (t, u) is a node of LP iff one of the links of πL(t, u) touches two vertices of P .

Lemma 3.4 Suppose that the point (t, u) is on an arc of LP and πL(t, u) contains a pinned link λ.
The point (t, u) is a node of LP iff f(t) and f(u) are endpoints of a window of Wλ.

The two lemmas above have the following corollary (a window λ ∈ Wt divides P into two or more
sub-polygons; we use P [λ; f(t)] to denote the sub-polygons not containing f(t)):

Corollary 3.5 If a window λ ∈ Wt touches two vertices of P , then the point (t, u) is a node of LP

for every value of u such that f(u) is the endpoint of a window of Wλ and f(u) ∈ ∂P [λ; f(t)].

Using Lemmas 3.3 and 3.4, we can prove the following:

Lemma 3.6 If the point (t, u) is a node of LP , then the window partitions Wt−ε and Wt+ε have
different combinatorial types.

We have now assembled all the ingredients we need to prove an O(n3) bound on the size of LP .
We sweep the vertical line ℓ(t) across LP from ℓ(0) to ℓ(1) and consider the intersection of ℓ(t)
with the arcs of LP . Lemma 3.1 implies that this process is equivalent to moving the point f(t)
along ∂P and considering Wt. Lemmas 3.2 and 3.6 imply that ℓ(t) intersects a node of LP iff the
combinatorial type of Wt changes. Arkin et al. [5] show that for a polygon P with n vertices, there
are O(n2) values of t ∈ [0, 1) such that Wt−ε and Wt+ε have different combinatorial types. Let t′

be such a value of t and let λ be the window of Wt′ that touches two vertices of P . Corollary 3.5
implies that the point (t′, u) is a node of LP only if f(u) is the endpoint of a window in Wλ. There
are O(n) such values of u. Therefore, at each of the O(n2) values of t where the combinatorial
types of Wt−ε and Wt+ε are different, ℓ(t) intersects O(n) nodes of LP . This argument proves
an O(n3) bound on the size of LP . In Appendix A, we show that this bound is tight: there are
n-vertex polygons for which LP has size Ω(n3).

Theorem 3.7 The link diagram LP of a polygon P with n vertices has size Θ(n3).

We now describe an algorithm to construct LP . The algorithm simply mimics the proof of the
size bound by sweeping a vertical line ℓ(t) across LP and maintaining the intersection of ℓ(t) with
LP . We represent this intersection by a sequence L(t) of O(n) sorted numbers in [0, 1); u ∈ L(t) iff
f(u) is the endpoint of a window in Wt. If u ∈ L(t), we use σ(t, u) to denote the arc of LP that the

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

7

point (t, u) lies on and we store the combinatorial type of σ(t, u) with u in L(t). Before describing
the algorithm, we need a simple definition. Let v be a vertex of P and let p be the endpoint of a
window in Wv. If dL(v, p) > 1, then the first link in πL(v, p) passes through v and another vertex
of P . We call this link p’s source link and denote it by sp.

1. For each vertex v ∈ P , we compute Wv. For every endpoint p of a window in Wv, we
compute sp. We sort all of these endpoints around ∂P . Let Q be the sorted sequence of these
endpoints.

2. We compute L(0) and maintain L(t) as t increases from 0 to 1. For every value of t such
that f(t) is a window endpoint in Q, we locate the window (with the same combinatorial type
as) sf(t) in L(t). For every value of u such that f(u) is the endpoint of a window of Wsf(t)

and f(u) ∈ ∂P [sf(t); f(t)], we add (t, u) as a node to LP and end the arc σ(t, u) at (t, u).

(a) If sf(t) is not pinned, then for every new node (t, u) (added above), we add a new
arc σ(t, u) to LP . We obtain the equation of σ(t, u) by appropriately updating the
homography defining the arc σ(t − ε, u).

(b) If sf(t) is pinned, we add to LP a vertical arc for each pair of new nodes that are adjacent
along ℓ(t). For every new node (t, u), we also add a new horizontal arc σ(t, u) to LP .

The correctness of the algorithm follows from Corollary 3.5. It is easy to analyze the running
time of the algorithm. The first step takes O(n2 log n) time. We execute the second step O(n2)
times [5], spending O(n) time per execution. Thus, we have the following theorem:

Theorem 3.8 We can construct LP in O(n3) time, using O(n2) working space.

We now turn our attention to using LP to compute the optimum number r∗ of guards and a
corresponding search schedule for r∗ guards. Lemma 2.1 states that a motion strategy (γ,G) is a
search schedule if the total distance travelled by the extreme guards (measured counterclockwise
for one guard and clockwise for the other) sums to the perimeter of P . To exploit this fact, we
augment the diagram LP by placing a translated copy of it (translated upwards by distance 1) just
above it in the plane. Lemma 2.1 implies that any path from the diagonal y = x in the bottom copy
to the diagonal y = x + 1 in the top copy corresponds to a search schedule for P . Our algorithm
for computing r∗ is simple. We consider the graph defined by the nodes and arcs of the two copies
of LP . We label each arc and each node with the smallest link distance associated with the faces
adjacent to it. We then perform a breadth-first search in this graph to compute the smallest integer
r∗ such that a path exists between the two diagonals that uses only arcs and nodes with labels at
most r∗ − 1 (since a chain of r∗ − 1 links corresponds to r∗ guards). We can adapt this procedure
to compute a search schedule too; details appear in the full paper. Clearly, the breadth-first search
takes O(n3) time and produces a path in LP that visits O(n3) nodes. To compute the search
schedule, at each node of this path, we may need to update the motions of at most r∗ guards, thus
computing a search schedule of complexity O(r∗n3).

4 Approximation Algorithms

In this section, we describe three approximation schemes: (1) an algorithm that uses O(n2) time to
compute r∗ within an additive error of two, (2) an algorithm that uses O(n log n) time to compute

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

8

r∗ within an additive error of at most 16, and (3) a method for sweeping P that uses at most the
link radius of P (which we can compute in O(n log n) time [11]) plus two guards. Here, we give
details of only the first two results; we defer presenting the link radius method (which may give
slightly fewer guards than method (2), in some cases) to the full paper. We also present proofs of
some lemmas in Appendix C.

4.1 A simple additive approximation method

We describe a method that computes in time O(n2) an integer r such that P can be swept using r
guards and r − 2 ≤ r∗. We can also compute in O(n2r log r) time a schedule of O(n2r) commands
that sweeps P using a chain of at most r + 4 guards.

Let e1, e2, . . . , en be the edges of P . Define an n × n matrix M, where Mij is an upper bound
on the maximum number of guards in a min-link path connecting any point of ei to any point of
ej ; namely, Mij = dL(ei, ej) + 3, where dL(ei, ej) = minp∈ei,q∈ej

dL(p, q). The matrix M can be
computed in O(n2), by computing the link distance from ei to all other edges in O(n) time [27].

As is easily shown, M forms an approximation to the link diagram, LP , since, if p is a point
on an edge ei ⊆ ∂P , and q is a point on an edge ej ⊆ ∂P , then dL(p, q) is between Mij − 3 and
Mij − 1.

Lemma 4.1 Let π and π′ be two min-link paths, both connecting an edge f to an edge f ′, so that
r = dL(f, f ′). Then, we can morph π into π′ using at most r + 3 guards. Moreover, using at
most r + 7 guards we can compute a morphing strategy, that issues O(r) commands to guards, in
O(r log r) time.

We construct a graph G on the grid 2n × 2n, so that two nodes are adjacent in G iff they are
vertically or horizontally adjacent in the grid. We also connect the vertices on the boundary of G
to the corresponding vertices on the other side of G (i.e., we “glue” together the top side of G to
the bottom side of G, and the left side of G to the right side of G). For a vertex (i, j) ∈ V (G),
we assign it weight w(i, j) = M1+((i−1) mod n),1+((j−1) mod n). It is easy to verify that a sweeping
strategy for P can be interpreted as a path σ in G connecting (1, 1) to (1, n), so that the maximum
weight vertex along σ has weight at most two greater thatn the number of guards needed to sweep
P .

On the other hand, a path σ in G connecting (1, 1) to (1, n), such that the maximum weight
along σ is w, can be interpreted as a sweeping strategy that requires at most w guards, by Lemma
4.1. Such a min-weight path σ in G can be computed in O(n2) time using Dijkstra’s algorithm.
We conclude:

Theorem 4.2 Given a simple polygon P , one can compute in O(n2) time a number r, so that P
can be swept with r guards and r − 2 ≤ r∗. Moreover, one can compute in O(n2r log r) time a
sweeping strategy for P using at most r + 4 guards, with O(n2r) commands issued to the guards.

Proof : The algorithm for computing r is described above. For the computation of the motion
strategy, we first compute the min-weight path σ in G that connects (1, 1) with (1, n). Next, each
edge e of σ connects two configurations π = (ei, ej) and π′ = (ei, ek).

It is now an easy matter to compute a morphing between these two configurations by computing
a middle configuration πmid having one guard located on a vertex ej ∩ ek of P . Next, using the

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

9

a b

c

u

x

v

w

P

p

Figure 3: Definitions for Lemma 4.3

algorithm of Lemma 4.6, one can compute a morphing strategy between π and πmid, and a morphing
strategy between πmid and π′. 2

4.2 A faster additive approximation method

In this section, we describe an O(n log n)-time algorithm to approximate r∗ within an additive
factor of 16.

For a polyline π, and any two points p, q ∈ π, let a, b ∈ ∂P be a pair of points, maximizing
dL(a, b); we call such a pair a diametrical pair of P , and let DP = πL(a, b) denote a corresponding
path that represents a link diameter of P .

We define the link width of P relative to DP to be ω(P,DP) = maxv∈P dL(DP , v). The link
width of P is then defined to be the minimum, minDP

ω(P,DP), taken over all realizations of the
diameter. (It turns out that different realizations of DP can result in different widths, but there
can be variation only by 1 link.) In our discussion, it suffices to fix one realization of the diameter,
DP , and do analysis with respect to the width ω = ω(P,DP). For points p, q ∈ ∂P , we let ∂P (p, q)
denote the portion of ∂P traced when moving from p to q in a clockwise direction (i.e., with the
interior of P lying to the right). We first state two lemmas that establish the relationship between
the link width and the link diameter of P .

Lemma 4.3 Let DP = πL(a, b) be a diameter of P , let c be a point that realizes the width,
ω = dL(c,DP), and let u be a point on DP that is closest to c in link distance. (See Figure
3.) Then, dL(a, u) ≥ ω − 7 and dL(b, u) ≥ ω − 7.

Lemma 4.4 Let p ∈ ∂P (c, a) and q ∈ ∂P (b, c). Then dL(p, b) ≥ ω − 8, and dL(q, a) ≥ ω − 8.

Lemma 4.5 The number of guards needed to sweep a polygon P is at least max(ω − 7, 2).

Proof : If there is a sweeping strategy of P by a chain of k segments (k + 1 guards), then it is easy
to verify that during the sweep one of the following three events must happen:

• One of the guards is located at the point b and other one is located on ∂P (c, a).

• One of the guards is located at the point a, and the other one is located on ∂P (b, c).

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

10

• One of the guards is located at c, and the other one is located on ∂P (a, b).

However, by Lemma 4.4, we know that in the first two cases k ≥ ω − 8. In the third case, the
chain of guards must cross πL(a, b), which implies that k ≥ ω. 2

Lemma 4.6 Let σ = (p1, . . . , pm) ⊆ ∂P be a subset of ∂P that has no shortcut within P ; i.e.,
pipi+2 6⊂ P . Assume that for any point q ∈ ∂P , we have dL(σ, q) ≤ k. Then, the polygon P can be
swept using a chain of k + 3 guards.

Proof : Let σ̂ = ∂P \ σ, and let qi ∈ σ̂ denote a point of σ̂ that is closest to pi (in link distance).
Arguing as in the proof of Lemma 4.3, it follows that since σ cannot be shortcut, any point on σ
sees a point of σ̂; thus, piqi ⊂ P . (However, note that piqi might cross pjqj.)

Let Qi be the region bounded by ∂P (qi, qi+1)||qi+1pi+1||pi+1pi||piqi, for i = 1, . . . ,m− 1. (Note
that the closed curve defining Qi may have a self-crossing at the intersection of piqi and pi+1qi+1.)
The regions Qi partition P . For any point p ∈ ∂Qi, there exits a path that has at most k + 2
segments connecting p with pi and that lies inside Qi. Indeed, let π = πL(p, σ) be a min-link
path connecting p with σ. The path π has at most k segments and must intersect (the intersection
might be the endpoint of π) one of the segments piqi, pipi+1, pi+1qi+1, and thus it can be modified
into a path π′ that connects p with pi that has at most k + 2 segments.

This implies that we can sweep Qi in the following canonical way: (i) In the beginning the
guards stand along the segment piqi, and connect those two endpoints, (ii) In the end of the first
stage of the sweep, the guards stand along the segments pipi+1||pi+1qi+1, and (iii) In the second
stage of the sweep, all of the guards standing along pipi+1 are moved to stand at pi+1. This sweeping
requires at most k + 3 guards. Thus, we can sweep P by sweeping Q1, Q2, . . . , in succession, using
the above strategy. Overall, this combined strategy sweeps P using k +3 guards, so that the guard
who is always located on σ moves monotonically along σ. 2

Theorem 4.7 max(ω − 7, 2) ≤ r∗ ≤ ω + 5.

Proof : Let P1, P2 be the two polygons formed by splitting P along DP = πL(a, b). By Lemma 4.6,
P1, P2 can be swept with ω + 3 guards, so that one of the guards lies on DP , and its movement is
monotone from a towards b. Moreover, the sweeping of P1 and P2 is decomposed into steps where
in the intermediate step only 3 guards are necessary (namely, two guards placed on an edge of the
diameter, and the other guard placed on an edge of the polygon). Thus, by sweeping the regions
of P1, P2 in an interleaving manner, we have that the number of guards necessary to sweep P is at
most ω + 5. The lower bound follows from Lemma 4.5. 2

Theorem 4.8 Given a polygon P , one can compute in O(n log n) time a number k, so that the
number of guards needed to sweep P is between max(k − 11, 2) and k + 5.

Proof : Compute the link-diameter, DP , of P in O(n log n) time [18, 19, 26]. Pick a vertex v of
P , and compute the window partition, Wv, and the window tree, Tv, in O(n) time. We now mark,
in linear time, all of the nodes V of Tv that correspond to regions of Wv that intersect DP . Let µ
be the vertex of Tv so that the minimum distance (in Tv) to any vertex of V is maximized, and let
d be this minimum distance between µ and a vertex of Tv.

It is straightforward to verify that µ ≤ ω ≤ µ + 4. Set k = µ + 4. We know by Theorem 4.7,
that P can be swept using k + 5 guards and that at least max(k − 11, 2) guards are needed. 2

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

11

References

[1] P. Agarwal and M. Sharir. Arrangements. In J.-R. Sack and J. Urrutia, editors, Handbook of
Computational Geometry. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1998.

[2] P. K. Agarwal and J. Matoušek. Ray shooting and parametric search. SIAM J. Comput.,
22(4):794–806, 1993.

[3] A. Aggarwal, H. Booth, J. O’Rourke, S. Suri, and C. K. Yap. Finding minimal convex nested
polygons. Inform. Comput., 83(1):98–110, Oct. 1989.

[4] E. M. Arkin, J. S. B. Mitchell, and C. Piatko. Minimum-link watchman tours. Report,
University at Stony Brook, 1994.

[5] E. M. Arkin, J. S. B. Mitchell, and S. Suri. Logarithmic-time link path queries in a simple
polygon. Internat. J. Comput. Geom. Appl., 5(4):369–395, 1995.

[6] S. Carlsson and H. Jonsson. Computing a shortest watchman path in a simple polygon in
polynomial-time. In Proc. 4th Workshop Algorithms Data Struct., volume 955 of Lecture
Notes Comput. Sci., pages 122–134. Springer-Verlag, 1995.

[7] B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, J. Hershberger, M. Sharir, and
J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica, 12:54–
68, 1994.

[8] W.-P. Chin and S. Ntafos. Shortest watchman routes in simple polygons. Discrete Comput.
Geom., 6(1):9–31, 1991.

[9] D. Crass, I. Suzuki, and M. Yamashita. Searching for a mobile intruder in a corridor —
the open edge variant of the polygon search problem. Internat. J. Comput. Geom. Appl.,
5:397–412, 1995.

[10] M. de Berg. Efficient algorithms for ray shooting and hidden surface removal. Ph.D. disserta-
tion, Dept. Comput. Sci., Utrecht Univ., Utrecht, Netherlands, 1992.

[11] H. N. Djidjev, A. Lingas, and J. Sack. An O(n log n) algorithm for computing the link center
of a simple polygon. Discrete Comput. Geom., 8(2):131–152, 1992.

[12] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani. Visibility-based pursuit
evasion in a polygonal environment. In Proc. 5th Workshop Algorithms and Data Structures,
pages 17–30, 1997.

[13] D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete
and Computational Geometry, chapter 21, pages 389–412. CRC Press LLC, Boca Raton, FL,
1997.

[14] D. Halperin and M. Sharir. Arrangements and their applications in robotics: Recent develop-
ments. In K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson, editors, Proc. Workshop
Algorithmic Found. Robot., pages 495–511. A. K. Peters, Wellesley, MA, 1995.

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

12

[15] P. J. Heffernan. An optimal algorithm for the two-guard problem. Internat. J. Comput. Geom.
Appl., 6:15–44, 1996.

[16] F. Hoffmann, M. Kaufmann, and K. Kriegel. The art gallery theorem for polygons with holes.
In Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., pages 39–48, 1991.

[17] C. Icking and R. Klein. The two guards problem. Internat. J. Comput. Geom. Appl., 2(3):257–
285, 1992.

[18] Y. Ke. An efficient algorithm for link-distance problems. In Proc. 5th Annu. ACM Sympos.
Comput. Geom., pages 69–78, 1989.

[19] Y. Ke. Polygon visibility algorithms for weak visibility and link distance problems. Ph.D. thesis,
Dept. Comput. Sci., Johns Hopkins Univ., Baltimore, MD, 1989.

[20] R. Klein. Moving along a street. In Proc. Computational Geometry: Methods, Algorithms
and Applications, volume 553 of Lecture Notes Comput. Sci., pages 123–140. Springer-Verlag,
1991.

[21] S. M. LaValle, D. Lin, L. J. Guibas, J.-C. Latombe, and R. Motwani. Finding an unpredictable
target in a workspace with obstacles. In Proc. IEEE Internat. Conf. Robot. Autom., Apr. 1997.
To appear.

[22] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou. On the
complexity of searching a graph. J. ACM, 35:18–44, 1988.

[23] J. O’Rourke. Art Gallery Theorems and Algorithms. The International Series of Monographs
on Computer Science. Oxford University Press, New York, NY, 1987.

[24] T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. Lick, editors, Theory and
Applications of Graphs, volume 642 of Lecture Notes Math., pages 426–441. Springer-Verlag,
Berlin, West Germany, 1976.

[25] M. Pellegrini. Ray shooting and lines in space. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 32, pages 599–614. CRC Press
LLC, Boca Raton, FL, 1997.

[26] S. Suri. Minimum link paths in polygons and related problems. Ph.D. thesis, Dept. Comput.
Sci., Johns Hopkins Univ., Baltimore, MD, 1987.

[27] S. Suri. On some link distance problems in a simple polygon. IEEE Trans. Robot. Autom.,
6:108–113, 1990.

[28] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region. SIAM J.
Comput., 21:863–888, 1992.

[29] X. Tan. Searching a simple polygon by a k-searcher. Unpublished manuscript, 1999.

[30] L. H. Tseng, P. Heffernan, and D. T. Lee. Two-guard walkability of simple polygons. Internat.
J. Comput. Geom. Appl., 8(1):85–116, 1998.

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

13

[31] J. Urrutia. Art gallery and illumination problems. In J.-R. Sack and J. Urrutia, editors,
Handbook on Computational Geometry, North-Holland, 1997. To appear.

A Lower Bounds

We show that there are n-vertex polygons that are not o(n)-searchable. Figure 4 shows such a
polygon P . It consists of three “arms,” L1, L2 and L3, joined by a central region. Any polygonal
chain lying inside P that joins a point p in the central region to the tip pi of an arm Li has Ω(n)
segments. Suppose L3 is the last arm to be searched in a sweep. Then, while a guard visits p3,
a guard must be positioned at a point in the central region. Otherwise, the target might escape
from L1 to L2 or vice-versa. A similar fact holds if L1 or L2 is the last arm to be searched.
Therefore, Ω(n) guards are needed to sweep P .

p1

L1

L3

p3

L2

p2

p

Figure 4: A polygon P such that r∗ = Ω(n).

There are polygons for which the link diagram has size Ω(n3). In Figure 5 we show a polygon P
whose boundary consists of three portions: γ1 is a convex chain of n vertices while γ2 and γ3

are sequences of n “teeth” each. Let ci, 1 ≤ i ≤ n denote the “base” of each tooth in γ2 and
let di, 1 ≤ i ≤ n denote the bases in γ3. We choose γ1 to be small enough that every point in γ1

can see every point of ci and every point of dj , for 1 ≤ i, j ≤ n. Let ci have endpoints pi and qi.
Consider Wpi

. Since pi can see every point on γ1, a window of Wpi
(in fact, a chord of the visibility

polygon Vpi
) has an endpoint p′ in ∂P to the left of the vertices of γ1. For every j, 1 ≤ i ≤ n, there is

a window w′ in Wpi
such that w′ has an endpoint q ∈ dj . By Lemma B.3, the point (f−1(pi), f

−1(q))
is on an arc of LP . Now consider moving a point p from pi to qi. This motion causes p′ to
move clockwise along γ1 and q to move clockwise along dj. Every time p′ passes a vertex of γ1,
the homography defining the motion of q (with respect to p) changes. Therefore, by the time p
reaches qi, the point (f−1(p), f−1(q)) has traced Ω(n) arcs of LP . The same process can be repeated
for every ci and dj , 1 ≤ i, j ≤ n, which implies that LP has size Ω(n3).

B Lemmas and Proofs for Section 3

Lemma B.1 If p and q are two points in ∂P and no link of πL(p, q) is pinned, then the endpoint
of every link of πL(p, q) lies on ∂P .

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

14

γ2 γ3

γ1

p3

q3 d1

Figure 5: A lower bound construction for the size of LP .

Proof : We prove the lemma by contradiction. Let λ be a link of πL(p, q) whose endpoint does not
lie on ∂P ; clearly, λ is not the last link in πL(p, q) since q is the endpoint of the last link. Let λ′

be the link following λ in πL(p, q); λ′ is the extension of a chord of Vλ. It is well-known that the
extension a chord s′ of Vλ intersects λ at a point in the interior of λ iff s′ passes through reflex
vertices of P that lie on opposite sides of s′, which implies that λ′ is pinned. 2

Lemma B.2 Suppose the vertical line ℓ(t) through the point (t, 0) does not intersect any nodes
of LP . The line ℓ(t) intersects an arc of LP at a point (t, u) iff f(u) is the endpoint of a window
of Wt.

Proof : Consider the point p(u) = (t, u) for t ≤ u < 1 and 0 ≤ u < t. As u increases from t to 1 and
from 0 to t, p(u) moves along ℓ(t). Simultaneously, f(u) starts at f(t) and moves along ∂P back
to f(t). Every time p(u) crosses an arc of LP , the link distance between f(t) and f(u) changes. At
each such instant, f(u) must lie on the endpoint of a window of Wt, which proves the lemma. See
Figure 6. 2

Lemma B.3 A point (t, u) lies on an arc of LP iff f(u) is the endpoint of a window of Wt or f(t)
is the endpoint of a window of Wu.

Proof : If f(u) is the endpoint of a window of Wt, then dL(t, u − ε) is one more or one less than
dL(t, u + ε). Therefore, the points (t, u− ε) and (t, u + ε) lie in different faces of LP , which implies
that (t, u) lies on an arc of LP . A similar proof holds if f(t) is the endpoint of a window of Wu.

We now prove the “only if” part of the lemma. We first assume that the arc (t, u) lies on is not
vertical. Consider the points p(u−ε) and p(u+ε) for sufficiently small ε. See Figure 6. Since these
two points lie in adjacent faces of LP , dL(t, u − ε) must differ by one from dL(t, u + ε). Therefore,
the points f(u − ε) and f(u + ε) on ∂P must lie in different faces of Wt, which implies that f(u)

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

15

f(t)

f(u)

(a)

t

u

(b)

Figure 6: The vertical line ℓ(t) intersects LP at (t, u) and f(u) is the endpoint of a chord of Wt.

is the endpoint of a window of Wt. If the point (t, u) lies on a vertical arc of LP , we can similarly
show that f(t) is the endpoint of a window of Wu. 2

Remark: In the above lemma, if f(u) is the endpoint of a window of Wt and f(t) is the endpoint
of a window of Wu, then (t, u) lies on an arc of LP that is not axis-aligned. If only one of the
conditions hold, then the arc is either horizontal or vertical.

Lemma B.4 Let t, u ∈ [0, 1) be such that no nodes of LP are contained in the vertical strip bounded
by ℓ(t) and ℓ(u). Then the combinatorial types of the window partitions Wt and Wu are identical.

Proof : We first prove that for every window w with combinatorial type (v, e) in Wt, there is a
window with combinatorial type (v, e) in Wu. Let y be the endpoint of w that lies in e. Lemma B.3
implies that the dual point (t, f−1(y)) lies on an arc σ of LP . Since there are no nodes of LP in
the vertical strip bounded by ℓ(t) and ℓ(u), σ also crosses ℓ(u). Therefore, Wu also has a window
with combinatorial type (v, e).

By a similar argument, for every window with combinatorial type (v′, e′) in Wu, there is a
window with combinatorial type (v′, e′) in Wt. Therefore, the combinatorial types of Wt and Wu

are identical. 2

Lemma B.5 Suppose that the point (t, u) is on an arc of LP and πL(t, u) does not contain a pinned
link. The point (t, u) is a node of LP iff one of the links of πL(t, u) touches two vertices of P .

Proof : Let dL(t, u) = k. We use λi(t, u), 1 ≤ i ≤ k to denote the ith link in πL(t, u). Let the
combinatorial type of λi(t, u) be (vi, ei). Suppose the link λj(t, u) for some 1 ≤ j ≤ k touches
another vertex v ∈ P . We assume without loss of generality that λj(t, u − ε) (the jth link in
πL(t, u − ε)) does not touch v. We consider two cases.

1. If v is an endpoint of ei, let e′ be the other edge of P incident on v. Then the combinatorial
type of λj(t, u + ε) (the jth link in πL(t, fu + ε)) is (vj , e

′).

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

16

2. If v is not an endpoint of ei, then v is a reflex vertex of P that lies in the interior of λj(t, u).
Since there is no pinned link in πL(t, u), both vj and v lie on the same side of λj(t, u). As a
result, the combinatorial type of λj(t, u + ε) is (v, ej).

In both cases, the homography representing the position of λj(t, u − ε)’s endpoint is different
from the homography representing the position of λj(t, u + ε)’s endpoint, which implies that the
homography representing the position of λk’s endpoint changes at t. Therefore, (t, u) is a node
of LP .

We now prove the “only if” part of the lemma. Suppose the point (t, u) is a node of LP .
If no link of πL(t, u) touches two vertices of P , then πL(t, u − ε), πL(t, u), and πL(t, u + ε) are
combinatorially identical. Therefore, the homographies representing the endpoints of the links in
these three paths are the same, which contradicts the fact that (t, u) is a node of LP .

2

Lemma B.6 Suppose that the point (t, u) is on an arc of LP and πL(t, u) contains a pinned link
λ. The point (t, u) is a node of LP iff f(t) and f(u) are endpoints of a window of Wλ.

Proof : Let σ be the arc of LP that (t, u) lies on. Let λ be the first pinned link on πL(t, u). Since λ
is a link on πL(t, u), λ is the extension of a window w ∈ Wt. We can show that σ is either vertical
or horizontal.

We first prove the “if” part of the lemma. We first consider the case when σ is vertical. Since
f(u) is an endpoint of a window of Wλ, f(u) is also the endpoint of a window of Wt. Therefore,
dL(t, u − ε) differs by one from dL(t, u + ε), which implies that (t, u) is a node of LP . Similarly, if
σ is horizontal, we have that (t, u) is a node of LP because f(t) is an endpoint of a window of Wλ.

We now prove the “only if” part of the lemma. We know that (t, u) is a node of LP . Therefore,
dL(t, u− ε) 6= dL(t, u + ε), which implies that f(u) is the endpoint of a window of Wt. Since λ is a
link on πL(t, u), we have that f(u) is the endpoint of a window of Wλ.

To show that f(t) is the endpoint of a window of Wλ, we first note that f(t) is the endpoint
of a window of Wu. Now, λ is a link on πL(u, t). Therefore, f(t) is the endpoint of a window of
Wλ. 2

Lemma B.7 If the point (t, u) is a node of LP , then the window partitions Wt−ε and Wt+ε have
different combinatorial types.

Proof : We consider two cases. Lemma B.5 implies that there is a link λ ∈ πL(t, u) that touches
two vertices of P . Let (v, e) be the combinatorial type of λ in Wt−ε and let v′ be the other vertex
that λ touches in Wt. If v′ is an endpoint of e and e′ is the other edge of P incident on v′, then
there is a window with combinatorial type (v, e′) in Wt+ε. If v′ is not an endpoint of e, then there
is a window with combinatorial type (v′, e) in Wt+ε. In either case, Wt−ε and Wt+ε have different
combinatorial types.

Now we consider the case when πL(t, u) contains a pinned link λ. Lemma B.6 implies that f(t)
is the endpoint of a window of Wλ. If Wt−ε and Wt+ε have the same combinatorial types, then
dL(t − ε, λ) = dL(t + ε, λ), which contradicts the fact that f(t) is the endpoint of a window of
Wλ. 2

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

17

a b

c

u

x

v

w

P

p

c

u b

y

Iγ

(a) definitions (b) shortcut is possible.

Figure 7: Lemma 4.3

C Lemmas and Proofs for Section 4

C.1 A simple additive approximation method

Lemma C.1 Let π and π′ be two min-link paths, both connecting an edge f to an edge f ′, so that
r = dL(f, f ′). Then, we can morph π into π′ using at most r + 3 guards. Moreover, using at
most r + 7 guards we can compute a morphing strategy, that issues O(r) commands to guards, in
O(r log r) time.

Proof : Note that the min-link distance between any point of f and any point of f ′ is at most r +2,
thus the guards can continously move between f and f ′ using at most r +3 guards. Unfortunately,
computing this sweeping strategy requires the link diagram of P , which is too expensive to compute.

Alternatively, we now sketch an algorithm to compute a strategy that uses at most r+7 guards.
Let γ be the closed connected curve made out of π, π′ and the relevant portions of f and f ′, so
that π, π′ ⊆ γ (note that γ might have self-intersections). Let Iγ denote the interior of the region
delimited by γ, and let I1, . . . , Ik be the connected components of the interior of Iγ .

We deform between πi = π ∩ ∂Ii and π′
i = π′ ∩ ∂Ii, so the motion is restricted to lie inside

Ii, for i = 1, . . . , k. To do so, we place two extra guards at the common endpoints of πi and π′
i.

Placing those two extra guards, might require moving one (extra) guard from one endpoint of πi

to the other endpoint of πi+1, and this can be done by issuing a linear number of commands to the
guards.

Since π and π′ are both min-link paths, we know that the number of guards in πi and π′
i is the

same, up to at most an additive error of 2. Thus, we triangulate the polygon Ii, and use the chords
of the triangulation to perform the continuous motion from πi to π′

i. In the end of this continuous
motion, we now move all of the extra guards placed along π′

i to its common endpoint with π′
i+1

(since the number of those extra guards is at most 4, this requires a linear number of commands).
Similarly, we move all guards that lie on the middle of an edge to the this endpoint.

We continue in this manner, until we have deformed π into π′. This motion required at most
r + 7 guards, and a linear number of commands, and it can be computed in O(r log r) time. 2

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

18

C.2 A faster additive approximation method

Lemma C.2 Let DP = πL(a, b) be a diameter of P , let c be a point that realizes the width,
ω = dL(c,DP), and let u be a point on DP that is closest to c in link distance. (See Figure 7(a).)
Then, dL(a, u) ≥ ω − 7 and dL(b, u) ≥ ω − 7.

Proof : Note that we can assume, without loss of generality, that πL(a, b) and πL(c, u) do not
intersect in their interior. Let γ be the curve πL(c, u)||πL(u, b)||πL(b, c), where || denotes the
concatenation operator. The curve γ is a closed curve, and it might be self intersecting. Let Iγ

denote the region delimited by γ (i.e., the union of bounded faces in the arrangement induced by γ).
Observe that any point y of πL(c, u) can be connected to a point either of πL(u, b) or of πL(b, c)

by a segment that does not intersect those polygonal paths in their interior. Indeed, if this is not
so, then there exists a point y ∈ πL(c, u), such that any ray emanating from y directed into Iγ hits
πL(c, u); see Figure 7(b). In particular, in any triangulation of Iγ , the triangle T that contains y
must have all its vertices on πL(c, u). implying that it is possible to shortcut πL(c, u), using the
edge of T that does not belong to πL(c, u). However, this contradicts the minimality (in the link
distance) of πL(c, u).

This implies that there is a point x ∈ πL(c, u) that “sees” both πL(b, c) and πL(b, u); namely,
there are two points v,w on πL(b, c) and πL(b, u), respectively, so that the segments xv and xw
do not intersect γ in their interior. We have the following inequalities (all follow from the triangle
inequality for the min-link distance):

• dL(c, x) − 1 ≤ dL(c, v) ≤ dL(c, x) + 1.

• dL(b, w) − 2 ≤ dL(b, v) ≤ dL(b, w) + 2.

• dL(c, x) ≤ ω = dL(c, u) ≤ dL(c, x) + 1

• dL(c, v) + dL(b, v) − 1 ≤ dL(b, c).

These inequalities imply that dL(c, x) − 1 + dL(b, w) − 2 − 1 ≤ dL(b, c). Hence,

dL(c, u) − 1 − 4 + dL(b, u) − 2 ≤ dL(b, c) ≤ dL(a, b) ≤ dL(a, u) + dL(b, u),

using the fact that dL(a, b) is the diameter of P . We conclude that ω− 7 = dL(c, u)− 7 ≤ dL(a, u),
and, by symmetry, that ω − 7 ≤ dL(b, u). 2

Lemma C.3 Let p ∈ ∂P (c, a) and q ∈ ∂P (b, c). Then dL(p, b) ≥ ω − 8, and dL(q, a) ≥ ω − 8.

Proof : We prove that dL(p, b) ≥ ω − 8; the second inequality is shown symmetrically. We may
assume that u is chosen to be closest to b along πL(a, b) among all choices of u that realize the link
width.

We claim that the path πL(p, b) must intersect the visibility polygon, Vu. This will suffice to
prove the lemma, since it implies that dL(b, u) ≤ dL(p, b) + 1 (since, once the path πL(b, p) enters
Vu, one additional link suffices to reach u), which implies that dL(p, b) ≥ ω − 8 (since Lemma C.2
says that ω − 7 ≤ dL(b, u)).

If, to the contrary, πL(p, b) does not intersect Vu, then the points b and p must lie in the same
pocket of Vu, separated from u by a window, rr′. Since a and b are in different pockets of Vu, it
follows that c lies in the same pocket as p and b. Both paths πL(b, u) and πL(c, u) must cross the
window rr′. This implies that there is a path of link length dL(c, u) that joins c to a point, u′ ∈ rr′,
of πL(b, u) that is closer to b than u, contradicting our choice of u. 2

Sweeping Simple Polygons with a Chain of Guards October 22, 1999

