
Computing the Smallest k-Enclosing Circle

and Related Problems

�

Alon Efrat

y

Micha Sharir

z

Alon Ziv

x

December 15, 1999

Abstract

We present an e�cient algorithm for solving the \smallest k-enclosing circle" (kSC)

problem: Given a set of n points in the plane and an integer k � n, �nd the smallest disk

containing k of the points. We present two solutions. When using O(nk) storage, the

problem can be solved in time O(nk log

2

n). When only O(n logn) storage is allowed,

the running time is O(nk log

2

n log

n

k

).

This problem can also be tackled using the k-th order Voronoi diagram of the given

set. However, our method, which is based on the parametric searching paradigm, (i)

is more e�cient (the best known algorithm for constructing k-th order Voronoi di-

agrams takes time O(n

1+"

k), for any " > 0 [1]), (ii) is simpler than the algorithm

of [1], (iii) yields a storage-e�cient version (as mentioned above), and (iv) can be

easily extended to obtain e�cient solutions of several related problems (with similar

time and storage bounds). These related problems include: �nding the smallest ho-

mothetic copy of a given convex polygon P which contains k points from a given pla-

nar set, and �nding the smallest disk intersecting k segments from a given

planar set of non-intersecting segments.

1 Introduction

Much attention has recently been given to problems of the form: \Given a set S of n objects

and a parameter k � n, �nd a k-subset (namely, a subset of cardinality k) of the objects

�

Work on this paper by the second author has been supported by NSF Grant CCR-91-22103, and by

grants from the U.S.-Israeli Binational Science Foundation, the G.I.F., the German-Israeli Foundation for

Scienti�c Research and Development, and the Fund for Basic Research administered by the Israeli Academy

of Sciences.

y

Faculty of Computer Science, The Technion

z

School of Mathematical Sciences, Tel Aviv University, and Courant Institute of Mathematical Sciences,

New York University

x

Faculty of Computer Science, The Technion; Current address: School of Mathematical Sciences, Tel

Aviv University.

1

Introduction 2

that optimizes some cost function, among all possible k-subsets."

This problem was studied for a variety of cost functions. Aggarwal et al. [3] solve

this problem when the parameter to be optimized is the diameter of the k-subset (in time

O(k

2:5

n logk + n logn)), the variance of the k-subset (in time O(k

2

n + n logn)), the size

of an axis-parallel enclosing square, or the perimeter of an axis-parallel enclosing rectangle

(both in time O(nk

2

logn); the solution to the �rst problem has recently been improved to

O(n logn) by Smid [14]; see also Chew and Kedem [5] for an O(n log

2

n) time

solution).

In [10], Eppstein �nds the minimum area k-gon whose vertices are points of S (in time

O(n

2

logn + 2

6k

n

2

), and the minimum area convex polygon containing k points of S (in

time O(k

3

n

2

+ n

2

logn)).

In this paper we give a fast algorithm for the (apparently simpler) problem of �nding a

k-subset with the smallest enclosing circle. Stated formally:

The \smallest k-enclosing circle" (kSC) problem: Given a set S of n points in

the plane and an integer k � n, �nd the smallest disk containing k points of S.

See Figure 1 for an illustration of the problem.

Figure 1: A set of points S, and the smallest 5-enclosing circle of S

The problem arises in several applications. For example, suppose we want to partition

the given set S into clusters of k points each. We can �nd the smallest k-enclosing circle of

S, remove from S the k-subset that lies within the circle (this will be the �rst cluster), and

repeat the procedure for the remaining set. This is a reasonable heuristic for clustering; it

has the advantage that we can stop the process as soon as the smallest k-enclosing circle

becomes too large, concluding that the remaining set can no longer be decomposed into

`su�ciently-dense' clusters of size k. We also note that the case k = n gives us the well-

known problem of �nding the smallest enclosing disk of S, which can be solved in linear

time using Megiddo's technique [19].

The smallest k-enclosing circle problem has recently been studied independently,

by several other researchers using different techniques. Eppstein and Erickson

Introduction 3

[11] Solve this problem, among related family of problems in O(nk log k +

n logn) time with O(n logn+nk+k

2

logk) space, and Datta et al. [7] give an algorithm

with the same running time and space improved to O(n+k

2

logk). After the first

appearance of our paper, Matou�sek gave an (extremely simple) randomized algorithm

[18] with expected time complexity O(n logn+nk) time using O(nk) space or expected

time O(n logn+ nk logk) with O(n) space.

We present two algorithms for solving the problem, which di�er in the amount of storage

that they are allowed. When onlyO(n logn) storage is available, our second algorithm solves

the kSC problem in time O(nk log

2

n log

n

k

). When we allow O(nk) storage, we obtain, in

out �rst (and simpler) algorithm, a slightly improved running time of O(nk log

2

n).

We can also apply our technique to obtain e�cient solutions for other problems of this

kind. Speci�cally:

� Given a set S of n points in the plane, a parameter k � n and a convex

polygon P with a constant number of edges, we can compute the smallest homothetic

copy of P that contains k points of S, in the same running time and storage

as in the two algorithms mentioned above.

� Given a set S of n non-intersecting segments in the plane and a parameter

k � n, we can find a smallest disk intersecting k segments of S in the

same time and storage as above.

Our algorithms make use of the parametric search technique, introduced by Megiddo in

[20]. We will brie
y describe the technique below, but we assume some familiarity of the

reader with it; see the paper by Agarwal et al. [2] for an explanation of the technique and

for other geometric applications of it.

The kSC problem for a planar set S is strongly related to higher-order Voronoi dia-

grams of S. Indeed, the smallest k-enclosing circle C passes either through three points

of S or through two diametrically-opposite points. In the former case, assuming general

position of the points in S, C contains k � 3 points of S in its interior, and so its cen-

ter is a vertex of the (k � 1)-st order Voronoi diagrams of S, as is easily checked. In the

latter case, the center of C lies on an edge of that diagram. Hence it su�ces to com-

pute the (k � 1)-st order Voronoi diagram of S, go over all its edges and vertices, and

�nd the one that minimizes its k-th smallest distance to the points of S, which can be

easily computed in constant time per vertex, from the information available in the di-

agram. It follows that the smallest k-enclosing circle can be computed in time that is

proportional to the time needed to compute the (k � 1)-st order Voronoi diagram of S.

The technique presented in this paper has several advantages over the higher-order Voronoi

diagram technique: (i) it is simpler than the best known algorithm of Agarwal

and Matou�sek [1] for computing higher order Voronoi diagrams; (ii) it admits

a storage-efficient solution; (iii) it can be easily extended to solve the related

A Naive Approach 4

problems listed above; and (iv) it is somewhat more efficient---the algorithm

of Agarwal and Matou�sek [1] runs in time O(n

1+"

k), for any " > 0.

the relation between ours and the other guys

The paper is organized as follows: In Section 2 we present a simple O(n

2

log

2

n)-time

algorithm for solving the kSC problem; this algorithm is improved in Section 3 to get

the two more e�cient algorithms mentioned above. Section 4 extends these results to the

computation of smallest (homothetic) k-enclosing polygons and of the smallest disk in-

tersecting k of n given segments. Finally, Section 5.1 presents some open problems

which are related to the ones solved in the paper, and gives a lower bound argument that

indicates that the worst case complexity of the kSC problem is
(nk).

2 A Naive Approach

In this section we present a simple algorithm that solves the kSC problem in O(n

2

log

2

n)

time and O(n) space. The time bound will be improved later (at the cost of some increase

in the storage requirement).

We �rst introduce some terminology. We assume that we are given a planar set S =

fp

1

; : : : ; p

n

g of n points. We also assume that the points of S are in general position, meaning

in particular that no four points of S are co-circular. This assumption is not essential, but

is made to simplify the description of our algorithms. Given a point p and a radius r > 0,

we denote the circle of radius r centered at p by C

r

(p), and the closed disk bounded by that

circle by B

r

(p). For any real number r > 0, we denote the arrangement of circles C

r

(p),

p 2 S, by A(S; r) (see Figure 2). Given an arrangement of circles A and a point x, the

depth of x in A, denoted by depth

A

(x), is the number of circles in A containing x (within

the closed disks that they bound). We also de�ne depth(A) = maxfdepth

A

(x) j x 2 R

2

g.

The following two claims are obvious:

Claim 2.1 Given a point set S, a point x and a positive number r,

jS \B

r

(x)j = depth

A(S;r)

(x) :

Claim 2.2 Given a point set S and a positive number r,

max

n

jS \ B

r

(x)j : x 2 R

2

o

= depth(A(S; r)) :

Based on these claims, we can rephrase our goal as \�nd the smallest value of r for

which depth(A(S; r)) = k". Let r

�

denote that radius. (As will follow from the analysis

given below, our algorithms will also be able to produce a point having depth k in A(S; r

�

),

thus solving the original kSC problem.) This observation leads to a rather straightforward

A Naive Approach 5

Figure 2: The arrangement A(S; r)

algorithm (described below), based on the parametric searching paradigm, for computing

r

�

. The �rst step in the design of such an algorithm is to produce an `oracle' for determining

whether any given radius r is too big or too small, as compared to r

�

.

2.1 Oracle for the naive approach

Our algorithm, which is based on the parametric search technique of Megiddo [20], performs

an implicit binary search on certain `critical' values of r to �nd r

�

among them. In order

to do this, the algorithm uses an `oracle' procedure which is able to answer queries of the

form \given a value r, is r

�

less than, equal to, or greater than r?"

As we have observed, what we need to do is to determine whether depth(A(S; r)) is less

than, equal to, or greater than k. In the �rst case, it is clear that r < r

�

; similarly, in the

third case we have r > r

�

(this follows from our general position assumption). For the second

case (when the depth is exactly k), we only know that r � r

�

. To di�erentiate between these

two possibilities, we need to determine whether depth(A(S; r)) becomes strictly smaller than

k when r is decreased by an arbitrarily small amount. This can happen only if two circles

in A(S; r) are tangent to each other or three of these circles are concurrent, and if the only

points at depth k are such points of tangency or of triple intersection. By examining the

edges and vertices of A(S; r), we can easily tell whether this situation arises, thus resolving

the comparison between r and r

�

.

Our oracle is based on the observation that if there is a point of depth k in A(S; r),

then there must exist a point of depth � k on one of the circles; moreover, if at least two

of the circles in A(S; r) intersect, one of these intersection points must also be of depth

� k (all points on a circle that does not intersect any other circle are at depth 1, while any

intersection point of two circles is at depth at least 2). Hence it su�ces to construct the

A Naive Approach 6

vertices of the arrangement A(S; r), and compute the maximum depth of a vertex.

In order to reduce the amount of storage required by the algorithm, and also for the pur-

pose of obtaining a parallelizable algorithm, which is required by the parametric searching

technique, we implement the oracle by applying the following procedure to each of the cir-

cles C

r

(p

i

), for i = 1; : : : ; n. The procedure computes the maximum depth of points that lie

on its input circle; the maximum of all these output depths is the required depth(A(S; r)).

Procedure Calc-Depth(r; i)

1. Find the circles C

r

(p

j

) that intersect C

r

(p

i

). If no such circle exists, return 1

and exit.

2. Find the depth of the leftmost point of C

r

(p

i

).

3. Sort the intersection points between C

r

(p

i

) and the other circles by their (clock-

wise) order along C

r

(p

i

), starting at the leftmost point of that circle.

4. Scan the sorted list of intersection points, and compute the depth of each of

these points, observing that the depth of a point along C

r

(p

i

) changes by �1

as we cross any point in the list, depending on whether we enter or exit a disk

at that point.

5. Return the maximum depth computed at the preceding step.

It is easy to see that the time required by a call to Calc-Depth is O(n logn), so the total

time required by a call to our oracle is O(n

2

logn). Since each circle is processed separately,

the storage required is O(n). However, in what follows we will use the oracle in a di�erent,

more fragmented manner, as described in the following subsection.

2.2 The generic algorithm

Fix an index i = 1; : : : ; n. Denote the smallest radius r for which there exists a point on

C

r

(p

i

) with depth k by r

�

i

(note that r

�

i

is well de�ned for any k). Following the parametric

searching paradigm, we attempt, for each i = 1; : : : ; n, to perform Calc-Depth(r

�

i

; i) in a

generic manner, without knowing the value of r

�

i

. For this, we need to resolve the compar-

isons that depend on r

�

i

which are executed by the procedure. Each of these resolutions will

further restrict the range in which r

�

i

can lie, so that at the end of the generic execution,

the control
ow of the procedure is the same for all values of r in this range, which easily

implies that r

�

i

is the smallest point in the �nal range. We apply this procedure to all

indices i = 1; : : : ; n and compute r

�

= min

i

r

�

i

.

In more detail, this is done as follows. The �rst step of Calc-Depth(r

�

i

; i) is to �nd the

A Naive Approach 7

circles that intersect C

r

�

i

(p

i

). For any pair of points, p

i

; p

j

, the circles C

r

(p

i

) and C

r

(p

j

)

intersect if and only if r � r

ij

�

1

2

jp

i

� p

j

j. We thus collect the n� 1 values r

ij

, for j 6= i,

and run a binary search among them to locate r

�

i

, by O(logn) oracle calls of the form

Calc-Depth(r

ij

; i). This search determines the relative order between r

�

i

and each of the

r

ij

's, so each of the comparisons can now be resolved. (Note that here we are not using the

full power of the oracle, since we want to compare the r

ij

's with r

�

i

and not with r

�

; thus it

su�ces to resolve these comparisons with calls to Calc-Depth involving only p

i

, which costs

us only O(n logn) time.)

The second step counts how many other circles contain the leftmost point of C

r

�

i

(p

i

)

within their disk. Again, given p

i

and p

j

, the leftmost point of C

r

(p

i

) is contained in B

r

(p

j

)

if and only if p

j

lies to the left of p

i

and r � r

0

ij

, where r

0

ij

is the distance from p

i

to

the intersection point between the perpendicular bisector to p

i

p

j

and the horizontal line

through p

i

. We thus compute all these critical values and run a binary search to locate r

�

i

among them, using O(logn) calls to Calc-Depth, as above. This allows us to compute the

depth of the leftmost point of C

r

�

i

(p

i

).

The third step of Calc-Depth sorts the intersection points of C

r

�

i

(p

i

) with the other

circles of that radius. Here we use (a serial simulation of) a parallel sorting scheme that

uses O(n) processors and O(logn) parallel steps, such as the scheme of Ajtai et al. [4].

Each parallel step of the sorting attempts to perform O(n) comparisons, each asking for the

relative order along C

r

�

i

(p

i

) of two of its intersections with, say C

r

�

i

(p

j

) and C

r

�

i

(p

k

). It is

easy to see that, as we vary the radius of these circles (in the range where all 4 intersections

between those pairs of circles exist), their relative order along C

r

(p

i

) can change only when

r is the circumradius r

ijk

of the triangle p

i

p

j

p

k

. Hence we obtain, for each parallel step of

the algorithm, O(n) critical values r

ijk

for the radius, and we run a binary search among

them as above, locating r

�

i

among them and resolving all comparisons of that step. This

allows us to complete the generic sorting step of Calc-Depth.

Finally, the fourth stage of Calc-Depth can be performed in a non-generic manner, since

the information obtained in the three previous steps fully determines the maximum depth

along C

r

�

i

(p

i

). For this reason, we do not perform this step at all, since it provides no extra

restriction on the allowed range of r

�

i

.

The binary searches in the �rst three stages of the generic execution progressively narrow

the range where r

�

i

is known to lie. As noted above, the minimum value of this range upon

termination of the generic execution is the desired r

�

i

.

Concerning the running time of this generic simulation, the �rst two stages require time

O(n log

2

n) (this time is dominated by O(logn) calls to Calc-Depth with speci�c radii). The

third step takes O(n log

3

n) time, but using a standard trick due to Cole [6], this can be

reduced to O(n log

2

n). Repeating this procedure for each p

i

, we obtain r

�

as the minimum

of all the r

�

i

's, at a total cost ofO(n

2

log

2

n). We will improve this naive bound in subsequent

sections of the paper.

The Improved Algorithms 8

3 The Improved Algorithms

The main bottleneck of the previous algorithm is that it has to check for intersections

between every pair of circles. To avoid this, we �rst claim that there exists some initial

radius r

init

, for which depth(A(S; r

init

)) is at least k, but the number of intersections between

the circles in this arrangement is onlyO(nk). The existence of such a radius is a consequence

of the following lemma; a generalized version of the lemma is stated in Lemma 4.1 of the

next section.

Lemma 3.1 (Pach; see [23]) If an arrangement A of n circles in the plane contains at

least 9nk intersecting pairs of circles, then depth(A) � k.

(Note that the lemma does not require the circles to be congruent, so it is stronger than

what we need here.) The lemma allows us to replace, temporarily, the original problem

with the following, simpler problem: \Given S and k as above, �nd the smallest radius

r

init

for which the number of pairs of intersecting circles in A(S; r

init

) is at least 9nk".

(By assuming appropriate general position, the number of intersecting pairs of circles in

A(S; r

init

) is exactly 9nk.) Lemma 3.1 implies that r

�

� r

init

. Our solution to this problem

will also yield, for each circle C

r

init

(p), a list L(p) of all circles intersecting C

r

init

(p) in

A(S; r

init

); the total length of these lists is O(nk).

After computing r

init

, we will execute a variant of the algorithmdescribed in the previous

section, with the following two modi�cations: (i) we allow oracle calls only for r � r

init

; and

(ii) we use the lists L(p) to �nd all vertices of A(S; r) along each of the circles C

r

(p) (this

is done both in the generic algorithm and in the oracle calls). This is easily seen to reduce

the running time of the previous algorithm to O(nk log

2

n), excluding the initial stage that

computes r

init

.

We now describe in detail this initial stage. It is also based on the parametric searching

technique. As above, we �rst describe the oracle used in the binary searches and then

describe the generic simulation at the unknown radius r

init

.

Before going into the analysis, we remark that r

init

can be computed in a straightforward

manner using the recent algorithm of Lenhof and Smid [14], which produces the t closest

pairs in a given planar set of n points, in (optimal) time O(t + n logn). If we apply this

algorithm with t = 9nk, and let r

init

be half the t-th smallest distance, we obtain the

required r

init

, in time O(n(k + logn)). However, we develop here an alternative technique

because: (i) it can be tuned so that it uses only O(n logn) storage; (ii) it can be easily

generalized to shapes other than circles, as is discussed in the next section. Also, the saving

in time in this stage does not change the overall asymptotic running time of the algorithm,

which is dominated by the O(nk log

2

n) cost of the subsequent phase.

The Improved Algorithms 9

3.1 The oracle: a simple version

The oracle has to answer queries of the form: \given S, k and r as above, determine whether

the number of pairs of intersecting circles in A(S; r) is less than, equal to, or larger than

9nk". Depending on the answer to the query, we have respectively r < r

init

, r = r

init

, and

r > r

init

(for this we need to assume, as noted above, an appropriate version of general

position). The oracle is performed using a straightforward line-sweep algorithm that counts

the number of intersections between the circles. If we execute the oracle for a value of r

that is greater than r

init

, the number of intersections can be too big, and we therefore stop

the oracle as soon as it encounters more than 9nk pairs of intersecting circles, concluding

that r > r

init

in this case. Hence the running time of the oracle is O(nk logn), and it uses

O(n) storage.

3.2 The oracle: an improved parallelizable version

We next describe another algorithm that determines whether the number of pairs of inter-

secting circles in the arrangement is less than, equal to, or larger than 9nk, which is easier

to parallelize. The algorithm uses only O(nk) processors, and runs in O(log

c

n) parallel

steps (where the constant c depends on the storage we have at hand).

The algorithm requires a data structure DS(X) for answering e�ciently queries of the

following form, for a given planar set of points X : \Given a query point p and a parameter

r, determine whether X \ B

r

(p) is empty." To this end we use the Voronoi diagram of X ,

augmented with an e�cient point location structure. To �nd whether X \ B

r

(p) = ;, we

simply �nd the point q 2 X nearest to p, and check whether the distance d(p; q) is larger

than r.

We build a fully balanced binary tree T . The leaves of T represent the points of S, and

each node v of T represents the subset S

v

of S consisting of all points stored at the leaves

of the subtree rooted at v. With each node v of T we also store DS(S

v

).

We note that T can be constructed in time O(n logn), as follows. We �rst sort the

points of S by their x-coordinates, and put them in the leaves of T in this order. We then

construct T bottom-up; at each new node v we need to merge DS(S

v

1

) and DS(S

v

2

), where

v

1

and v

2

are the children of v. This amounts to merging the Voronoi diagrams of the

two sets S

v

1

and S

v

2

to obtain the diagram of S

v

. Since these two subsets are separated,

the two diagrams can be merged in linear time, using e.g. the Shamos-Hoey technique (see

[21]). In addition, we need to further process the Voronoi diagram of S

v

for e�cient point

location. This can also be performed in linear time, using the technique of Edelsbrunner

et al. [8] or of Seidel [22]. Hence the total time needed for constructing T is O(n logn).

This cost will be dominated by the cost of the subsequent phases of the algorithm. Note

also that T requires �(n logn) storage. Our goal now is to �nd, for each p 2 S, the set of

points q such that C

r

(p) intersects C

r

(q) (or rather to count the size of this set). This is

exactly the set of points for which d(p; q) � 2r. We want to add up the sizes of these sets,

The Improved Algorithms 10

and stop the oracle as soon as the sum �rst exceeds 9nk. The algorithm uses a total of (at

most) 18nk + n processors. Initially, it allocates a single processor to each point p

i

2 S,

and starts the procedure Count (described below) with the root of T and the point p

i

as

parameters. The calls to Count are synchronized so that each level of the tree is processed

simultaneously by all processors. (This last condition is made for clarity of exposition, and

can be relaxed | see below.)

The procedure Count gets a node v of T and a point p 2 S as parameters; it is also

allocated a processor which executes it. The procedure runs as follows:

Procedure Count(v; p)

1. If v is a leaf, check whether the point p

v

stored at v is di�erent from p, and if

its distance from p is � 2r. Add in this case 1 to a global count N .

2. Otherwise, let v

1

and v

2

be the two children of v. Use DS(S

v

1

) and DS(S

v

2

)

to determine whether S

v

1

\B

2r

(p) and S

v

2

\B

2r

(p) are nonempty. Call Count

recursively with v

1

(resp. v

2

) and p, if the �rst (resp. second) intersection is

nonempty. Allocate a new processor if both calls are needed (so that one call

uses the old processor allocated at v and the other call uses the new processor).

It can be readily veri�ed that the value N reported by the algorithm (as accumulated

from all the calls to Count) is twice the number of pairs of intersecting circles in A(S; r).

Also, this number is at least as large as the number of processors at each level (except for

the root) minus n; indeed, we perform a recursive call with a point p at a node v only if we

are guaranteed that B

2r

(p) contains at least one point q of S

v

. If p 6= q, this pair of points

will generate two processors at each level, and will eventually cause N to be increased by

2. If p = q, this pair generates a single processor at each level, without a�ecting N , for a

total of n `spurious' processors per level. Therefore, if at the beginning of the processing

of a level the total number of processors allocated is > 18nk + n, the algorithm can stop

immediately and report that the number of pairs of intersecting circles in A(S; r) is larger

than 9nk.

3.3 The generic algorithm

We next describe the generic algorithm that simulates the procedure Count at the unknown

value r

init

. We �rst describe a version that is allowed to use O(nk) storage, and then explain

how to modify it to reduce the storage to O(n logn), at the cost of a slight increase in the

running time. (This modi�cation is not needed when k = O(logn).)

The procedure processes each of the O(logn) levels of T separately. At an intermediate

level, each of the O(nk) processors locates a point p

i

in the Voronoi diagram of some subset

The Improved Algorithms 11

S

v

of S. These locations are independent of r

init

, so they can be performed explicitly, in

O(logn) time per operation. Then (also at the leaf level) the distance from p

i

to its nearest

neighbor in S

v

is compared with 2r. We thus need to run a binary search to locate r

init

among these O(nk) distances, using O(lognk) = O(logn) calls to the simple sweep-based

version of the oracle, each of which takes timeO(nk logn). Thus the total cost of the generic

simulation is O(nk log

3

n). (Note that, since the generic simulation follows the execution of

the oracle at r

init

, we are guaranteed that the generic execution does not require more than

18nk + n processors.)

This can be improved to O(nk log

2

n) using Cole's trick [6]. This amounts to execut-

ing only a constant number of binary search steps at each stage of the algorithm, thereby

resolving only some �xed large fraction of the number of comparisons. Nodes whose com-

parisons were resolved can proceed to the next level while the other nodes are stuck and

have to participate again in the next round of binary search. It is easily veri�ed that Cole's

technique is indeed applicable here. In particular, one needs to observe that, at any stage

of the revised algorithm, where processors can now reside at di�erent levels of the tree, it

is still true that if the number of processors exceeds 18nk + n then the number of pairs of

intersecting circles in A(S; r) exceeds 9nk. Hence, arguing as above, the generic execution

does not require more than 18nk + n processors.

As above, at the end of the generic simulation we obtain an interval where r

init

can lie,

and the smallest endpoint of that interval is r

init

.

In summary, including the O(n logn) time used by the initial stage that constructs T ,

and the O(nk log

2

n) time used by the subsequent phase that computes r

�

, we obtain a �rst

version of the improved algorithm, which requires O(nk log

2

n) time and O(nk) storage.

3.4 A space-e�cient version

In the version just presented, we have to know explicitly which pairs (p; v) of a point p 2 S

and a node v of T are active at any given time, and therefore �(nk) storage is required.

The storage requirement can be reduced to O(n logn), at the cost of a slight increase in

running time, as follows. For each p 2 S, denote by live(p) the set of nodes of T that

the algorithm currently searches with point p (at any execution instance). Since we can no

longer maintain explicitly all the sets live(p), we will reconstruct each of these sets from

scratch, whenever such a set is needed (which, fortunately, does not occur too often).

There are some technical di�culties in this approach. To see the issues that can arise,

consider �rst the following initial attempt at the problem. When we process the j-th level

of T , we iterate over the points p 2 S, and, for each point p, we reconstruct live(p) by

executing Count with p, starting at the root of T and proceeding until level j is reached.

We then collect all critical values of r that the comparisons at level j generate, and compute

their median r

m

(p). We repeat this process for each p 2 S, obtaining n median values

r

m

(p

1

); : : : ; r

m

(p

n

). We compute the median r

m

of these n medians, and call the (simple

The Improved Algorithms 12

sweep-based) oracle at r

m

. This resolves half of the comparisons at live(p), for half of the

points p of S. (We would, of course, prefer to maintain all the critical values of r for all

points p, but this requires too much storage.)

The problem with this approach is that now we have to repeat this procedure, but only

with the critical values of r that were not yet resolved. If we still do it one level at a

time, we will be spending too much time to resolve all comparisons at each level. To make

the technique more e�cient, we note that the generic algorithm maintains at all times an

interval I where r

init

is known to lie. Comparisons whose critical values of r lie outside

I can be resolved immediately, while comparisons having a critical value inside I can be

resolved only by further calls to the oracle. Our revised strategy is thus to proceed, with

each p 2 S in turn, down the tree T as deep as possible, until we encounter comparisons

that cannot yet be resolved. We now denote by live(p) the resulting set of nodes where the

comparisons involving p get `stuck'. To make this method e�cient, we use (an appropriate

modi�cation of) the weighing technique of Cole [6]. That is, we give each stuck comparison

at level j a weight of 4

�j

(so that comparisons stuck higher in the tree are more important

since they need to be resolved more urgently). For each point p, and each stage of the

algorithm, we compute the weighted median r

w

(p) of the critical values of r at the nodes of

live(p); we give r

w

(p) a weight equal to the sum of the weights of the nodes of live(p). We

then compute the weighted median r

w

of these medians, and call the oracle with r

w

, thus

resolving comparisons whose total weight is 1=4 of the overall weight of all comparisons.

It can be shown, arguing as in [6], that the total weight of stuck comparisons is reduced

by a constant factor at each stage of the algorithm, so that, after at most O(logn) stages,

we are guaranteed that no comparisons will be stuck, so the generic execution can be

completed. Clearly, the storage used by the algorithm is dominated by the size of T , and

is thus O(n logn). (Note that, arguing as in the preceding version of the algorithm, we are

guaranteed that the total size of all the sets live(p), at any given moment, does not exceed

O(nk).)

The running time of the procedure is estimated as follows. The total cost of all oracle

calls, as just argued, is O(nk log

2

n). After each oracle call, we need to re-calculate the sets

live(p), for each p 2 S. This cost is

P

p2S

O(jT

p

j logn), where T

p

is the subtree of T whose

root is the root of T and whose leaves are the nodes of live(p). Thus the total overhead of

these re-calculations is O(log

2

n �

P

p2S

jT

p

j). To obtain a bound on this sum, we note that

if a subtree of T has d leaves then the number of its internal nodes is O(d log

n

d

), as is easily

checked. Thus, if live(p

i

) has d

i

nodes, then the corresponding sum is O(

P

n

i=1

d

i

log

n

d

i

),

and we are also given that

P

n

i=1

d

i

� 18nk+n. Simple calculation shows that the maximum

value of the sum is O(nk log

n

k

). Thus the total overhead of the re-calculations of the sets

live(p) is O(nk log

2

n log

n

k

), which is easily seen to dominate the overall running time of

this portion of the algorithm (including the time used by the initial construction of T).

Recall that we have so far been discussing only the initial phase of the algorithm, which

computes r

init

. The rest of the algorithm continues by using the naive oracle and its generic

simulation. However, every (generic or explicit) call to Calc-Depth with a speci�c point

Extending the Algorithm to Other Shapes 13

p requires availability of the corresponding list L(p), and in this version of the algorithm

we cannot a�ord to maintain all these lists simultaneously. We overcome this di�culty as

follows: When we start a generic simulation of Calc-Depth with a speci�c p 2 S, we �rst

go down the tree T and compute the set live(p) at the value r = r

init

; note that this set

now consists only of leaves of T and thus gives the set of all circles C

r

init

(q) that intersect

C

r

init

(p). We then proceed with the generic execution of Calc-Depth using only the circles

given by live(p). The extra cost of this �nal calculation of the sets live(p), and the cost of

the generic execution of the calls to Calc-Depth, are clearly dominated by the cost of the

initial stage that calculates r

init

.

We thus conclude:

Theorem 3.2 Given a set S of n points in the plane and an integer k � n, one can compute

the smallest circle containing k points of S in time O(nk log

2

n) and space O(nk), or in

time O(nk log

2

n log

n

k

) and space O(n logn).

4 Extending the Algorithm to Other Shapes

4.1 Finding the Smallest Homothetic k-enclosing Copy of a Polygon

Let P be a given convex polygon with d sides, where we consider d to be a constant. We

wish to extend the technique presented above to solve the following problem: \Given a set

S of n points in the plane and a parameter k � n, �nd the smallest homothetic copy of P

that contains k points of S."

We choose some arbitrary center point c inside P , and regard P as given in a �xed

position in which c lies at the origin. We denote any homothetic copy of P as �P +v, where

� > 0 is the scaling factor of P and v is the location of the center c of this copy. It is easily

veri�ed that there exists a homothetic copy �P + v of P which contains k points of S if

and only if there exists a point that lies in k of the n polygons �P

�

+ p

i

, for p

i

2 S, where

P

�

= (�P) is the re
ection of P about c. We denote by A

P

(S; �) the arrangement formed

by these polygons, and assume that S and P are in general position, as above. Then this

condition is equivalent to the existence of a vertex of A

P

(S; �) at depth k (where the depth

of a point x is de�ned, in complete analogy to the de�nition given above, as the number of

polygons that contain x in their interior or on their boundary).

We can thus apply the same machinery developed in the preceding sections, with a

few necessary modi�cations. That is, we need an oracle which, given � and k, determines

whether there exists a vertex of A

P

(S; �) at depth k. We �rst note that, like circles,

isothetic (and even homothetic) copies of a convex polygon have the property that, under

an appropriate general position assumption, each pair of their boundaries intersect in at

most 2 points (cf. Kedem et al. [13]). Thus the naive algorithm can proceed in much the

same way as above; the cost of the primitive operations that it performs may now depend

Extending the Algorithm to Other Shapes 14

on d, but since we assume d to be a constant, they still take constant time each.

In order to extend the improved algorithm of Section 3, we need to extend Pach's lemma

(Lemma 3.1) to shapes other than circles. This is indeed possible:

Lemma 4.1 (Sharir [23]) Let A be an arrangement formed by n shapes in the plane,

having the property that the boundaries of each pair of shapes intersect at most

twice. If the maximal depth of the arrangement is � k then the number of intersection

point of the boundaries is � cnk), for some absolute positive constant c.

Remark 4.2: The lemma is stated in more generality than is actually needed here, since

in our application all copies of P are isothetic.

Another modi�cation that the new procedure requires is in the preliminary stage that

computes r

init

(or, in our new notation, �

init

, the smallest scaling factor for which the

arrangement A

P

has at least cnk intersecting pairs of polygons (or, under an appropriate

general position assumption, exactly cnk intersecting pairs)). The data structure that was

used in Section 3 is based on standard Voronoi diagrams of subsets of S. Here we need to use

the following generalized structure. The basic operation that we want our data structure

to support is: Given a �xed subset X � S, a query point q and a query scaling factor �,

determine whether there is x 2 X such that (�P

�

+x)\ (�P

�

+ q) 6= ;. This is equivalent,

as is easily checked, to asking whether X \ [q + �(P � P)] 6= ;. Thus we can compute the

generalized Voronoi diagram of X under the norm induced by P �P as a unit ball (see [17]

for details), and preprocess it for e�cient point location. The above query is answered by

locating q in the diagram, and by determining whether the (P � P)-distance from q to its

nearest neighbor in X is � �.

It is now easy to see that all the algorithms described in the previous sections can be

applied for the case of a convex polygon with a constant number of sides, or, for that matter,

for any convex region P of su�ciently simple shape so that each of the basic operations

performed by the algorithm on O(1) copies of P takes constant time.

Remark 4.3: If d is not assumed to be a constant, one can obtain; using

a simple prune-and-search technique (cf. Kirkpatrick and Snoeyink [15]),

and an e�cient Voronoi diagram for convex distance functions, such as

described by Kao and Mount [16] and modi�ed as suggested by Kirkpatrick

and Snoeyink [15], an algorithm whose time complexity is worst than the

above bounds by a factor of O(log d).

Remark 4.4: If the given polygon is a square, the problem can be solved more

efficiently in time O(n logn) (see Smid [5], and also Chew and Kedem [5]).

shouldn't we say that Kedem gets n log

2

n?

Extending the Algorithm to Other Shapes 15

4.2 Finding the Smallest Disk Intersecting k Segments

We now describe how the algorithm can be modified, so as to find the smallest

disk intersecting k segments out of a given set S of n non-intersecting segments

in the plane.

We can solve this problem by the technique described in the previous section,

with the following modifications: First, given a distance r > 0 we define the

hippodrome H(e; r) of a segment e 2 S to be the set of all points of distance

� r from e; See Figure 3 for an illustration.

r

e

r

Figure 3: The hippodrome H(e; r)

We note that a disk D of radius r intersects k of the segments of S if and

only if the center of D lies in k of the hippodromes H(e; r), for e 2 S. To

compare r with the radius r

�

of the smallest disk we seek, it suffices to determine

whether there exists a point whose depth in the arrangement A

r

of the hippodromes

H(e; r) is � k (the depth is define exactly as in section 2). To apply the mechanism

of the preceding sections, we use the following property, which is a consequence

of the analysis of Kedem et al. [13]

Claim 4.5 Let e

1

; e

2

be two non-intersecting convex shapes in the plane, and let

H

i

, for i = 1; 2, be the r-neighborhood of e

i

, that is, all points of distance

� r from e

i

. Then, assuming general position of e

1

and e

2

, the boundary of

H

1

intersects the boundary of H

2

at most twice.

This claim, combined with Lemma 4.1, implies that we have define r

init

to be

the smallest radius r for which the arrangement A

r

has at least cnk vertices,

and the desired optimal radius r

�

will be � r

init

. The naive algorithm can be

extended to this case with only few straightforward modifications. The improved

algorithm can also proceed as in the previous section, exploiting the above definition

of r

init

. The only modification that requires some comment is in the construction

of the tree T . Here we need to use the Euclidean Voronoi diagrams of subsets

of S. We construct these diagrams using Yap's algorithm [25]; which takes time

Conclusion 16

O(m logm) for a subset of m segments. Here we do not know how to merge two

subdiagrams in linear time, as was done in section 3. So we simply construct

each Voronoi diagram in T from scratch, requiring a total of O(n log

2

n) time,

as is easily seen, which is anyway subsumed by the running time of the remainder

of the algorithm.

In summary, we have thus shown:

Theorem 4.6 Given a set S of n points in the plane, an integer k � n, and a

convex d-gon (where d is a constant), we can find the smallest homothetic copy

of the polygon containing k points of S, in time O(nk log

2

n) and space O(nk),

or in time O(nk log

2

n log

n

k

) and space O(n logn).

Theorem 4.7 Given a set S of n non-intersecting segments in the plane and an

integer k � n, the smallest disk intersecting k of the segments of S can be

found in time O(nk log

2

n) and space O(nk), or in time O(nk log

2

n log

n

k

) and space

O(n logn).

Additional extensions of this kind can easily be devised, for other shapes

of the desired enclosing region, and also for sets S of objects other than points

or segments. We leave it to the interested reader to further explore these extensions.

5 Conclusion

In this section we conclude the paper with some related open problems and with a lower

bound argument for the kSC problem.

5.1 Open Problems

The following problems are related to the problems solved in this paper, and seem to be

still open.

Rotation: How fast can one �nd the translation and rotation of a given segmentminimizing

the k-th smallest distance to a given set of n points in the plane? (The special case

k = n has been solved by Efrat and Sharir [9] in time O(n log

4

n log logn).

Minimal ring width: Find the ring of smallest width containing k of the given points.

(The special case k = n has been solved in Agarwal et al. [2] in time O(n

8=5+"

), for

any " > 0.)

Conclusion 17

General polygons: The restriction in Section 4 that the shapes considered there be convex

seems somewhat arti�cial, although this property is crucial for our analysis. How fast

can the problem be solved for more general �gures, not necessarily convex?

5.2 Lower Bound

All the known algorithms for solving the \k-enclosing circle" problem, ours as well as those

mentioned in the introduction of this paper, run in time O(nk polylogn). We will provide

combinatorial property of the problem that suggest that these running times are close to

being tight in the worst case.

Speci�cally, we will construct a set S of n points in the plane such that there exists a set

D of
(nk) disks, all having the same radius, and each is the smallest disk enclosing some

2k�subset of S. Assume now that each points of S is perturbed by some small amount

in arbitrary direction, and the disks of D are re�ned, so each disk is still the smallest one

enclosing the same subset it enclosed before the points were perturbed. Then it does not

seems likely that one can �nd the smallest re�ned disk of D without scanning all D, which

takes of course
(nk).

We �rst construct

1

a set D

1

of 4k disks of equal radius, so the complexity of the region R

of all points contained in exactly 2k disks is
(k

2

). First we pair the disks so the intersection

of each pair forms a (su�ciently thin) slice. We Place the 2k slices so that k of the slices

are horizontal, k are vertical, and each horizontal slice intersects every vertical slice; See

Figure 4. Observe that this con�guration contains
(k

2

) cells of depth 2k, each contained

in a di�erent subset D

0

of 2k disks, and hence the center of the smallest circle enclosing

the centers of disks of D

0

. Therefor there are
(k

2

) centers of smallest disk enclosing the

centers of 2k disks of D

1

.

To establish the bound
(nk) bound, we place

n

4k

copies of D

1

in the plane, su�ciently

far from each other, such that no two disks of di�erent copies intersect. Let D denote the

set of these disks. and let S denote the set of their centers. Similar arguments as above

shows that the number of smallest enclosing circle for 2k-sets of S is

n

4k

�
(k

2

) =
(nk) ;

while the cardinality of S is n.2

It still remained an open question whether one can �nd a computation model in which it

is possible to show that solving the \k-enclosing disk" problems, takes time
(nk). Compare

e.g. with Erickson and Seidel's paper [12] that describes
(n

2

) lower bound for the time

required to �nd whether three lines among a set of n lines have a point in common.

1

The authors wish to thank Pankaj Agarwal for bringing this construction to our attention.

References 18

m

m

Figure 4: The complexity of the region of all points in depth 2m is
(m

2

)

References

[1] P.K. Agarwal and J. Matou�sek, Dynamic half-space range reporting and its applica-

tions, Tech. Rept. CS-91-43, Duke University, 1991.

[2] P.K. Agarwal, M. Sharir, and S. Toledo, New applications of parametric searching in

computational geometry, to appear in J. Algorithms.

[3] A. Aggarwal, H. Imai, N. Katoh, and S. Suri, Finding k points with minimum diameter

and related problems, J. Algorithms, 12:38{56, 1991.

[4] M. Ajtai, J. Koml�os, and E. Szemer�edi, Sorting in c logn parallel steps, Combinatorica,

3:1{19, 1983.

[5] L.P. Chew and K. Kedem, Improvements on geometric pattern matching problems,

Proc. 3rd Scand. Workshop Algorithm Theory, 1992, Lecture Notes in Computer Sci-

ence 621, Springer-Verlag, 318{325.

[6] R. Cole, Slowing down sorting networks to obtain faster sorting algorithms, J. ACM,

34:200{208, 1987.

[7] A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic algorithms for

k-point clustering problems. In Proc. 3rd Workshop Algorithms Data Struct., Lecture

Notes in Computer Science, 1993.

[8] H. Edelsbrunner, L. Guibas and J. Stol�, Optimal point location in a monotone sub-

division, SIAM J. Comput., 15:317{340, 1986.

References 19

[9] A. Efrat and M. Sharir. A Near-Linear Algorithm for the Planar Segment Center

Problem to appeat in Proc. 5nd ACM-SIAM Sympos. Discrete Algorithms, 1994, to

appear.

[10] D. Eppstein, New algorithms for minimum area k-gons, In Proc. 3rd ACM-SIAM Sym-

pos. Discrete Algorithms, 1992, 83{88.

[11] D. Eppstein and J. Erickson. New algorithms for minimummeasure simplices and one-

dimensional weighted Voronoi diagrams. Tech. Report 92-55, Dept. Inform. Comput.

Sci., Univ. California, Irvine, CA, 1992.

[12] J. Erickson and R. Seidel, Better lower bounds on detecting a�ne and spherical degen-

eracies, Proc. 34rd IEEE Symp. on Foundation of Computer Science, 1993 to appear.

[13] K. Kedem, R. Livne, J. Pach and M. Sharir, On the union of Jordan regions

and collision-free translational motion amidst polygonal obstacles, Discrete Comput.

Geom., 1:59{71, 1986.

[14] H.P. Lenhof and M. Smid, Enumerating the k closest pairs optimally, Proc. 33rd IEEE

Symp. on Foundation of Computer Science, 1992, 380{386.

[15] D. Kirkpatrick and J. Snoeyink. Tentative prune-and-search for computing voronoi

vertices. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 133{142, 1993.

[16] T. C. Kao and D. M. Mount. An algorithm for computing compacted Voronoi diagrams

de�ned by convex distance functions. In Proc. 3rd Canad. Conf. Comput. Geom., pages

104{109, 1991.

[17] D. Leven and M. Sharir, Planning a purely translational motion for a convex object in

two-dimensional space using generalized Voronoi diagrams, Discrete Comput. Geom.,

2:9{31, 1987.

[18] J. Matou�sek, On enclosing k points by a circle, manuscript, 1993.

[19] N. Megiddo, Linear-time algorithms for linear programming in R

3

and related prob-

lems, SIAM J. Computing 12 (1983), 759{776.

[20] N. Megiddo, Applying parallel computation algorithms in the design of serial algo-

rithms, J. ACM, 30:852{865, 1983.

[21] F.P. Preparata and M.I. Shamos, Computational Geometry, An Introdcution, Springer

Verlag, Heidelberg, 1985.

[22] R. Seidel, A simple and fast incremental randomized algorithm for computing trape-

zoidal decompositions and for triangulating polygons, Comp. Geom., Theory and Ap-

pls., 1:51{64, 1991.

References 20

[23] M. Sharir, On k-sets in arrangements of curves and surfaces, Discrete Comput. Geom.,

6:593{613, 1991.

[24] M. Smid. An O(n logn) algorithm for �nding a k-point subset with minimal L

1

-

diameter. Report MPI-I-93-116, Max-Planck-Institut Inform., Saarbr�ucken, Germany,

1993.

[25] C.K. Yap, An O(n logn) algorithm for the Voronoi diagram of a set of simple curve

segments, Discrete Comput. Geom., 2:365{393, 1987.

