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Abstract

We prove a near-linear bound on the combinatorial complexity of the union

of n fat convex objects in the plane, each pair of whose boundaries cross at

most a constant number of times.

1 Introduction

Let C be a collection of n compact convex sets in the plane, satisfying the following

properties:

(i) The objects in C are �-fat, for some �xed � > 1; that is, for each c 2 C there

exist two concentric disks D � c � D

0

such that the ratio between the radii of

D

0

and D is at most �.

(ii) For any pair of distinct objects c; c

0

2 C, their boundaries intersect in at most s

points, for some �xed constant s.

See [12] for more details concerning fat objects in the plane.

Our goal is to derive a near-linear upper bound on the combinatorial complexity of

the union U =

S

C, where we measure the complexity by the number of intersection

points between the boundaries of the sets of C that lie on @U .
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Regular and Irregular Vertices 2

There are not too many results of this kind. If C is a collection of �-fat triangles,

1

then the complexity of U is O(n log log n) (with the constant of proportionality de-

pending on �) [9], and this bound improves to O(n) if the triangles are nearly of

the same size [1]. See also [13] for additional results concerning fat polygons. If

C is a collection of n pseudo-disks (arbitrary simply-connected regions bounded by

closed Jordan curves, each pair of whose boundaries intersect at most twice), then

the complexity of U is O(n) [8]. Of course, without any additional conditions, the

complexity of U can be 
(n

2

), even for the case of (non-fat) triangles. Even for fat

convex objects, something like condition (ii) must be assumed, or else the complexity

of the union might be arbitrarily large.

The main result of this paper is

Theorem 1.1 The combinatorial complexity of the union of a collection C that satis-

�es conditions (i){(ii) is O(n

1+"

), for any " > 0, where the constant of proportionality

depends on ", � and s.

Theorem 1.1 constitutes a signi�cant progress in the study of the union of planar

objects, an area that has many algorithmic applications, such as �nding the maximal

depth in an arrangement of fat objects (see [5]), hidden surface removal in a collection

of fat objects in 3-space [7], and point-enclosure queries in a collection of fat objects

in the plane [6]. The proof of Theorem 1.1 is given in the following sections.

2 Regular and Irregular Vertices

Let C be a collection of n compact simply-connected sets in the plane, each bounded

by a closed Jordan curve (we refer to the sets in C as Jordan regions), and let U

denote their union. We assume that these regions are in general position, so that

each pair of boundaries intersect in a �nite number of points and properly cross at

each point of intersection, and no three boundaries have a common point. (In this

subsection we make no other assumption on C.) As already mentioned, we measure

the combinatorial complexity of U by the number of vertices of the arrangement A(C)

of C (i.e., points of intersection between pairs of boundaries of regions in C) that lie

on its boundary. We classify the arrangement vertices into two categories:

regular vertices: these are intersections between pairs of boundaries that intersect

at only two points.

irregular vertices: these are all the other boundary intersection points.

1

For triangles, there is an equivalent de�nition of fatness that requires all angles to be at least

some �xed constant �

0

; in [9], this is called �

0

-fatness.
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Caps, Inscribed Fat Polygons, and their Properties 3

(In the preliminary version of the paper [4], we have referred to regular and irregular

vertices as touching and shattering, respectively. The terms regular and irregular are

taken from [10].)

Let R(C) (resp. I(C)) denote the number of regular (resp. irregular) vertices of U .

We use the following result of Pach and Sharir [10]:

Theorem 2.1

R(C) � 2I(C) + 6n� 12;

for n � 3.

3 Caps, Inscribed Fat Polygons, and their Prop-

erties

We now return to the case where C is a collection of compact convex sets satisfying

the conditions (i) and (ii) in the introduction. Let c 2 C. We inscribe in c a convex

polygon P

c

de�ned as follows. We choose some constant integer parameter t > 12,

which also satis�es

� sin

2�

t

1 �

��

t

tan

�

t

< 1:

and de�ne �

j

= 2�j=t, for j = 0; 1; : : : ; t� 1. For each j, let w

j

= w

j

(c) denote the

(unique) point on @c that has a tangent (that is, a supporting line) at orientation �

j

(tangents are assumed to be oriented so that c lies to their left). We also de�ne w

0

j

,

for j = 1; : : : ; t � 1, to be the point on @c such that the length of the portion of @c

extending counterclockwise from w

0

to w

0

j

is j=t times the perimeter of c. P

c

is de�ned

to be the convex polygon whose vertices are w

0

; : : : ; w

t�1

; w

0

1

; : : : ; w

0

t�1

. (Note that

P

c

may have fewer than 2t � 1 vertices; this will be the case, e.g., when @c contains

nonsmooth points whose tangent orientations span a su�ciently large interval.) The

di�erence c nP

c

is the union of at most 2t� 1 caps of c, where a cap is an intersection

of c with a halfplane. The chord of a cap is the intersection of c with the line bounding

the corresponding halfplane. An illustration of such an inscribed polygon and of the

corresponding caps is shown in Figure 1.

Lemma 3.1 The polygons P

c

are �

0

-fat, for

�

0

=

�

1�

��

t

tan

�

t

:

Proof: Since c is �-fat, there exist two concentric disks D

1

� c � D

2

, with respective

radii r

1

; r

2

, such that r

2

� �r

1

. Clearly, P

c

� D

2

. Let K be one of the caps that

constitute cnP

c

, and assume that D

1

intersects the chord pq ofK. It must do so at two

points, or else its interior would have contained p or q, contradicting the assumption
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Caps, Inscribed Fat Polygons, and their Properties 4

cap

P

c

c

chord

inner fat triangle

Figure 1: The inscribed polygon P

c

and the corresponding caps; one inner fat triangle

is also illustrated.

that D

1

� c. By de�nition, there exist two tangents to c, �

p

at p and �

q

at q, whose

orientations di�er by at most 2�=t, and the distance pq is smallest than �=t, where �

is the perimeter of c. Let d denote the distance from the center O of D

1

to pq. It is

easy to see that r

1

� d is at most the height to pq in the triangle bounded by pq, �

p

and �

q

(see Figure 2), and a simple exercise shows that this height is at most

pq

2

tan

�

t

.

Hence

r

1

� d �

pq

2

tan

�

t

<

�

2t

tan

�

t

�

2��r

1

2t

tan

�

t

=

��r

1

t

tan

�

t

;

where the last inequality follows from the fact that c � D

2

. Hence

d � r

1

�

1�

��

t

tan

�

t

�

:

This implies that the disk concentric with D

1

and having radius r

1

�

1�

��

t

tan

�

t

�

is

contained in P

c

, and this completes the proof of the lemma. 2

Let c 2 C, and let O denote the common center of two disks D

1

� P

c

� D

2

, such

that their respective radii r

1

, r

2

satisfy r

2

� �

0

r

1

. Let pq be an edge of P

c

. The

convexity of P

c

and the fact that D

1

� P

c

are easily seen to imply that the angle

Opq must be at least the angle � between Op and the tangent to D

1

from p, which

satis�es sin � = r

1

=jOpj � r

1

=r

2

� 1=�

0

. Similarly, the angle Oqp must also be at

least �. It follows that we can �nd a point v inside Opq, such that all the angles of

the triangle vpq are at least

�

0

= min farcsin(1=�

0

); �=3g:
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Caps, Inscribed Fat Polygons, and their Properties 5

2�=t

K

d

O

p

q

Figure 2: The proof of Lemma 3.1

Note that, by assumption, �

0

> 2�=t.

We repeat this analysis to each edge of each polygon, and replace the polygons

P

c

by the collection of resulting triangles vpq. We refer to these triangles as inner

fat triangles. Let T = T (C) denote the collection of inner fat triangles. Clearly,

jT j � (2t� 1)n. As an immediate consequence of [9], we have:

Lemma 3.2 The union U

T

of the triangles in T has O(n log log n) vertices.

Let v be an irregular vertex of @U , incident to two sets a; b 2 C. Let K

a

, K

b

be

the respective caps of a, b that contain v, and let p

a

q

a

, p

b

q

b

denote their respective

chords. Consider the convex set R = K

a

\K

b

.

Lemma 3.3 At least one of the chords p

a

q

a

, p

b

q

b

meets @R.

Proof: Indeed, suppose to the contrary that both chords are disjoint from R. It

follows that R = a \ b, and that @R contains at least four points of intersection

between @a and @b. Moreover, let O be an interior point of R, and consider @K

a

and

@K

b

as graphs of two respective functions r = K

a

(�), r = K

b

(�), in polar coordinates

about O. Note that @R is the graph of the pointwise minimum of K

a

and K

b

. There

is an angular interval I

a

over which K

a

(�) is attained at the chord of K

a

, and a similar

interval I

b

for the chord of K

b

. These intervals must be disjoint, or else @R would

overlap one of these chords, contrary to assumption. See Figure 3.

Let u (resp. w) denote the �rst vertex of @R that we encounter as we rotate

about O clockwise (resp. counterclockwise) from I

a

(clearly, no vertex of @R has an

orientation in I

a

). In the angular interval that runs counterclockwise from u to w,

the boundary of R is attained by @b. Moreover, as we traverse, in counterclockwise
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Caps, Inscribed Fat Polygons, and their Properties 6

direction, the portion of @b that lies on @K

b

, we �rst encounter u and then w, and

the reverse order is obtained along @a. See Figure 3.

O

I

a

K

b

K

a

w

�

a

u

�

b

u

u

�

a

w

�

b

w

Figure 3: Two intersecting caps without a chordal intersection

Let �

a

u

, �

a

w

denote the orientations of the tangents to a at u and w, respectively,

and let �

b

u

, �

b

w

denote the corresponding tangent orientations for b. (If any of these

tangents is not unique, we �x an arbitrary tangent among those that are available.)

The circular counterclockwise order of these four orientations is (�

a

u

; �

b

u

; �

b

w

; �

a

w

), and

they partition the circular range of orientations into four angular intervals that we

denote by (�

a

u

; �

b

u

), (�

b

u

; �

b

w

), (�

b

w

; �

a

w

), and (�

a

w

; �

a

u

). Each of the second and fourth

intervals has length at most 2�=t (since the endpoints of any of these intervals are

two tangent orientations within a single cap), and each of the �rst and third intervals

has length at most � (the total amount by which the tangent to a convex set can turn

at a �xed point of its boundary is at most �). It follows that each of the lengths of

the �rst and third intervals is at least � � 4�=t > 2�=3.

We now repeat the whole analysis in the last two paragraphs by interchanging

a and b. This yields two vertices u

0

, w

0

of @R, such that the turning angle of the

tangents to R at each of these vertices is also greater than 2�=3. It is easily veri�ed

that among the vertices u;w; u

0

; w

0

there exist at least three distinct vertices, or else

@a and @b would have intersected at only two points, contrary to assumption. We have

thus obtained at least three vertices of R such that the turning angle of the tangents

at each of them is greater than 2�=3, which is impossible, because the overall turning

angle for a convex set is 2�. This contradiction completes the proof of the lemma. 2

Lemma 3.4 Let K

a

be a cap of some set a 2 C, with chord e

a

, and let �

b

be an

inner fat triangle in T , obtained from the polygon P

b

, for some b 2 C, such that the

chord e

b

of �

b

crosses @K

a

. Then one of the following cases must occur:

(i) e

a

crosses @�

b

(as in Figure 4(i)).
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(ii) K

a

contains a vertex of �

b

that is an endpoint of e

b

(as in Figure 4(ii)).

(iii) �

b

contains a vertex of K

a

(as in Figure 4(iii)).

(iv) @K

a

and @�

b

cross exactly twice, at two points that lie on @a and on e

b

, and e

a

is disjoint from K

a

\�

b

. Furthermore, let K

b

denote the cap of b that shares

the same chord e

b

with �

b

. Then either K

b

contains an endpoint of e

a

(as in

Figure 4(iv.a)), or @a and @b intersect only twice (as in Figure 4(iv.b)).

K

a

e

a

e

b

�

b

(i)

�

b

K

a

(ii)

�

b

K

a

(iii)

K

a

e

b

�

b

(iv.a)

K

b

K

a

�

b

(iv.b)

K

b

e

b

w

p q

z

u v

H

Figure 4: Illustrating the various cases in Lemma 3.4

Proof: Suppose that cases (i) and (ii) do not occur. That is, e

a

does not cross @�

b

and no vertex of �

b

lies in K

a

. Then e

b

must intersect @K

a

at two points, u, v, both

lying on @a. Therefore e

b

splits K

a

into two subregions, the region K

0

a

that contains

e

a

, and the complementary region K

00

a

. Denote the range of the orientations of the

tangents to a at the points of K

a

by (�

0

; �

0

0

), where �

0

< �

0

0

� �

0

+ 2�=t. Clearly, the

orientations of e

a

and of e

b

also lie in this range. Two cases can arise:
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�

b

K

0

a

f

K

00

a

u

v

w

z

e

�

b

K

0

a

K

00

a

u

v

e

�

0

[htbp]

Figure 5: Two patterns of intersection of a cap K

a

and an inner fat triangle �

b

(1) �

b

overlaps K

0

a

and is disjoint from K

00

a

(see Figure 5(i)): If K

0

a

is fully contained

in �

b

then u and v are the only two points of intersections between @K

a

and @�

b

,

and, moreover, �

b

contains both vertices of K

a

, so we are in case (iii). Otherwise,

since, by assumption, �

b

does not intersect e

a

and does not have a vertex inside K

0

a

,

one of its other edges, f , must also cross @K

a

twice, at two points w; z, lying on @a,

so that the four points w; u; v; z appear in this order along @K

a

. In this case the

orientation of f also lies in the range (�

0

; �

0

0

), and thus the angle between e and f ,

which is � �

0

, is at most 2�=t, a contradiction.

(2) �

b

overlaps K

00

a

and is disjoint from K

0

a

(see Figure 5(ii)): We claim that in this

case �

b

fully contains K

00

a

, so u and v are the only two intersection points of @K

a

and

@�

b

. Since the orientations of e

b

and of the tangents (or, rather, any tangents) to a

at u and at v all lie in the range (�

0

; �

0

0

), it follows that the angles between e and these

tangents are both at most 2�=t. However, the angles of �

b

at the endpoints of e are

both � �

0

, and are therefore larger. It follows that the triangle bounded by e and by

two such tangents is fully contained in �

b

, from which the claim follows readily.

Finally, suppose that K

b

does not contain any of the endpoints e

a

. Let p and q be

the endpoints of e

a

, so that p; u; v; q appear in this order along @a. Then the portion

of @K

b

along @b must cross the portion of @K

a

along @a at least twice, at one point

w between p and u and at another point z between v and q (see Figure 4(iv.b)). We

claim that w and z are the only two intersection points of @a and @b. Indeed, suppose,

with no loss of generality, that e

a

lies along the x-axis and that K

a

lies above it. Then




a

� @a\K

a

is a downward-concave x-monotone arc. Moreover, the absolute value of

the orientation of e

b

is at most 2�=t, so the orientation of any tangent to 


b

� @b\K

b

has absolute value � 4�=t, which is easily seen to imply that 


b

is also x-monotone

and downward-convex. It follows that 


a

and 


b

cross each other exactly twice (at w

and z). We claim that there can be no other point of intersection between @a and @b.

Indeed, any such point must lie either in the halfplane below e

a

or in the halfplane
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The Proof of Theorem 1.1 9

above e

b

. Consider the halfplane H lying below e

a

(the second case is treated in a

fully symmetric manner). It is easy to see that any such intersection must lie on 


b

.

However, if 


b

reaches H it must cross e

a

twice. Arguing as above, it follows that the

portion of 


b

in H is fully contained in the inner fat triangle of P

a

that has e

a

as a

chord, and hence it cannot intersect @a at all. This shows that condition (iv) holds,

and thus completes the proof of the lemma. (Note that these arguments also imply

that, in any con�guration of case (iv), @a \K

a

and @b \K

b

can intersect in at most

two points; they intersect in one or zero points if and only if K

b

contains an endpoint

of e

a

.) 2

4 The Proof of Theorem 1.1

The proof proceeds by induction on n, keeping ", � and s �xed. Let F (n) denote the

maximum number of vertices of the union of any collection C of n compact convex

objects, satisfying conditions (i){(ii) of the introduction. We will show that F (n) �

Bn

1+"

, where B is a su�ciently large constant, depending on ", � and s. By choosing

B su�ciently large, this will hold for all n � n

0

, where the value of n

0

will be de�ned

below. Suppose then that n > n

0

and that the claim holds for all n

0

< n.

Step I. For each c 2 C, let Q

c

denote a smallest axis-parallel square enclosing c. We

construct a two-dimensional hereditary segment tree on the collection Q = fQ

c

j c 2

Cg, as follows. We construct a one-dimensional segment tree T

1

on the x-projections

of the squares in Q. We make T

1

hereditary, as in [2], by propagating a square Q

c

that is normally stored at some node � of T

1

to all ancestors of �. In this manner,

each node � of T

1

stores two lists: the standard list L

1

(�) of squares stored at � (we

refer to these squares as long), and a list S

1

(�) of squares that were propagated to �

from its (proper) descendants. The total length of all these lists is still O(n log n).

We now take each node � of T

1

, and construct a secondary hereditary segment

tree T

(�)

2

on the y-projections of the squares in L

1

(�) [ S

1

(�). Again, each node � of

any secondary tree stores two lists: the standard list L

2

(�) of `long' squares, and a

list S

2

(�) of `short' squares, propagated from the proper descendants of �. The total

size of the structure is O(n log

2

n).

Let v be a vertex of the union, lying on the boundaries of two sets a; b 2 C. We

take the leaf � of T

1

whose x-interval contains the x-coordinate of v, and consider the

path from � to the root of T

1

. There is a unique node � on that path such that one of

Q

a

, Q

b

is stored at L

1

(�) and the other square is stored at L

1

(�) [ S

1

(�). Repeating

this for the secondary tree T

(�)

2

and the y-coordinate, we obtain a unique node � of

T

(�)

2

(in fact of the whole structure) such that v lies in the rectangle R

�

, de�ned as

the cartesian product of the x-interval associated with � and the y-interval associated

with �, and such that one of the squares Q

a

, Q

b

is stored at L

2

(�) and the other is

stored at L

2

(�) [ S

2

(�).
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The Proof of Theorem 1.1 10

Our strategy is thus to iterate over all vertices � of all the secondary trees T

(�)

2

,

and, for each �xed �; �, prove a near-linear upper bound on the number of vertices v

of U , incident to a pair of objects a; b 2 C, satisfying

� v 2 R

�

;

� both squares Q

a

, Q

b

are in L

2

(�) [ S

2

(�) (and thus also in L

1

(�) [ S

1

(�)).

� At least one of these squares is in L

1

(�), and at least one is in L

2

(�).

We prune the sets L

2

(�), S

2

(�), so as to retain only squares Q

a

whose object a

intersects R

�

. Clearly, the a and b above are not pruned by this rule. We continue to

use the same notation L

2

(�), S

2

(�), for the pruned sets.

Let � and � be �xed.

Lemma 4.1 (a) Suppose that the height of R

�

is larger than or equal to its width.

Then there exists a set P

�

of O(1) points, all lying in the rectangle R

0

�

obtained by

scaling up R

�

by a factor of 2 about its center, such that any a 2 C with Q

a

2 L

2

(�)

has a nonempty intersection with P

�

.

(b) Suppose that the height of R

�

is smaller than its width. Then there exists a set

P

�

of O(1) points, as above, such that any a 2 C with Q

a

2 L

1

(�) \ (L

2

(�) [ S

2

(�))

has a nonempty intersection with P

�

.

Proof: Consider the proof of (a). Let a 2 C be such that Q

a

2 L

2

(�). Since (i) a

intersects R

�

, (ii) the y-projection of Q

a

contains that of R

�

, (iii) the y-projection of

R

0

�

is at least as large as its x-projection, and (iv) a is �-fat, it follows that the area

of a \R

0

�

is at least some �xed portion of the area of R

0

�

(see [6]). Hence, if we place

a su�ciently dense grid of O(1) points within R

0

�

, at least one of them will lie in a.

The proof of (b) is fully symmetric. 2

Let P

�

be the point set yielded by Lemma 4.1, and �x a point p in P

�

. Let C

1

(p)

(resp. C

2

(p)) denote the collection of sets a 2 C that contain (resp. do not contain) p,

and whose enclosing squares Q

a

are in L

2

(�) [ S

2

(�). The preceding analysis implies

that each vertex v of U that satis�es the above conditions has at least one p 2 P

�

such that one of the sets whose boundaries contain v lies in C

1

(p) and the other set

lies in C

1

(p) [ C

2

(p).

All these reductions imply that it su�ces to solve the following problem: We are

given two families C

1

, C

2

of �-fat convex objects in the plane, each pair of whose

boundaries intersect at most s times. We are also given that all the objects in C

1

contain a �xed point, which from now on we take to be the origin. We want to obtain

a near-linear bound for the number of vertices of the union of C

1

[ C

2

that lie on the

boundary of at least one set in C

1

.

Put m

1

= jC

1

j and m

2

= jC

2

j. Let U

1

denote the union of C

1

. If we represent the

boundary of every c 2 C

1

as the graph of a function r = r

c

(�) in polar coordinates,
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the boundary of U

1

is the graph of the upper envelope of these functions. Since any

pair of these functions intersect in at most s points, the number of vertices of U

1

is

at most �

s

(m

1

) [11].

For each a 2 C

2

, we construct an inner fat inscribed polygon P

a

, as in Section 3,

with the additional proviso that the vertices of P

a

also include the two points on

@a that have extreme clockwise and counterclockwise orientations. (Since a does not

contain the origin, these points are well de�ned, except that any of them may actually

be replaced by a radially-directed segment on @a; in this case, the two endpoints of

such an interval are assumed to be vertices of P

a

.)

Let U

2

denote the union of the polygons P

a

, for a 2 C

2

. By the result of [9], the

number of vertices of U

2

is O(m

2

log logm

2

).

Step II. As an intermediate step, we bound the complexity of U

�

= U

1

[ U

2

. It

su�ces to bound the number of `mixed' vertices of U

�

, namely, vertices that lie on

both @U

1

and @U

2

.

o

A slice �

The wedge

W (�)

Figure 6:

To begin with, we take each a 2 C

1

and modify its inner fat inscribed polygon

P

a

by adding all the vertices of @U

1

that lie on @a as vertices of P

a

. We obtain a

collection of new polygons P

�

a

, which may now have more than a constant number of
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vertices on each. Still, the overall number of their vertices is O(�

s

(m

1

)).

Next, we take each point w which is either a vertex of U

1

or a vertex of some P

a

,

and connect it by a straight segment to the origin. These segments partition U

1

into

`slices', each bounded by two of these segments and by a portion of the boundary of

a single set in C

1

. Each slice is further subdivided, by the chord connecting its two

vertices, into a cap (as in Section 3) and a triangle with the origin as a vertex. We

also de�ne the wedgeW (�) of a slice � to be the positive hull of � (it is the wedge with

the origin as apex and with two bounding rays containing the segments bounding �).

Let v be a mixed vertex, lying on the boundary of a set a 2 C

1

and on the

boundary of a polygon P

b

for some b 2 C

2

. Let � be the slice of U

1

that contains

v, and let e be the edge of P

b

that contains v. Suppose �rst that P

b

and the origin

lie on opposite sides of the line containing e. If e intersects � \ @a at two points,

then Lemma 3.4(iv.b) implies that P

b

(or, more precisely, the inner fat triangle of

P

b

having e as an edge) and � intersect in just two points (one of which is v), so

v is a regular vertex of U

�

(viewed as the union of the slices and the inscribed fat

polygons of the sets in C

2

). By Theorem 2.1, the number of such vertices is at most

2I + 6(m

1

+ m

2

) � 12, where I is the number of irregular vertices of U

�

. It thus

su�ces to bound the number of irregular mixed vertices of U

�

, so the above case can

be ignored. If e intersects � \ @a only at v, then it must intersect the chord of �, or

end inside the cap. This means that if we follow e from v into �, we encounter there

a vertex of the union S

1

[ U

2

, where S

1

is the star-shaped polygon composed of all

the slice chords. We then charge v to the �rst such vertex that we encounter, and

note that this charging is unique.

Lemma 4.2 The complexity of S

1

[ U

2

is O((�

s

(m

1

) +m

2

) log log n).

Proof: We take the modi�ed inscribed fat polygons P

�

a

, and decompose each of them

into fat triangles, as in Section 3. It is clear that @S

1

is contained in the boundary of

the union of these triangles. It follows that every vertex of S

1

[ U

2

is also a vertex of

the union of O(�

s

(m

1

)+m

2

) �

0

-fat triangles, and the lemma thus follows from [9]. 2

Hence, the number of vertices v in the preceding case is O((�

s

(m

1

)+m

2

) log log n).

We may therefore assume that P

b

and the origin lie on the same side of the line

containing e. The intersection of e and of �\@a consists of one or two points. Suppose

�rst that there is only one point of intersection, namely v. We trace e from v into �,

and note that the line containing e must intersect the boundary of the cap of � at

another point v

0

. If we encounter a vertex w of U

2

(which can be the endpoint of e

or an earlier point on e) before reaching v

0

, we charge v to w and note that w can be

charged at most twice. The overall number of such vertices v is O(m

2

log logm

2

).

Otherwise we reach v

0

, which necessarily lies on the chord of �. As above, v

0

is

a vertex of the union S

1

[ U

2

, and we can charge v to v

0

, note that the charging is

unique, and conclude, by Lemma 4.2, that the number of vertices v in this subcase is

O((�

s

(m

1

) +m

2

) log log n).
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Suppose then that e intersects �\ @a at two points, v and v

0

, and that its portion

within � contains no vertex of U

2

(otherwise we can charge v to the �rst such vertex

along e, as above). Hence v

0

is also a vertex of U

�

. If e terminates within the wedge

W (�) of �, we can charge v and v

0

to such an endpoint. This charging is `almost

unique': Since these wedges are pairwise openly disjoint, the endpoint determines

e (there are in fact two choices for e) and � (there can be two choices for � if the

endpoint lies on a wedge boundary), so v and v

0

are also determined (at worst there

can be four such pairs). The total number of vertices v in this subcase is thus O(m

2

).

We may thus assume that e fully crosses the wedge W (�).

e

� \ @a

v
v

0

e

� \ @a

v

v

0

w

�

q

e

0
e

00

boundary of W (�)

Figure 7: Two cases where P

b

and the origin lie on the same side of the line containing

e

Trace � \ @a from v and from v

0

into P

b

. If we reach along one of these arcs

an endpoint w of � \ @a, we charge v and v

0

to w, note that w can be charged at

most twice, and conclude that the number of vertices v in this subcase is O(�

s

(m

1

)).

Otherwise, each of these arcs is crossed by another edge of the inner fat triangle �

bounded by e. The analysis in Lemma 3.4 implies that it is impossible that such an

edge e

0

6= e crosses both arcs, and it is impossible for such an e

0

to cross the same

arc twice (in both cases one of the angles of � would have to be at most 2�=t < �

0

).

Since the common endpoint z of e and e

0

lies outside the wedge W (�), it follows that

as we trace e

0

from z, we �rst meet the wedge boundary (still outside �) and then

cross � \ @a. Since this must also hold for the third edge e

00

of �, it follows that the

vertex q of � where e

0

and e

00

meet must lie inside �. We can thus charge v and v

0

to

q, note that the charging is unique (knowing q we also know � and �), and conclude

that the number of vertices v in this subcase is O(m

2

).

We have thus shown that the complexity of U

�

is O((�

s

(m

1

) +m

2

) log log n).
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Step III. We �nally turn to estimate the number of mixed vertices of the union U

of C

1

[ C

2

.

First, we take all the mixed vertices of U

�

and connect them to the origin, thereby

splitting some slices of U

1

into subslices. The total number of new slices is O((�

s

(m

1

)+

m

2

) log log n). Second, we concentrate only on irregular vertices of the union. We

will later exploit Theorem 2.1 to take into account regular vertices as well.

Let v be an irregular vertex of U , lying on the boundary of a set a 2 C

1

and a

set b 2 C

2

. Let � be the (new) slice of U

1

containing v. With no loss of generality,

we may assume that when we follow @� from v in the counterclockwise direction, we

enter into b. The complementary type of irregular vertices will be handled by a fully

symmetric analysis.

We will further classify these vertices into two subcategories: For each b 2 C

2

, the

two tangents from the origin to b divide @b into two arcs, one being `visible' from

the origin and the other being `invisible'. We refer to these portions as the lower

boundary and upper boundary of b, respectively. We will consider separately vertices

v as above that lie on the lower boundaries of the sets of C

2

and vertices that lie on

the upper boundaries.

o

v

b

b

0

�

a

v

0




P

b

Figure 8: The case of vertices on lower boundaries

Vertices on lower boundaries. Let v and v

0

be two vertices as above, lying within

a single new slice � and incident to the lower boundaries of two respective and distinct

sets b, b

0

2 C

2

, see Figure 8. With no loss of generality, assume that v lies clockwise

to v

0

. Consider the portion 
 of @a between v and v

0

. The arc 
 partially overlaps the

interior of b near v and it must cross @b again. If it only crosses the lower boundary

of b then it is easily checked that @a and @b intersect only twice, so v is a regular
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vertex, contrary to assumption. Hence, 
 also crosses the upper boundary of b. But

then, by construction, 
 must also cross the boundary of P

b

, and thus it must contain

a vertex of U

�

, which implies, by construction, that v and v

0

cannot belong to the

same new slice, again a contradiction.

We thus conclude that any new slice can have at most one vertex of the union of the

type under consideration, so the number of these vertices is O((�

s

(m

1

)+m

2

) log log n).

o

v

b

b

0

�

a

v

0

~

ov

0

~ov




Figure 9: @b and @b

0

must cross inside the shaded wedge

Vertices on upper boundaries. Let us �x the new slice �, as above, and consider

the number N

�

of sets in C

2

whose upper boundaries are incident to vertices v of the

above kind that lie on �\@a. If such a set b has a supporting line that passes through

the origin and is contained in the wedgeW (�), then we charge the corresponding ver-

tex or vertices to that line. This charging is almost unique, since the line determines

both the set b and the slice �. Hence the number of vertices v of this kind is at most

sm

2

. We can therefore exclude such pairs (b; �) from our analysis.

Let v and v

0

be two vertices as above, lying within a single new slice � and incident

to the upper boundaries of two respective and distinct sets b, b

0

2 C

2

; see Figure 9.

With no loss of generality, assume that v lies clockwise to v

0

. Consider the portion 


of @a between v and v

0

. As above, the arc 
 partially overlaps the interior of b near

v and it must cross @b again. If it crosses the lower boundary of b then, arguing as

above, 
 must contain a vertex of U

�

, which is impossible. Hence 
 only crosses the

upper boundary of b. The same argument also implies that 
 cannot cross the lower

boundary of b

0

.
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We claim that @b and @b

0

must intersect within the wedge bounded by the two

rays ~ov,

~

ov

0

, emerging from the origin towards v and v

0

, respectively. Indeed, if this

were false, then either the ray ~ov would have to intersect b

0

in a segment disjoint from

the segment ov, or the ray

~

ov

0

would have to intersect b in a segment disjoint from ov

0

.

However, either of these con�gurations would imply that 
 crosses the lower boundary

of either b or b

0

, which, as we have just argued, is impossible. This establishes our

claim. See Figure 9 for an illustration.

We choose some threshold parameter k, and consider the following two cases:

(a) N

�

� k: Since the boundary of each of these N

�

sets intersects @a in at most s=2

vertices v of the type considered here, it follows that � \ @a contains at most sk=2

such vertices. Summing this bound over all new slices � with N

�

� k, the overall

number of vertices of U of this type in these slices is at most

O(k(�

s

(m

1

) +m

2

) log log n):

(b) N

�

> k: As argued above, the boundary of each of the N

�

sets of C

2

that are

incident to the vertices under consideration intersects at least k other such boundaries

within the angular span of W (�). It follows that the arrangement A(C

2

) contains


(kN

�

) vertices at level at most k (i.e., vertices contained in at most k other sets of

C

2

). On the other hand, arguing as in case (a), the number of vertices v of the above

kind that are incident to �\@a is � sN

�

=2. Hence, the number of these vertices is at

most O(N

�

=(kN

�

)) = O(1=k) times the number of vertices of A(C

2

) within W (�) at

level at most k. Summing this inequality over all relevant slices �, the overall number

of such vertices is

O

�

1

k

F

�k

(C

2

)

�

;

where F

�k

(C

2

) is the number of vertices of A(C

2

) at level at most k. Using the

Clarkson-Shor probabilistic analysis technique [3], we have F

�k

(C

2

) = O(k

2

F (m

2

=k)),

where F (r) is the maximum number of vertices of the union of r compact convex

�-fat sets, each pair of whose boundaries intersect at most s times (recall that �

and s are assumed to be �xed parameters). By the induction hypothesis, we have

F (m

2

=k) � B(m

2

=k)

1+"

.

Hence, collecting all bounds, and taking into account regular vertices too (using

Theorem 2.1), we obtain that the number of mixed vertices of U is at most

C

�

k(�

s

(m

1

) +m

2

) log log n+

Bn

"

k

"

m

2

�

:

We now sum this bound over all nodes � and � of our segment trees and over the

constant number of stabbing points used in each node, observing that the sums of

the quantities m

1

, m

2

are both O(n log

2

n). Hence the total number of vertices of the

union is

C

�

k�

s

(n) log

2

n log log n+

log

2

n

k

"

Bn

1+"

�

:
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We now choose k = n

"=2

, and observe that the �rst term in this bound is at most

An

1+"

, for a su�ciently large constant A, and the second term is at most

C log

2

n

n

"

2

=2

�Bn

1+"

:

Hence this term is smaller than

1

2

Bn

1+"

, provided n is larger than some threshold

n

0

(") that depends on ", � and s. We now choose B so that (i) B > 2A and (ii)

Bn

1+"

is an upper bound for the complexity of the union for each n � n

0

("). The

induction step is now complete.

This concludes the proof of Theorem 1.1. 2
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