On the Complexity of the Union of Fat Objects in the Plane*

Alon Efrat ${ }^{\dagger} \quad$ Micha Sharir ${ }^{\ddagger}$

July 16, 1998

Abstract

We prove a near-linear bound on the combinatorial complexity of the union of n fat convex objects in the plane, each pair of whose boundaries cross at most a constant number of times.

1 Introduction

Let \mathcal{C} be a collection of n compact convex sets in the plane, satisfying the following properties:
(i) The objects in \mathcal{C} are α-fat, for some fixed $\alpha>1$; that is, for each $c \in \mathcal{C}$ there exist two concentric disks $D \subseteq c \subseteq D^{\prime}$ such that the ratio between the radii of D^{\prime} and D is at most α.
(ii) For any pair of distinct objects $c, c^{\prime} \in \mathcal{C}$, their boundaries intersect in at most s points, for some fixed constant s.

See [12] for more details concerning fat objects in the plane.
Our goal is to derive a near-linear upper bound on the combinatorial complexity of the union $U=\bigcup \mathcal{C}$, where we measure the complexity by the number of intersection points between the boundaries of the sets of \mathcal{C} that lie on ∂U.

[^0]There are not too many results of this kind. If \mathcal{C} is a collection of α-fat triangles, ${ }^{1}$ then the complexity of U is $O(n \log \log n)$ (with the constant of proportionality depending on α) [9], and this bound improves to $O(n)$ if the triangles are nearly of the same size [1]. See also [13] for additional results concerning fat polygons. If \mathcal{C} is a collection of n pseudo-disks (arbitrary simply-connected regions bounded by closed Jordan curves, each pair of whose boundaries intersect at most twice), then the complexity of U is $O(n)$ [8]. Of course, without any additional conditions, the complexity of U can be $\Omega\left(n^{2}\right)$, even for the case of (non-fat) triangles. Even for fat convex objects, something like condition (ii) must be assumed, or else the complexity of the union might be arbitrarily large.

The main result of this paper is
Theorem 1.1 The combinatorial complexity of the union of a collection \mathcal{C} that satisfies conditions (i)-(ii) is $O\left(n^{1+\varepsilon}\right)$, for any $\varepsilon>0$, where the constant of proportionality depends on ε, α and s.

Theorem 1.1 constitutes a significant progress in the study of the union of planar objects, an area that has many algorithmic applications, such as finding the maximal depth in an arrangement of fat objects (see [5]), hidden surface removal in a collection of fat objects in 3 -space [7], and point-enclosure queries in a collection of fat objects in the plane [6]. The proof of Theorem 1.1 is given in the following sections.

2 Regular and Irregular Vertices

Let \mathcal{C} be a collection of n compact simply-connected sets in the plane, each bounded by a closed Jordan curve (we refer to the sets in \mathcal{C} as Jordan regions), and let U denote their union. We assume that these regions are in general position, so that each pair of boundaries intersect in a finite number of points and properly cross at each point of intersection, and no three boundaries have a common point. (In this subsection we make no other assumption on \mathcal{C}.) As already mentioned, we measure the combinatorial complexity of U by the number of vertices of the arrangement $\mathcal{A}(\mathcal{C})$ of \mathcal{C} (i.e., points of intersection between pairs of boundaries of regions in \mathcal{C}) that lie on its boundary. We classify the arrangement vertices into two categories:
regular vertices: these are intersections between pairs of boundaries that intersect at only two points.
irregular vertices: these are all the other boundary intersection points.

[^1](In the preliminary version of the paper [4], we have referred to regular and irregular vertices as touching and shattering, respectively. The terms regular and irregular are taken from [10].)

Let $R(\mathcal{C})$ (resp. $I(\mathcal{C})$) denote the number of regular (resp. irregular) vertices of U. We use the following result of Pach and Sharir [10]:

Theorem 2.1

$$
R(\mathcal{C}) \leq 2 I(\mathcal{C})+6 n-12,
$$

for $n \geq 3$.

3 Caps, Inscribed Fat Polygons, and their Properties

We now return to the case where \mathcal{C} is a collection of compact convex sets satisfying the conditions (i) and (ii) in the introduction. Let $c \in \mathcal{C}$. We inscribe in c a convex polygon P_{c} defined as follows. We choose some constant integer parameter $t>12$, which also satisfies

$$
\frac{\alpha \sin \frac{2 \pi}{t}}{1-\frac{\pi \alpha}{t} \tan \frac{\pi}{t}}<1
$$

and define $\theta_{j}=2 \pi j / t$, for $j=0,1, \ldots, t-1$. For each j, let $w_{j}=w_{j}(c)$ denote the (unique) point on ∂c that has a tangent (that is, a supporting line) at orientation θ_{j} (tangents are assumed to be oriented so that c lies to their left). We also define w_{j}^{\prime}, for $j=1, \ldots, t-1$, to be the point on ∂c such that the length of the portion of ∂c extending counterclockwise from w_{0} to w_{j}^{\prime} is j / t times the perimeter of $c . P_{c}$ is defined to be the convex polygon whose vertices are $w_{0}, \ldots, w_{t-1}, w_{1}^{\prime}, \ldots, w_{t-1}^{\prime}$. (Note that P_{c} may have fewer than $2 t-1$ vertices; this will be the case, e.g., when ∂c contains nonsmooth points whose tangent orientations span a sufficiently large interval.) The difference $c \backslash P_{c}$ is the union of at most $2 t-1$ caps of c, where a cap is an intersection of c with a halfplane. The chord of a cap is the intersection of c with the line bounding the corresponding halfplane. An illustration of such an inscribed polygon and of the corresponding caps is shown in Figure 1.

Lemma 3.1 The polygons P_{c} are α^{\prime}-fat, for

$$
\alpha^{\prime}=\frac{\alpha}{1-\frac{\pi \alpha}{t} \tan \frac{\pi}{t}} .
$$

Proof: Since c is α-fat, there exist two concentric disks $D_{1} \subseteq c \subseteq D_{2}$, with respective radii r_{1}, r_{2}, such that $r_{2} \leq \alpha r_{1}$. Clearly, $P_{c} \subseteq D_{2}$. Let K be one of the caps that constitute $c \backslash P_{c}$, and assume that D_{1} intersects the chord $p q$ of K. It must do so at two points, or else its interior would have contained p or q, contradicting the assumption

Figure 1: The inscribed polygon P_{c} and the corresponding caps; one inner fat triangle is also illustrated.
that $D_{1} \subseteq c$. By definition, there exist two tangents to c, τ_{p} at p and τ_{q} at q, whose orientations differ by at most $2 \pi / t$, and the distance $p q$ is smallest than σ / t, where σ is the perimeter of c. Let d denote the distance from the center O of D_{1} to $p q$. It is easy to see that $r_{1}-d$ is at most the height to $p q$ in the triangle bounded by $p q, \tau_{p}$ and τ_{q} (see Figure 2), and a simple exercise shows that this height is at most $\frac{p q}{2} \tan \frac{\pi}{t}$. Hence

$$
r_{1}-d \leq \frac{p q}{2} \tan \frac{\pi}{t}<\frac{\sigma}{2 t} \tan \frac{\pi}{t} \leq \frac{2 \pi \alpha r_{1}}{2 t} \tan \frac{\pi}{t}=\frac{\pi \alpha r_{1}}{t} \tan \frac{\pi}{t}
$$

where the last inequality follows from the fact that $c \subseteq D_{2}$. Hence

$$
d \geq r_{1}\left(1-\frac{\pi \alpha}{t} \tan \frac{\pi}{t}\right)
$$

This implies that the disk concentric with D_{1} and having radius $r_{1}\left(1-\frac{\pi \alpha}{t} \tan \frac{\pi}{t}\right)$ is contained in P_{c}, and this completes the proof of the lemma.

Let $c \in \mathcal{C}$, and let O denote the common center of two disks $D_{1} \subseteq P_{c} \subseteq D_{2}$, such that their respective radii r_{1}, r_{2} satisfy $r_{2} \leq \alpha^{\prime} r_{1}$. Let $p q$ be an edge of P_{c}. The convexity of P_{c} and the fact that $D_{1} \subseteq P_{c}$ are easily seen to imply that the angle $O p q$ must be at least the angle β between $O p$ and the tangent to D_{1} from p, which satisfies $\sin \beta=r_{1} /|O p| \geq r_{1} / r_{2} \geq 1 / \alpha^{\prime}$. Similarly, the angle $O q p$ must also be at least β. It follows that we can find a point v inside $O p q$, such that all the angles of the triangle $v p q$ are at least

$$
\beta_{0}=\min \left\{\arcsin \left(1 / \alpha^{\prime}\right), \pi / 3\right\} .
$$

Figure 2: The proof of Lemma 3.1

Note that, by assumption, $\beta_{0}>2 \pi / t$.
We repeat this analysis to each edge of each polygon, and replace the polygons P_{c} by the collection of resulting triangles $v p q$. We refer to these triangles as inner fat triangles. Let $\mathcal{T}=\mathcal{T}(\mathcal{C})$ denote the collection of inner fat triangles. Clearly, $|\mathcal{T}| \leq(2 t-1) n$. As an immediate consequence of [9], we have:

Lemma 3.2 The union $U_{\mathcal{T}}$ of the triangles in \mathcal{T} has $O(n \log \log n)$ vertices.
Let v be an irregular vertex of ∂U, incident to two sets $a, b \in \mathcal{C}$. Let K_{a}, K_{b} be the respective caps of a, b that contain v, and let $p_{a} q_{a}, p_{b} q_{b}$ denote their respective chords. Consider the convex set $R=K_{a} \cap K_{b}$.

Lemma 3.3 At least one of the chords $p_{a} q_{a}, p_{b} q_{b}$ meets ∂R.
Proof: Indeed, suppose to the contrary that both chords are disjoint from R. It follows that $R=a \cap b$, and that ∂R contains at least four points of intersection between ∂a and ∂b. Moreover, let O be an interior point of R, and consider ∂K_{a} and ∂K_{b} as graphs of two respective functions $r=K_{a}(\theta), r=K_{b}(\theta)$, in polar coordinates about O. Note that ∂R is the graph of the pointwise minimum of K_{a} and K_{b}. There is an angular interval I_{a} over which $K_{a}(\theta)$ is attained at the chord of K_{a}, and a similar interval I_{b} for the chord of K_{b}. These intervals must be disjoint, or else ∂R would overlap one of these chords, contrary to assumption. See Figure 3.

Let u (resp. w) denote the first vertex of ∂R that we encounter as we rotate about O clockwise (resp. counterclockwise) from I_{a} (clearly, no vertex of ∂R has an orientation in I_{a}). In the angular interval that runs counterclockwise from u to w, the boundary of R is attained by ∂b. Moreover, as we traverse, in counterclockwise
direction, the portion of ∂b that lies on ∂K_{b}, we first encounter u and then w, and the reverse order is obtained along ∂a. See Figure 3.

Figure 3: Two intersecting caps without a chordal intersection

Let $\theta_{u}^{a}, \theta_{w}^{a}$ denote the orientations of the tangents to a at u and w, respectively, and let $\theta_{u}^{b}, \theta_{w}^{b}$ denote the corresponding tangent orientations for b. (If any of these tangents is not unique, we fix an arbitrary tangent among those that are available.) The circular counterclockwise order of these four orientations is $\left(\theta_{u}^{a}, \theta_{u}^{b}, \theta_{w}^{b}, \theta_{w}^{a}\right)$, and they partition the circular range of orientations into four angular intervals that we denote by $\left(\theta_{u}^{a}, \theta_{u}^{b}\right),\left(\theta_{u}^{b}, \theta_{w}^{b}\right),\left(\theta_{w}^{b}, \theta_{w}^{a}\right)$, and $\left(\theta_{w}^{a}, \theta_{u}^{a}\right)$. Each of the second and fourth intervals has length at most $2 \pi / t$ (since the endpoints of any of these intervals are two tangent orientations within a single cap), and each of the first and third intervals has length at most π (the total amount by which the tangent to a convex set can turn at a fixed point of its boundary is at most π). It follows that each of the lengths of the first and third intervals is at least $\pi-4 \pi / t>2 \pi / 3$.

We now repeat the whole analysis in the last two paragraphs by interchanging a and b. This yields two vertices u^{\prime}, w^{\prime} of ∂R, such that the turning angle of the tangents to R at each of these vertices is also greater than $2 \pi / 3$. It is easily verified that among the vertices $u, w, u^{\prime}, w^{\prime}$ there exist at least three distinct vertices, or else ∂a and ∂b would have intersected at only two points, contrary to assumption. We have thus obtained at least three vertices of R such that the turning angle of the tangents at each of them is greater than $2 \pi / 3$, which is impossible, because the overall turning angle for a convex set is 2π. This contradiction completes the proof of the lemma.

Lemma 3.4 Let K_{a} be a cap of some set $a \in \mathcal{C}$, with chord e_{a}, and let Δ_{b} be an inner fat triangle in \mathcal{T}, obtained from the polygon P_{b}, for some $b \in \mathcal{C}$, such that the chord e_{b} of Δ_{b} crosses ∂K_{a}. Then one of the following cases must occur:
(i) e_{a} crosses $\partial \Delta_{b}(a s$ in Figure $4(i))$.
(ii) K_{a} contains a vertex of Δ_{b} that is an endpoint of e_{b} (as in Figure 4(ii)).
(iii) Δ_{b} contains a vertex of K_{a} (as in Figure 4(iii)).
(iv) ∂K_{a} and $\partial \Delta_{b}$ cross exactly twice, at two points that lie on ∂a and on e_{b}, and e_{a} is disjoint from $K_{a} \cap \Delta_{b}$. Furthermore, let K_{b} denote the cap of b that shares the same chord e_{b} with Δ_{b}. Then either K_{b} contains an endpoint of e_{a} (as in Figure 4 (iv.a)), or ∂a and ∂b intersect only twice (as in Figure $4(i v . b)$).

Figure 4: Illustrating the various cases in Lemma 3.4

Proof: Suppose that cases (i) and (ii) do not occur. That is, e_{a} does not cross $\partial \Delta_{b}$ and no vertex of Δ_{b} lies in K_{a}. Then e_{b} must intersect ∂K_{a} at two points, u, v, both lying on ∂a. Therefore e_{b} splits K_{a} into two subregions, the region K_{a}^{\prime} that contains e_{a}, and the complementary region $K_{a}^{\prime \prime}$. Denote the range of the orientations of the tangents to a at the points of K_{a} by $\left(\theta_{0}, \theta_{0}^{\prime}\right)$, where $\theta_{0}<\theta_{0}^{\prime} \leq \theta_{0}+2 \pi / t$. Clearly, the orientations of e_{a} and of e_{b} also lie in this range. Two cases can arise:

[htbp]
Figure 5: Two patterns of intersection of a cap K_{a} and an inner fat triangle Δ_{b}
(1) Δ_{b} overlaps K_{a}^{\prime} and is disjoint from $K_{a}^{\prime \prime}$ (see Figure 5(i)): If K_{a}^{\prime} is fully contained in Δ_{b} then u and v are the only two points of intersections between ∂K_{a} and $\partial \Delta_{b}$, and, moreover, Δ_{b} contains both vertices of K_{a}, so we are in case (iii). Otherwise, since, by assumption, Δ_{b} does not intersect e_{a} and does not have a vertex inside K_{a}^{\prime}, one of its other edges, f, must also cross ∂K_{a} twice, at two points w, z, lying on ∂a, so that the four points w, u, v, z appear in this order along ∂K_{a}. In this case the orientation of f also lies in the range $\left(\theta_{0}, \theta_{0}^{\prime}\right)$, and thus the angle between e and f, which is $\geq \beta_{0}$, is at most $2 \pi / t$, a contradiction.
(2) Δ_{b} overlaps $K_{a}^{\prime \prime}$ and is disjoint from K_{a}^{\prime} (see Figure 5(ii)): We claim that in this case Δ_{b} fully contains $K_{a}^{\prime \prime}$, so u and v are the only two intersection points of ∂K_{a} and $\partial \Delta_{b}$. Since the orientations of e_{b} and of the tangents (or, rather, any tangents) to a at u and at v all lie in the range $\left(\theta_{0}, \theta_{0}^{\prime}\right)$, it follows that the angles between e and these tangents are both at most $2 \pi / t$. However, the angles of Δ_{b} at the endpoints of e are both $\geq \beta_{0}$, and are therefore larger. It follows that the triangle bounded by e and by two such tangents is fully contained in Δ_{b}, from which the claim follows readily.

Finally, suppose that K_{b} does not contain any of the endpoints e_{a}. Let p and q be the endpoints of e_{a}, so that p, u, v, q appear in this order along ∂a. Then the portion of ∂K_{b} along ∂b must cross the portion of ∂K_{a} along ∂a at least twice, at one point w between p and u and at another point z between v and q (see Figure 4(iv.b)). We claim that w and z are the only two intersection points of ∂a and ∂b. Indeed, suppose, with no loss of generality, that e_{a} lies along the x-axis and that K_{a} lies above it. Then $\gamma_{a} \equiv \partial a \cap K_{a}$ is a downward-concave x-monotone arc. Moreover, the absolute value of the orientation of e_{b} is at most $2 \pi / t$, so the orientation of any tangent to $\gamma_{b} \equiv \partial b \cap K_{b}$ has absolute value $\leq 4 \pi / t$, which is easily seen to imply that γ_{b} is also x-monotone and downward-convex. It follows that γ_{a} and γ_{b} cross each other exactly twice (at w and z). We claim that there can be no other point of intersection between ∂a and ∂b. Indeed, any such point must lie either in the halfplane below e_{a} or in the halfplane
above e_{b}. Consider the halfplane H lying below e_{a} (the second case is treated in a fully symmetric manner). It is easy to see that any such intersection must lie on γ_{b}. However, if γ_{b} reaches H it must cross e_{a} twice. Arguing as above, it follows that the portion of γ_{b} in H is fully contained in the inner fat triangle of P_{a} that has e_{a} as a chord, and hence it cannot intersect ∂a at all. This shows that condition (iv) holds, and thus completes the proof of the lemma. (Note that these arguments also imply that, in any configuration of case (iv), $\partial a \cap K_{a}$ and $\partial b \cap K_{b}$ can intersect in at most two points; they intersect in one or zero points if and only if K_{b} contains an endpoint of e_{a}.) \square

4 The Proof of Theorem 1.1

The proof proceeds by induction on n, keeping ε, α and s fixed. Let $F(n)$ denote the maximum number of vertices of the union of any collection \mathcal{C} of n compact convex objects, satisfying conditions (i)-(ii) of the introduction. We will show that $F(n) \leq$ $B n^{1+\varepsilon}$, where B is a sufficiently large constant, depending on ε, α and s. By choosing B sufficiently large, this will hold for all $n \leq n_{0}$, where the value of n_{0} will be defined below. Suppose then that $n>n_{0}$ and that the claim holds for all $n^{\prime}<n$.

Step I. For each $c \in \mathcal{C}$, let Q_{c} denote a smallest axis-parallel square enclosing c. We construct a two-dimensional hereditary segment tree on the collection $\mathcal{Q}=\left\{Q_{c} \mid c \in\right.$ $\mathcal{C}\}$, as follows. We construct a one-dimensional segment tree T_{1} on the x-projections of the squares in \mathcal{Q}. We make T_{1} hereditary, as in [2], by propagating a square Q_{c} that is normally stored at some node ξ of T_{1} to all ancestors of ξ. In this manner, each node ξ of T_{1} stores two lists: the standard list $L_{1}(\xi)$ of squares stored at ξ (we refer to these squares as long), and a list $S_{1}(\xi)$ of squares that were propagated to ξ from its (proper) descendants. The total length of all these lists is still $O(n \log n)$.

We now take each node ξ of T_{1}, and construct a secondary hereditary segment tree $T_{2}^{(\xi)}$ on the y-projections of the squares in $L_{1}(\xi) \cup S_{1}(\xi)$. Again, each node η of any secondary tree stores two lists: the standard list $L_{2}(\eta)$ of 'long' squares, and a list $S_{2}(\eta)$ of 'short' squares, propagated from the proper descendants of η. The total size of the structure is $O\left(n \log ^{2} n\right)$.

Let v be a vertex of the union, lying on the boundaries of two sets $a, b \in \mathcal{C}$. We take the leaf ζ of T_{1} whose x-interval contains the x-coordinate of v, and consider the path from ζ to the root of T_{1}. There is a unique node ξ on that path such that one of Q_{a}, Q_{b} is stored at $L_{1}(\xi)$ and the other square is stored at $L_{1}(\xi) \cup S_{1}(\xi)$. Repeating this for the secondary tree $T_{2}^{(\xi)}$ and the y-coordinate, we obtain a unique node η of $T_{2}^{(\xi)}$ (in fact of the whole structure) such that v lies in the rectangle R_{η}, defined as the cartesian product of the x-interval associated with ξ and the y-interval associated with η, and such that one of the squares Q_{a}, Q_{b} is stored at $L_{2}(\eta)$ and the other is stored at $L_{2}(\eta) \cup S_{2}(\eta)$.

Our strategy is thus to iterate over all vertices η of all the secondary trees $T_{2}^{(\xi)}$, and, for each fixed ξ, η, prove a near-linear upper bound on the number of vertices v of U, incident to a pair of objects $a, b \in \mathcal{C}$, satisfying

- $v \in R_{\eta}$;
- both squares Q_{a}, Q_{b} are in $L_{2}(\eta) \cup S_{2}(\eta)$ (and thus also in $L_{1}(\xi) \cup S_{1}(\xi)$).
- At least one of these squares is in $L_{1}(\xi)$, and at least one is in $L_{2}(\eta)$.

We prune the sets $L_{2}(\eta), S_{2}(\eta)$, so as to retain only squares Q_{a} whose object a intersects R_{η}. Clearly, the a and b above are not pruned by this rule. We continue to use the same notation $L_{2}(\eta), S_{2}(\eta)$, for the pruned sets.

Let ξ and η be fixed.
Lemma 4.1 (a) Suppose that the height of R_{η} is larger than or equal to its width. Then there exists a set P_{η} of $O(1)$ points, all lying in the rectangle R_{η}^{\prime} obtained by scaling up R_{η} by a factor of 2 about its center, such that any $a \in \mathcal{C}$ with $Q_{a} \in L_{2}(\eta)$ has a nonempty intersection with P_{η}.
(b) Suppose that the height of R_{η} is smaller than its width. Then there exists a set P_{η} of $O(1)$ points, as above, such that any $a \in \mathcal{C}$ with $Q_{a} \in L_{1}(\xi) \cap\left(L_{2}(\eta) \cup S_{2}(\eta)\right)$ has a nonempty intersection with P_{η}.

Proof: Consider the proof of (a). Let $a \in \mathcal{C}$ be such that $Q_{a} \in L_{2}(\eta)$. Since (i) a intersects R_{η}, (ii) the y-projection of Q_{a} contains that of R_{η}, (iii) the y-projection of R_{η}^{\prime} is at least as large as its x-projection, and (iv) a is α-fat, it follows that the area of $a \cap R_{\eta}^{\prime}$ is at least some fixed portion of the area of R_{η}^{\prime} (see [6]). Hence, if we place a sufficiently dense grid of $O(1)$ points within R_{η}^{\prime}, at least one of them will lie in a. The proof of (b) is fully symmetric.

Let P_{η} be the point set yielded by Lemma 4.1 , and fix a point p in P_{η}. Let $\mathcal{C}_{1}(p)$ (resp. $\mathcal{C}_{2}(p)$) denote the collection of sets $a \in \mathcal{C}$ that contain (resp. do not contain) p, and whose enclosing squares Q_{a} are in $L_{2}(\eta) \cup S_{2}(\eta)$. The preceding analysis implies that each vertex v of U that satisfies the above conditions has at least one $p \in P_{\eta}$ such that one of the sets whose boundaries contain v lies in $\mathcal{C}_{1}(p)$ and the other set lies in $\mathcal{C}_{1}(p) \cup \mathcal{C}_{2}(p)$.

All these reductions imply that it suffices to solve the following problem: We are given two families $\mathcal{C}_{1}, \mathcal{C}_{2}$ of α-fat convex objects in the plane, each pair of whose boundaries intersect at most s times. We are also given that all the objects in \mathcal{C}_{1} contain a fixed point, which from now on we take to be the origin. We want to obtain a near-linear bound for the number of vertices of the union of $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ that lie on the boundary of at least one set in \mathcal{C}_{1}.

Put $m_{1}=\left|\mathcal{C}_{1}\right|$ and $m_{2}=\left|\mathcal{C}_{2}\right|$. Let U_{1} denote the union of \mathcal{C}_{1}. If we represent the boundary of every $c \in \mathcal{C}_{1}$ as the graph of a function $r=r_{c}(\theta)$ in polar coordinates,
the boundary of U_{1} is the graph of the upper envelope of these functions. Since any pair of these functions intersect in at most s points, the number of vertices of U_{1} is at most $\lambda_{s}\left(m_{1}\right)$ [11].

For each $a \in \mathcal{C}_{2}$, we construct an inner fat inscribed polygon P_{a}, as in Section 3, with the additional proviso that the vertices of P_{a} also include the two points on ∂a that have extreme clockwise and counterclockwise orientations. (Since a does not contain the origin, these points are well defined, except that any of them may actually be replaced by a radially-directed segment on ∂a; in this case, the two endpoints of such an interval are assumed to be vertices of P_{a}.)

Let U_{2} denote the union of the polygons P_{a}, for $a \in \mathcal{C}_{2}$. By the result of [9], the number of vertices of U_{2} is $O\left(m_{2} \log \log m_{2}\right)$.

Step II. As an intermediate step, we bound the complexity of $U^{*}=U_{1} \cup U_{2}$. It suffices to bound the number of 'mixed' vertices of U^{*}, namely, vertices that lie on both ∂U_{1} and ∂U_{2}.

Figure 6:

To begin with, we take each $a \in \mathcal{C}_{1}$ and modify its inner fat inscribed polygon P_{a} by adding all the vertices of ∂U_{1} that lie on ∂a as vertices of P_{a}. We obtain a collection of new polygons P_{a}^{*}, which may now have more than a constant number of
vertices on each. Still, the overall number of their vertices is $O\left(\lambda_{s}\left(m_{1}\right)\right)$.
Next, we take each point w which is either a vertex of U_{1} or a vertex of some P_{a}, and connect it by a straight segment to the origin. These segments partition U_{1} into 'slices', each bounded by two of these segments and by a portion of the boundary of a single set in \mathcal{C}_{1}. Each slice is further subdivided, by the chord connecting its two vertices, into a cap (as in Section 3) and a triangle with the origin as a vertex. We also define the wedge $W(\sigma)$ of a slice σ to be the positive hull of σ (it is the wedge with the origin as apex and with two bounding rays containing the segments bounding σ).

Let v be a mixed vertex, lying on the boundary of a set $a \in \mathcal{C}_{1}$ and on the boundary of a polygon P_{b} for some $b \in \mathcal{C}_{2}$. Let σ be the slice of U_{1} that contains v, and let e be the edge of P_{b} that contains v. Suppose first that P_{b} and the origin lie on opposite sides of the line containing e. If e intersects $\sigma \cap \partial a$ at two points, then Lemma 3.4(iv.b) implies that P_{b} (or, more precisely, the inner fat triangle of P_{b} having e as an edge) and σ intersect in just two points (one of which is v), so v is a regular vertex of U^{*} (viewed as the union of the slices and the inscribed fat polygons of the sets in \mathcal{C}_{2}). By Theorem 2.1, the number of such vertices is at most $2 I+6\left(m_{1}+m_{2}\right)-12$, where I is the number of irregular vertices of U^{*}. It thus suffices to bound the number of irregular mixed vertices of U^{*}, so the above case can be ignored. If e intersects $\sigma \cap \partial a$ only at v, then it must intersect the chord of σ, or end inside the cap. This means that if we follow e from v into σ, we encounter there a vertex of the union $S_{1} \cup U_{2}$, where S_{1} is the star-shaped polygon composed of all the slice chords. We then charge v to the first such vertex that we encounter, and note that this charging is unique.

Lemma 4.2 The complexity of $S_{1} \cup U_{2}$ is $O\left(\left(\lambda_{s}\left(m_{1}\right)+m_{2}\right) \log \log n\right)$.
Proof: We take the modified inscribed fat polygons P_{a}^{*}, and decompose each of them into fat triangles, as in Section 3. It is clear that ∂S_{1} is contained in the boundary of the union of these triangles. It follows that every vertex of $S_{1} \cup U_{2}$ is also a vertex of the union of $O\left(\lambda_{s}\left(m_{1}\right)+m_{2}\right) \alpha^{\prime}$-fat triangles, and the lemma thus follows from [9].

Hence, the number of vertices v in the preceding case is $O\left(\left(\lambda_{s}\left(m_{1}\right)+m_{2}\right) \log \log n\right)$.
We may therefore assume that P_{b} and the origin lie on the same side of the line containing e. The intersection of e and of $\sigma \cap \partial a$ consists of one or two points. Suppose first that there is only one point of intersection, namely v. We trace e from v into σ, and note that the line containing e must intersect the boundary of the cap of σ at another point v^{\prime}. If we encounter a vertex w of U_{2} (which can be the endpoint of e or an earlier point on e) before reaching v^{\prime}, we charge v to w and note that w can be charged at most twice. The overall number of such vertices v is $O\left(m_{2} \log \log m_{2}\right)$.

Otherwise we reach v^{\prime}, which necessarily lies on the chord of σ. As above, v^{\prime} is a vertex of the union $S_{1} \cup U_{2}$, and we can charge v to v^{\prime}, note that the charging is unique, and conclude, by Lemma 4.2, that the number of vertices v in this subcase is $O\left(\left(\lambda_{s}\left(m_{1}\right)+m_{2}\right) \log \log n\right)$.

Suppose then that e intersects $\sigma \cap \partial a$ at two points, v and v^{\prime}, and that its portion within σ contains no vertex of U_{2} (otherwise we can charge v to the first such vertex along e, as above). Hence v^{\prime} is also a vertex of U^{*}. If e terminates within the wedge $W(\sigma)$ of σ, we can charge v and v^{\prime} to such an endpoint. This charging is 'almost unique': Since these wedges are pairwise openly disjoint, the endpoint determines e (there are in fact two choices for e) and σ (there can be two choices for σ if the endpoint lies on a wedge boundary), so v and v^{\prime} are also determined (at worst there can be four such pairs). The total number of vertices v in this subcase is thus $O\left(m_{2}\right)$. We may thus assume that e fully crosses the wedge $W(\sigma)$.

Figure 7: Two cases where P_{b} and the origin lie on the same side of the line containing e

Trace $\sigma \cap \partial a$ from v and from v^{\prime} into P_{b}. If we reach along one of these arcs an endpoint w of $\sigma \cap \partial a$, we charge v and v^{\prime} to w, note that w can be charged at most twice, and conclude that the number of vertices v in this subcase is $O\left(\lambda_{s}\left(m_{1}\right)\right)$. Otherwise, each of these arcs is crossed by another edge of the inner fat triangle Δ bounded by e. The analysis in Lemma 3.4 implies that it is impossible that such an edge $e^{\prime} \neq e$ crosses both arcs, and it is impossible for such an e^{\prime} to cross the same arc twice (in both cases one of the angles of Δ would have to be at most $2 \pi / t<\beta_{0}$). Since the common endpoint z of e and e^{\prime} lies outside the wedge $W(\sigma)$, it follows that as we trace e^{\prime} from z, we first meet the wedge boundary (still outside σ) and then cross $\sigma \cap \partial a$. Since this must also hold for the third edge $e^{\prime \prime}$ of Δ, it follows that the vertex q of Δ where e^{\prime} and $e^{\prime \prime}$ meet must lie inside σ. We can thus charge v and v^{\prime} to q, note that the charging is unique (knowing q we also know σ and Δ), and conclude that the number of vertices v in this subcase is $O\left(m_{2}\right)$.

We have thus shown that the complexity of U^{*} is $O\left(\left(\lambda_{s}\left(m_{1}\right)+m_{2}\right) \log \log n\right)$.

Step III. We finally turn to estimate the number of mixed vertices of the union U of $\mathcal{C}_{1} \cup \mathcal{C}_{2}$.

First, we take all the mixed vertices of U^{*} and connect them to the origin, thereby splitting some slices of U_{1} into subslices. The total number of new slices is $O\left(\left(\lambda_{s}\left(m_{1}\right)+\right.\right.$ $\left.m_{2}\right) \log \log n$). Second, we concentrate only on irregular vertices of the union. We will later exploit Theorem 2.1 to take into account regular vertices as well.

Let v be an irregular vertex of U, lying on the boundary of a set $a \in \mathcal{C}_{1}$ and a set $b \in \mathcal{C}_{2}$. Let σ be the (new) slice of U_{1} containing v. With no loss of generality, we may assume that when we follow $\partial \sigma$ from v in the counterclockwise direction, we enter into b. The complementary type of irregular vertices will be handled by a fully symmetric analysis.

We will further classify these vertices into two subcategories: For each $b \in \mathcal{C}_{2}$, the two tangents from the origin to b divide ∂b into two arcs, one being 'visible' from the origin and the other being 'invisible'. We refer to these portions as the lower boundary and upper boundary of b, respectively. We will consider separately vertices v as above that lie on the lower boundaries of the sets of \mathcal{C}_{2} and vertices that lie on the upper boundaries.

Figure 8: The case of vertices on lower boundaries

Vertices on lower boundaries. Let v and v^{\prime} be two vertices as above, lying within a single new slice σ and incident to the lower boundaries of two respective and distinct sets $b, b^{\prime} \in \mathcal{C}_{2}$, see Figure 8. With no loss of generality, assume that v lies clockwise to v^{\prime}. Consider the portion γ of ∂a between v and v^{\prime}. The arc γ partially overlaps the interior of b near v and it must cross ∂b again. If it only crosses the lower boundary of b then it is easily checked that ∂a and ∂b intersect only twice, so v is a regular
vertex, contrary to assumption. Hence, γ also crosses the upper boundary of b. But then, by construction, γ must also cross the boundary of P_{b}, and thus it must contain a vertex of U^{*}, which implies, by construction, that v and v^{\prime} cannot belong to the same new slice, again a contradiction.

We thus conclude that any new slice can have at most one vertex of the union of the type under consideration, so the number of these vertices is $O\left(\left(\lambda_{s}\left(m_{1}\right)+m_{2}\right) \log \log n\right)$.

Figure 9: ∂b and ∂b^{\prime} must cross inside the shaded wedge

Vertices on upper boundaries. Let us fix the new slice σ, as above, and consider the number N_{σ} of sets in \mathcal{C}_{2} whose upper boundaries are incident to vertices v of the above kind that lie on $\sigma \cap \partial a$. If such a set b has a supporting line that passes through the origin and is contained in the wedge $W(\sigma)$, then we charge the corresponding vertex or vertices to that line. This charging is almost unique, since the line determines both the set b and the slice σ. Hence the number of vertices v of this kind is at most $s m_{2}$. We can therefore exclude such pairs (b, σ) from our analysis.

Let v and v^{\prime} be two vertices as above, lying within a single new slice σ and incident to the upper boundaries of two respective and distinct sets $b, b^{\prime} \in \mathcal{C}_{2}$; see Figure 9 . With no loss of generality, assume that v lies clockwise to v^{\prime}. Consider the portion γ of ∂a between v and v^{\prime}. As above, the arc γ partially overlaps the interior of b near v and it must cross ∂b again. If it crosses the lower boundary of b then, arguing as above, γ must contain a vertex of U^{*}, which is impossible. Hence γ only crosses the upper boundary of b. The same argument also implies that γ cannot cross the lower boundary of b^{\prime}.

We claim that ∂b and ∂b^{\prime} must intersect within the wedge bounded by the two rays $\overrightarrow{o v}, o \vec{v}^{\prime}$, emerging from the origin towards v and v^{\prime}, respectively. Indeed, if this were false, then either the ray $\overrightarrow{o v}$ would have to intersect b^{\prime} in a segment disjoint from the segment $o v$, or the ray $o \vec{v}^{\prime}$ would have to intersect b in a segment disjoint from $o v^{\prime}$. However, either of these configurations would imply that γ crosses the lower boundary of either b or b^{\prime}, which, as we have just argued, is impossible. This establishes our claim. See Figure 9 for an illustration.

We choose some threshold parameter k, and consider the following two cases:
(a) $N_{\sigma} \leq k$: Since the boundary of each of these N_{σ} sets intersects ∂a in at most $s / 2$ vertices v of the type considered here, it follows that $\sigma \cap \partial a$ contains at most $s k / 2$ such vertices. Summing this bound over all new slices σ with $N_{\sigma} \leq k$, the overall number of vertices of U of this type in these slices is at most

$$
O\left(k\left(\lambda_{s}\left(m_{1}\right)+m_{2}\right) \log \log n\right)
$$

(b) $N_{\sigma}>k$: As argued above, the boundary of each of the N_{σ} sets of \mathcal{C}_{2} that are incident to the vertices under consideration intersects at least k other such boundaries within the angular span of $W(\sigma)$. It follows that the arrangement $\mathcal{A}\left(\mathcal{C}_{2}\right)$ contains $\Omega\left(k N_{\sigma}\right)$ vertices at level at most k (i.e., vertices contained in at most k other sets of \mathcal{C}_{2}). On the other hand, arguing as in case (a), the number of vertices v of the above kind that are incident to $\sigma \cap \partial a$ is $\leq s N_{\sigma} / 2$. Hence, the number of these vertices is at most $O\left(N_{\sigma} /\left(k N_{\sigma}\right)\right)=O(1 / k)$ times the number of vertices of $\mathcal{A}\left(\mathcal{C}_{2}\right)$ within $W(\sigma)$ at level at most k. Summing this inequality over all relevant slices σ, the overall number of such vertices is

$$
O\left(\frac{1}{k} F_{\leq k}\left(\mathcal{C}_{2}\right)\right)
$$

where $F_{\leq k}\left(\mathcal{C}_{2}\right)$ is the number of vertices of $\mathcal{A}\left(C_{2}\right)$ at level at most k. Using the Clarkson-Shor probabilistic analysis technique [3], we have $F_{\leq k}\left(\mathcal{C}_{2}\right)=O\left(k^{2} F\left(m_{2} / k\right)\right)$, where $F(r)$ is the maximum number of vertices of the union of r compact convex α-fat sets, each pair of whose boundaries intersect at most s times (recall that α and s are assumed to be fixed parameters). By the induction hypothesis, we have $F\left(m_{2} / k\right) \leq B\left(m_{2} / k\right)^{1+\varepsilon}$.

Hence, collecting all bounds, and taking into account regular vertices too (using Theorem 2.1), we obtain that the number of mixed vertices of U is at most

$$
C\left(k\left(\lambda_{s}\left(m_{1}\right)+m_{2}\right) \log \log n+\frac{B n^{\varepsilon}}{k^{\varepsilon}} m_{2}\right) .
$$

We now sum this bound over all nodes ξ and η of our segment trees and over the constant number of stabbing points used in each node, observing that the sums of the quantities m_{1}, m_{2} are both $O\left(n \log ^{2} n\right)$. Hence the total number of vertices of the union is

$$
C\left(k \lambda_{s}(n) \log ^{2} n \log \log n+\frac{\log ^{2} n}{k^{\varepsilon}} B n^{1+\varepsilon}\right)
$$

We now choose $k=n^{\varepsilon / 2}$, and observe that the first term in this bound is at most $A n^{1+\varepsilon}$, for a sufficiently large constant A, and the second term is at most

$$
\frac{C \log ^{2} n}{n^{\varepsilon^{2} / 2}} \cdot B n^{1+\varepsilon}
$$

Hence this term is smaller than $\frac{1}{2} B n^{1+\varepsilon}$, provided n is larger than some threshold $n_{0}(\varepsilon)$ that depends on ε, α and s. We now choose B so that (i) $B>2 A$ and (ii) $B n^{1+\varepsilon}$ is an upper bound for the complexity of the union for each $n \leq n_{0}(\varepsilon)$. The induction step is now complete.

This concludes the proof of Theorem 1.1.

Acknowledgment

We wish to thank János Pach for helpful discussions concerning this problem. These discussions have led to the paper [10], on whose main result (Theorem 2.1) the current paper strongly depends.

References

[1] P. Agarwal, M. Katz and M. Sharir, Computing depth order and related problems, Comput. Geom. Theory Appls. 5 (1995), 187-206.
[2] B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir, Algorithms for bichromatic line segment problems and polyhedral terrains, Algorithmica 11 (1994), 116132.
[3] K. Clarkson and P. Shor, Applications of random sampling in computational geometry, II, Discrete Comput. Geom. 4 (1989), 387-421.
[4] A. Efrat and M. Sharir, The complexity of the union of fat objects in the plane, Proc. 13th ACM Symp. on Computational Geometry (1997), 104-112.
[5] A. Efrat, M. Sharir and A. Ziv, Computing the smallest k-enclosing circle and related problems, Comput. Geom. Theory Appls. 4 (1994), 119-136.
[6] M. Katz, 3-D vertical ray shooting and 2-D point enclosure, range searching, and arc shooting amidst convex fat objects, to appear in Comput. Geom. Theory Appls. Also in a Tech. Report 2583, INRIA, Sophia-Antipolis, France, 1995.
[7] M. Katz, M. Overmars and M. Sharir, Efficient output sensitive hidden surface removal for objects with small union size, Comput. Geom. Theory Appls. 2 (1992), 223-234.
[8] K. Kedem, R. Livne, J. Pach and M. Sharir, On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles, Discrete Comput. Geom. 1 (1986), 59-71.
[9] J. Matoušek, J. Pach, M. Sharir, S. Sifrony and E. Welzl, Fat triangles determine linearly many holes, SIAM J. Comput. 23 (1994), 154-169.
[10] J. Pach and M. Sharir, On the boundary of the union of planar convex sets, to appear in Discrete Comput. Geom.
[11] M. Sharir and P.K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, New York, 1995.
[12] F. van der Stappen, Motion Planning amidst Fat Obstacles, Ph.D. Dissertation, Utrecht University, 1994.
[13] M. van Kreveld, On fat partitioning, fat covering, and the union size of polygons, Proc. 3rd Workshop Algorithms Data Struct., Lecture Notes in Computer Science, Vol. 709, Springer-Verlag, 1993, 452-463.

[^0]: *Work by Micha Sharir has been supported by the Hermann Minkowski - MINERVA Center for Geometry at Tel Aviv University, by a grant from the U.S.-Israeli Binational Science Foundation, by National Science Foundation Grants CCR-94-24398 and CCR-93-11127, and by a grant from the G.I.F. - the German Israeli Foundation for Scientific Research and Development.
 ${ }^{\dagger}$ School of Mathematical Sciences, Tel Aviv University. alone@math.tau.ac.il
 ${ }^{\ddagger}$ School of Mathematical Sciences, Tel Aviv University, and Courant Institute of Mathematical Sciences, New York University. sharir@math.tau.ac.il

[^1]: ${ }^{1}$ For triangles, there is an equivalent definition of fatness that requires all angles to be at least some fixed constant α_{0}; in [9], this is called α_{0}-fatness.

