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Abstract

The problem of curve matching appears in many applicationaios, like time series analysis, shape
matching, speech recognition, and signature verificagomng others. Curve matching has been studied
extensively by computational geometers, and many meastis@silarity have been examined, among them
being the Fechet distance (sometimes referred in folklore as the ‘tag” distance).

A measure that is very closely related to thééhet distance but has never been studied in a geometric
context is theDynamic Time Warpingneasure (DTW), first used in the context of speech recognifibis
measure is ubiquitous across different domains, a sungrfsict because notions of similarity usually vary
significantly depending on the application. However, thisasure suffers from some drawbacks, most
importantly the fact that it is defined between sequencesbftp rather than curves. Thus, the way in
which a curve is sampled to yield such a sequence can draitatidfect the quality of the result. Some
attempts have been made to generalize the DTW to continummaids, but the resulting algorithms have
exponential complexity.

In this paper we propose similarity measures that attemgapeure the “spirit” of dynamic time warping
while being defined over continuous domains, and presemieffi algorithms for computing them. Our
formulation leads to a very interesting connection with ifiigdshort paths in @ombinatorial manifold
defined on the input chains, and in a deeper sense relates wathlight travels in a medium of variable
refractivity.

1 Introduction

The problem otturve matchingtudies ways of measuring the similarity between two curves. Curve matching
appears in a variety of different domains; analysis of stock market grgmtein shape matching, speech
recognition, computer visiomtc The main questions associated with curve matching in a specific domain are:
(1) what is a good measure of similarity between cury@how can we compute it (or some approximation of

it) efficiently? Other questions that are often of interest are: given ddséaof curves and a candidate curve,
can we find a nearest neighbor to this curve in the database? caluster curves with respect to a given
measure of similarity?

Curve matching has been studied extensively in the domain of computaticrraktry. Here the curves
are usually assumed to be represented as polygonal chains in the plenmea@sures that have been used to
compare them include the Hausdorff distance [ABB95],ttiraing curvedistance [ACH 91, CG97], and the
Fréchet distance.

Dog-Man Measures  The FEéchet distance [AERWO03, BBW06, AG95, AKWO01, BPRWO05, CM04, g1y
Ven99] has received much attention as a measure of curve similarity. hidseto a general class of distance



measures that are sometimes called “dog-man” distances. This nicknarséarike following reason. Picture
a man and a dog, each of whom is positioned at the start of one of the tew givves. The man holds the
(elastic) leash that the dog is tied to. At time 0, the man and the dog start walkitigpiomespective curves

towards the respective endpoints. Neither of them can teleport i.e jumpofnerpoint to the next, and in most
settings (see [EIV01] for an exception), both the man and dog are aoredrto move (monotonically) forward
along the curve, although they can move at arbitrary speeds relativeli@mteer. We say that a motion of dog
and man idegal if it satisfies the above constraints. The distance between the two curvew idefined as a

function of the leash length (or the leash vector itself), typically minimized di/ergal motions. For example,

the Féchet distance itself is the minimum (over all trajectories) of the maximum leasth leegded for a fixed

trajectory. The general intuition behind the dog-man measures is that seycarth defined over continuous
parametrizations, they preserve the notion of continuity along the curvehasdre well suited to measuring
curve similarity.

Sum Measures and Dynamic Time Warping The FEchet distance is a max measure; it is defined in
terms of the maximum leash length over a parametrization. This dependenaeroaxttmum value can often
lead to non-robust behavior, where small variations in the input can dikedistance function by a large
amount. Sum- (or average-based) measures are a way of smoothindisioctions, and this motivates our
effort. We note that traditionally, it has been harder to compute such sursdnesghan max-measures.

One sum-measure that has been in widespread use in various applicatistisagxpressible as a “dog-man”
distance. Itis known a@@ynamic Time Warpin¢DTW), and was first proposed in the 60s as a measure of speech
signal similarity [RH93]. Since then, it has been used in a variety of contextiatabases [CW99, GS00], in
computer vision [SB94, MP99, MP03, RM02], in protein structure matchigl$B98], and in time series
clustering and data mining [OFCO00, KP99, RK04]. Serra and Bertho845gropose a continuous dynamic
time warping technique for subpixel contour matching. Munich and PeMPR&9] explore the use of dynamic
time warping as a measure of signature similarity and pose the question of w@tkiauous versions of these
measures can be defined. However, the complexity of their algorithms gawbkinatorially and heuristic
constraints are needed to make the problem tractable. In the dog-man gk#iBd,W distance between two
curves (defined as sequences of points) isstlmof the leash lengths measured at each (discrete) position
(minimized over all trajectories).

The DTW is very easy to compute. Given polygonal curves represégtédte sequences of the vertices, of
lengthm andn respectively, a simple dynamic programming algorithm yields the optimal solutiGrjrimn )
time. Given its wide usage in different domains, we would like to use the DTWraesazure of curve similarity.
However, the DTW is defined over sequences of points, and is thus notdiately suitable for general curve
matching. One could conceivably sample the input curves, and then cothpu®dW. However It is not hard
to construct examples of curves that are almost identical to each otheralguappear quite different under the
DTW because of an incorrect sampling of points on each curve (seeeFiju

1.1 Our Work

Our goal in this paper is to presesgntinuousdynamic time warping measures for computing curve similarity.
We describe exact and approximate algorithms for computing the continuapggy distance, and demon-

strate their utility for practical applications.

Shortest Paths. The continuous DTW is strongly related to paths on 2D manifolds. We defimavarsal

combinatorial manifold in terms of two input polygonal chains: we can reyortes| possible mappings between

two curves as paths on the manifold. We define a class of continuousatizagons of the DTW, and show that
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Figure 1: Matching two curves using the discrete DTW (top) and matching the samesausirgy Continuous
DTW (bottom). (a) shows two curves with a slight difference. (b) andd@honstrate the matching results
under two different samplings of the curves. The numbers shown in theeBraag the warping distance of the
matching. Note that the discrete DTW can lead to dramatically different residtéocthe sampling while the
continuous DTW is not significantly affected by the sampling.

computing any of these variants corresponds to computing an appropriatiglyted geodesic on the universal
manifold. In the special case of a uniform weight function, the problatages to computing ordinary shortest
paths in a polyhedral surface, and we present an algorithm that casrthigén timeO (nm(m + n) log(m +
n)), wherem andn are the number of segments in the two curves. We also present an apgroxiaigorithm
that runs in timeD (mnr?), wherer is a discretization parameter that controls the approximation ratio.

Light Fields. An interesting aspect of our approach is the connection it draws betlyeamic time warping
and light paths in a heterogenous medium. This analogy gives us a simpfeoptbe shortest path result
described above, and in general provides an alternate method to comgpenimglized forms of dynamic time
warping between curves.

Paper Outline. We define our continuous time warping measures in Section 3, and cham@dbem in
terms of shortest paths along a combinatorial manifold. In Section 4 we ebtétidisanalogy between the
continuous measures and light flow. Exact and approximate algorithmsemenped in Section 5. We mention
in Section 6 possible strategies for solving generalized time warping problientkesuse of théast march
method of Sethian. Implementation details of our algorithms are described inrgéctinally in Section 8
we demonstrate the application of our measures to the problsigrwdture verification

2 Definitions

We denote vectors as bold faced lettexs . . .). A vectorv will have componentsx,vyl. The derivative of
a functionf(t) with respect to the parametewill be denoted a$(t). We denote the standard Minkowski sum
of two point setsA,BastheseA @B ={a+b|ac A,b € B},and definlA &6 B = A & (—B).

1In this paper, all vectors will be iRR?.



LetT = (t1,t2,...t) be asequence of time steps. et (a) andB = (b;) be two functions defined over
Tiea = A(ty) andb; = B(ty). We assume that these are the vertices of polygonal paths, which apptex
input curves. The Dynamic Time Warping (DTW) measdigny is a distance defined on these functighs
andB to be:

dptw(A, B) = min D b —al 1)

Ok :(1,].)6 o

whereo = (01, 07,...,0m),0; € [1...n]%is a sequence satisfying:
Monotonicity: For all (a,b), (¢, d) € 0 wherea < ¢, we haveb < d.
Continuity: Foroi = (xi,Yi), 0141 = (Xi41,Yir1), we havexi 1 —x < T,y —yi < 1.

The underlying norm used is typically tlie norm, although this is not essential.
A translation-invariantversion ofdpmy [MP99] can be defined as follows. Let = (i,j), and letvy =
b; —&. We can rewrite equation 1 as

dotw(A,B) =min 3 [|vi|

oxEo
The measurélDTW is now defined as follows:

dprw(A,B) = min D> vk — vl

0<k<m

3 A Universal Manifold

For the purpose of this papek, andB will be polygonal chains. Let a polygonal chan: [0, m] — R? be
a curve such that for eadhe {0,...,m — 1}, Ajj;4q) is affine, i.e. A(i +A) = (1 —A)A(i) + AA(i + 1),
0 <A < 1. For such a chaiA, denotgA| = m. LetAj denote the segmeAt;; ; 47, andA;(A) denote the point
(T—=NA(I) +AA(I +1).

We define a combinatorial manifolt1 (A, B). Let|A] = m,|B| =n. For1 <i<m,1 <j < n,letthe
patchP;; be defined as the s& © A; (see Figure 2). PatcRy; shares edges with the three patcigsg, 1,
Pit15, Pio1, andP; ;1 (see Figure 3). Since we define a patch as a closed surface, diagadaltent
patchesP; ; andP;44 ;11 share a point. It is possible that a patch degenerates into a line (for exé@mApknd
B; are isometric and parallel); this will not affect the construction of the sar(the reader may realize at this
point that the manifold\ (A, B) is a PL 2-manifold [ACM97]). It is important to remember that this is not
an ordinary manifold in that patches may intersect each other and beedatgerhowever its local adjacency
properties are all that we need for the algorithms we describe.

Each patch has its own local coordinate system. For a poiatB; () — Aj(A), its coordinates ofP;; are
(A, u). Thus any curve€ on Py; defines a parametrizatianalong the segmen#s;, B;, and monotonicity ofx
is equivalent to monotonicity af.

3.1 A Continuous Measure

We now define a class of continuous time warping measures on cAngsLet o : [0, m] — [0,n] be a
continuous monotone function, and ief(t) = B(«(t)) — A(t). Note thatv,(t) is a function from[0, m] to
M(A,B). Letf(v) : M(A,B) — R be aweightfunction. We define the measude(A, B) as
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Figure 2:A pair of segment#\; andB; and the pathP; ; constructed from them. The four vertices of the patch
are(i,j),(i,j +1),(i+1,j + and(i+1,j).
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Figure 3: A pair of curves and the corresponding manifdid(A,B). The bold line is the shortest path from
(0,0) to (2,2).

(A, B) = min j;“f(v) [Va(t)] dt @)

For the special case= 1,
m
i(A,B) = min | " [lt)]dt ©

It can be shown that both measures are metrics. The medsunas the additional property of being
translation-invariant dJ(A, B) = d;(A +t,b), wheret is an arbitrary vector. It can be thought of as the
continuous analogue @fpmyy.

Intuitively, the key term ird¢(A, B) is ||[V«(t)||. As we see in Figure 4, the rate of change gft) captures the
variation in the parametrization, and the weight functi@ilows us to penalize this variation non-uniformly.

Let f(x,y) : R? — R be a function on the plane, and &be a curve irR%. The integral

ch(x,y)ds

denotes the path integral bbverC whereds is the path element alor@g If C is written in terms of a parameter
tasC = C(t),t € [0, ml], the path elemends alongC can be written agls = ||C(t)||dt and the above path
integral can be written as ([BL86])

jf(cx(t),cy(t)) IE()]dt

Given a parametrization, the functionv,(t) is a curve inM(A,B). Thus,d¢(A, B) can be written as a
path integral inM (A, B).
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Figure 4:The rate of change of,(t)

3.2 Finding An Optimal Path

In order to evaluat@;, we need to determine the nature of the optimal pathvifA, B).

Lemma 3.1 Lety; : [0,1] — A; be monotone parameterizations of the segmAntsAz such thaty;(t) =
Ai(0) + (Ai(l) — Ai(0) [ ai(u)du where ai(t) > 0 ¥t € [0,1] and [joq(w)du = 1. Let® =
jo dt (x2(t) — x1(t)))dt wherey : R? — R is a convex function. The® is minimized whermx;(t) =
ao(t) =t.

Proof: Since-&x;(t) = ai(t)[Ai(1) — Ai(0)], we have

1
o = L Yloz(t)Az(1) — Az(0) — xi(t)Ax(1) — As(0))dt

—_

> P \ o2(t)(A2(1) — A2(0)) — aq (t) (A1) — A1(0))dt)
= P((A2(1) = A2(0)) — (A1(1) = A1(0)))

where the inequality follows from Jensen'’s inequality. We can attain this mininalne by settingx;(t) = t.
[ |

The norm|| - || is convex, and thus the conditions of Lemma 3.1 apply. Thus the optimal pathusifben
parametrization. Substituting in Equation 3 yields the following result.

Lemma 3.2 If A, B consist of single segments, then
di(A,B) =|(B(1) —A(1)) — (B(0) — A(0))]

But this is merely the shortest Euclidean distance between the p0jdtsand(1, 1) on M (A, B). Extending
this over all patches, this yields the following theorem.

Theorem 3.1 d;(A, B) is equal to the length of the shortest monotone pathvifA, B) from the point0, 0)
on Py o to the point(m, n) on Py .



Proof: Define a patht on M to begoodif it is monotone, connects the poift, 0) on Py o to the point(m, n)

on Pmn, and its intersection with every patch #f is, if not empty, consisting of a single edge. Note that
every good path corresponds to a matching betweamdB, (i.e., the functionx() used in equation 3), and
the const of the corresponding matching is, according to Lemma 3.1, equhbks lEngth ofrt. In particular,
there is patht* that corresponds to the optimum matching. Clearly this is exactly the shortatpgth. H

4 Light Fields and the Eikonal Equation

In general, the form of the functiofwill determine our ability to computéd(A, B). Traditional variational
methods can be employed to solve the functional [BM91], but it is typicallg kado this for arbitrary func-
tions.

However, there is an alternative formulation of the above path integraki@ara two-dimensional refractive
medium whose refractive index at the pofrty) is given by the functiorf(x,y). Then the patks that a light
beam will take to go from a poird to a pointb in this medium is the curvé& from ato b that minimizes the
path integrad [BWS80, §3.1]

L f(x,y)ds

Lemma 4.1 Let Aj and B; be two segments, and I&%; be the associated patch. Assume that the path that
light takes to travel fronfi, j) to (i + h,j + k), (h, k > 0) in Py; is monotone with respect to the patch. Then
d¢(Ai, Bj) is equal to the length of the path that a light beam will take fton®) to (1, 1) in a medium isometric

to P, where the refractive index of any point, y) is f(x, y).

Light flow in nonhomogenous fields has been studied extensively [BW&®] working forwards from
Maxwell’s electromagnetic equations, the following equation can be dej8yB0, §3.1.1]:

IVF| =f (4)

This equation is called theikonalequation, and the functiaf is called the eikondl For isotropic mediaF
can be thought of as describing the geometric wavefronts that prophegdight rays; more formally, i€ is a
unit vector in the direction of the trajectory of a ray of light in this field, tisea V.F /1.

This formulation provides an alternate proof for Lemma 3.1 that does notnedgtly on the calculus of
variations. Setting = 1, Equation 4 can be written as

IVF[| =1
The solution to this equation consists of the family of curves
t2 4+ u? = const
In other words, the curves orthogonal to the light paths are circlesidrtne origin, implying that the light

paths are straight lines emanating from the origin, hence in the optimal solutioph= «,(t) = t, as already
shown in Lemma 3.1.

2This is a version of Fermat's principle of the shortest optical length.
3According to [BW80], the word comes from the Greek word for 'image’



5 Algorithms

In this section we discuss exact and approximation algorithms for compdiidg B). For clarity, we refer to
the traditional DTW method as discrete DTW (DDTW) and our continous measuCDTW.

5.1 An exact algorithm

Mitchell, Mount and Papadimitriou [MMP87] presented an algorithm runnin@ (k? log k) time to compute
s-t shortest paths on a general polyhedral surface wittiangles. This was subsequently improved by Chen
and Han [CH96] toO(k?2), and recently, a result by Kapoor [Kap99] showed a boun®@log® k). It is
easy to verify that the algorithm of [MMP87] can be modified to computeaotoneshortest path. Also note
that by the unfolding property of shortest paths, we only need the cotobimlastructure of the polytope and
the geometry of each face. L&t| = m and|B| = n. There areD(mn) faces in the instance of the shortest
path problem that we construct, and hence a naive bound on the ruimangf the algorithm of [MMP87] is
O(m?n?). A more careful look at the algorithm reveals that the actual running tifdg @log Q), whereQ

is the total number of subintervals of edges of triangles of the manifold. eTfidsintervals are obtained by
splitting edges based on the combinatorial structure of shortest pathsngaoints of this edge. We show that
in our settingQ is only O(mn(m+n)). Thus the running time of the algorithm of Mitchell et al. [MMP87] in
our setting is onlyQ = O(mn(m + n)log(mn)).

Figure 5: A vertical wall { = 2) is shown as a bold line on the manifald( (A, B). The wall is composed of
the left edges of patcR; o, P21, andP2 ;.

Bounding Q. We define thevertical wall of the patchP; ; to be the edge the patch shares With; ;. We define
thei-vertical wall¢; of M(A,B) to be the union of the left vertical wall of all path®g; (forj =0,...n—1).
This is a connected polygonal path. See Figure 5 for an illustration] Eixi < n andx € {;, and consider
the monotone shortest path from the origirxtd_et o(x) be the sequence of patches/of(A, B) that this path
meets, in the order that they appear along the path. We diyidéo maximally connected intervals that form
equivalence classes fofx), i.e into subintervals such that for all pointsn a subintervalg(x) is fixed.

Lety1,y2,...yx be points alond; that have pairwise distinct patch sequencés;) (1 < r < k). Note
that to specifyo(y.), it suffices to specify above which corners of cell{Bf;}, o(y) pass, and below which
corners. Observe (as in [MMP87]) thaty,) is disjoint too(y-,1), and thus there must be a corner of a patch
Py 5 thato(y,) passes below, angly,,1) passes above. Thus there must be at leastners of cells of P;;}
below o (yy), implying thatk < mn. Summing this numbers for ath vertical walls{{; ... {,, >}, this bound
implies that the total number of maximally connected interval3d igin(m + n)). Since the running time of
the algorithm is directly proportional to this quantity, we obtain the result @xgimg the rules ofn andn if
needed)



Theorem 5.1 Given two polygonal chainé, B, where|/A| = m,|B| = n, andm < n we can compute
d;(A,B) in timeO(nm?log(n)).

5.2 An Approximation Algorithm

The exact algorithm described above is slow in practice, mainly due to pnshie scaling existing code
([KOO0Q]) for computing shortest path on a terrain. It is not clear whetheareful implementation of the
algorithm would resolve this problem. Thus, in this section we present altgstithm that runs in time linear
in m - n and approximated; to any desired factor.

Lanthier et al. [LMS97] compute an approximate weighted geodesic shpe#sbetween two points on a
polyhedron surfac® by adding additional vertices (known as Steiner points) on the edgesioéaking them
into shorter edges. These points are connected via straight segmehteedbijkstra’s algorithm [Dij59] is
then used to find the shortest path. Here, we employ a similar idea of addingr3ieints to our problem.
However, the monotonicity requirement restricts the set of paths that wktoemnsider, and allows us to
compute an approximat shortest path by using dynamic programming, whictciseasier to implement and
is faster than Dijkstra’s method by a factor of [ogn).

By B,
2,2) \\\: . 2.2 .
[ RS =
. TS - % ) o B,
N B, . -+ - A\ By
A0(0,0) A0(0,0)
Ay Aq Az i Ag

Figure 6: Steiner points anfi-paths on a manifold. a) UNIFORM placement scheme and b) LENGTH place-
ment scheme. The dashed line is the optimal datand the bold line is the shortdStpath that approximates
dy.

We start by placing Steiner points on the edges of the manifdidh, B) (See Figure 6). Le$ be the set
of Steiner points and = S U A U B. A geodesic path is calledlapathif it is monotone and contains only
vertices froml". LetI"(p) be al'-path from the origin0, 0) of M (A, B) to a pointp € I'. Observe thail; can
now be approximated by the short&spath to the poinfm,n) on M(A,B). Let P be a patch ofM(A, B).
We denote the four edges Bf(left, right, bottom and top) as, e, ey, ande, respectively (See Figure 7). We
also denote thé" point on an edge, (x € {l,,b, f}) aspl. Monotonicity forces any-path of a poinp on
el Or et to pass througley, or e.. Thus if the shortedt-paths to all the points oa,. andey, are computed, the
shortest-path top can be easily found by considering all the possible paths from the poirts ande.. (See
Fig 7(a)). Specifically, the shortelstpath top can be computed as,

dmin(T(p)) = argmin, {dmin(T(p") + pp/} (5)

wherep’ € ey, U e, andpyp’ is locally monotone.

Dynamic programming can be used to compute the shditpaths to all the points oM (A, B). The pseudo
code is presented in Algorithm 1.



Algorithm 1 Compute the CDTW distance between two curixesndB
Require: CurveA ={aj,ay,...,an}
Require: CurveB ={bj,bs,...,am}
Require: s: Number of Steiner points per edge
Construct the manifoldM (A, B);
Place Steiner points af (A, B);
for i=2tondo
forj=1tomdo
Set values for points on the bottom and right edges of the atch
for k=1tos+1 do
d(pk) = min(arg min i< {d(p¥) + IpEpE T}, arg min oo < (d(pX) + [pkpr )
end for
for k=1tos+1do
d(pl) = min(arg min o<1 {d(pX) + pEp¥ 1}, arg min o Jd(PX) + pEPE )
end for
end for
end for
return d(pi“) computed over the patdh,,

i
€tpt

er
el

() P
@

Figure 7:(a) Possible paths to a point on the top edge of a pRtahthe CDTW approach. (b) Possible paths
to a point on the top edge of a patbhin the DDTW approach
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Lemma 5.1 Given two polygonal chaind and B where|A| = m and |B| = n, thend;(A, B) can be ap-
proximated by a monotone shortest pathMt(A, B) and computed i (r*mn) time wherer is the number of
Steiner points added on each edgeM(A, B). The absolute difference in cost between the approximate and
optimal paths is at modt(m + n)/r, whereL is the length of the longest segment in either of the two chains.

Proof: For each patch, we need to compute the shoftesths for2(r+ 1) points and for each point, we spend
O(r) time. Hence the time spent on each patcB{$%). We have a total ofn - n patches, so the running time
bound holds. The approximation achieved by the algorithm follows the [mofifMS97] directly. |

The approximate algorithm proposed above has the same running time astleéed®rW algorithm when
the same number of Steiner points are added to the input segments.

Remark 5.1 It is important to mention that although our approach is based on disctéatizait discretizes
the manifold rather than the input segments. The disciBt@WV approach would never yield an arbitrarily
close approximation of the shortest path if ttiecretizationor resamplings not done appropriately. Figure
7 illustrates such an example. The discrete approach restricts the wapgaitig to only three “directions”:
left, up and diagonal, so no path can go fram to pt directly, which is the shortest path fropf to pt on
the patchP. Simply adding more points on the edges would not improve the approxim&ti@contrast, our
continuous measure only requires that the warping paths are monofsshown by Lemma 5.1, as long as
there are enough Steiner points added on the manifold, the approximatiopecanade arbitrarily close to the
true answer.

6 d¢(A,B) And The Fast-March Algorithm

Solutions to the eikonal equation can in general be non-differentiablegay example is the case of light
travelling through an interface between media of different refractiviapy thus computing closed form so-
lutions analytically can be hard in all but special cases. In addition, isfussmerical accuracy need to be
addressed very carefully. Among the algorithmic solutions for weightedesigpath problems, the methods
of [ALMSO00] express running terms in terms of numerical properties ofitpet (such as the ratio of the

longest edge to the shortest edge etc).

In this section, we discuss a technique first proposed by Sethian [Set®@]applied by Kimmel and
Sethian [KS98] to solve the eikonal equation numerically in the context of atmpweighted shortest paths
The advantage of this method (called tiast marching methddare that the solution it provides converges
monotonically to the exact answer as the error parameter tends to zerthuarid a provably correct approx-
imation scheme. In addition, the method itself works by imposing a uniform gridriorgulation) on the
surface, and runs in time independent of numerical parameters of fheesur

The skeleton of the algorithm is a grid update procedure that expanff®outhe starting point in a fashion
much like the Dijkstra [Dij59] shortest path algorithm on graphs. At eachestdg unvisited grid point with
the smallest weight is visited, and all its neighbours are updated accoreinglties at their neigbours.

The crucial difference between this technique and a standard Dijkgteaatgorithm is in the step where
weights are updated. This issue is discussed at length in [S¢89R1]; the basic idea is that by using an
update mechanism based on a second order finite difference opéhatanethod guarantees that the new
distance computed is a smooth interpolation of the values inside a grid cell.

“This technique has been applied to a wide class of geometric problemsgil@mlanning, surface reconstruction, and computing
shape differences. The interested reader is referred to [Set9foer details.
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The algorithm is extremely easy to implement, requiring only standard heaptdatuses, and runs in time
O(mn/e?), wheree is the length of the subdivision of each segment. Note that unlike other algpsrithat
make use of these so-call&teinerpoints, no careful placement of points is required. The fiEldomputed
can be shown to converge monotonically to the exact solution as the numbed giints increase, and the
process is second order convergent. The error in the computatioex@onple thel, distance between the
approximate functiotf and the exact functioff) is linear in the length of the longest edge on the manifold.

7 Implementations

In order to implement the exact algorithm of Section 5.1, we chose to utilizedd@ienplementation ([KO0O])
of Chen and Han’s shortest path algorithm ([CH96]). This is one of ¢éixedublicly released programs for
computing shortest paths on polyhedra. We construct the combinatoridbida® (A, B) discussed in Section
3 for the curvesA andB and use Kaneva's program to find the continuous dynamic time warpingipathe
shortest path) otM (A, B). This path is then used to match the two cureandB. Figure 1 illustrates such
a matching. Unfortunately, this implementation runs very slowly when the nunifilfaces of the polyhedron
exceeds a few thousands, and it was impractical to use it for large data\se therefore implement the
approximate algorithm described in 5.2 and use it to conduct all the expdsitneiow.

The approximate algorithm relies on placing Steiner points on the edges of thioltha To see how the
placement of Steiner points affects the approximation, we experimented withctvemes of placing Steiner
points. One scheme assigns the same number of points to each edge anéthiketettmines the number of
points to be placed for an edge by its length. In both schemes, steiner pmintaiformly spaced on edges.
We call the former “UNIFORM” and the latter “LENGTH” (See Figure 6). \Algo include the discrete DTW
algorithm with resampling for comparison.

We randomly generated a small data seb@®furves. Each curve ha® points and the maximum length
of a segment on the curve 5. For each pair of curves, we computed the approximate warping distgnce b
using different average number of Steiner points per edge and codrniparehe optimal distance. The optimal
distance is approximated by the warping distance computed from the corgiIdd algorithm using00
Steiner points per edge with the "LENGTH” placement scheme. Figure 8sstieaverage relative difference
between the approximate and the optimal warping distance for the two placerhentes. Note that the contin-
uous measure can approximate the optimal distance much better than the disastee under both schemes.
The continuous measure approaches the optimal distance slightly more auidelythe “UNIFORM” scheme
than the “LENGTH” scheme. It is likely that the bound we obtain can be imgralightly using an expander
technique as mentioned in the work of Lanthier et al. [LMS97].

The continuous measure can yield a very good approximation of the optimgingaath (abov@9%) by
using5 Steiner points per edge. Unless specified, this number is used for botntireuous and discrete DTW
algorithms in the experiments that follow.

8 Signature Verification

Dynamic time warping has been widely used in signature verification [MP9®3JIFHowever, the quality
of the DDTW measure relies heavily on the sampling of signatures. In prastegpropriate or even poor
sampling of signhatures may occur from time to time for various reasons suble ase of different tracking
devices or the change of signing behaviors (for example, signing hemsbftly or emotionally) of the signer.
A possible solution for this problem is to resample the curves/signaturesx@onple, using spline interpola-
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Figure 8:Relative difference between the approximate and optimal matching of cumaes the “UNIFORM”
and “LENGTH” placement schemes.

tion) before matching them. However, there is no general principle riegphdw the resampling should be
done to achieve desired results. Unlike DDTW, the CDTW measure can tapture the similarity between
two signatures regardless of the way of sampling, thus making itself a marstrartid reliable measure for sig-
nature verification. As we demonstrate later, the continuous measure yiettismaue consistent performance
than DDTW when the signatures are insufficiently sampled. We first briefigribe the data sets we use in the
experiments.

Signature Database.The database was collected by Munich [Mun] and includes two sets oftgrgsacap-
tured by a camera-based tracking system. The first set consists dius@gifiom 56 subjects and each subject
provides 25 signatures. The second set consists of signatures rembfects and each subject provides 30
signatures. In addition, both sets include 10 skilled forgeries for eduecu Readers are referred to [Mun]
for detalils.

Figures 9-11 show some samples from the database. Table 1 summarizes the resuitg @unsneasure
to compute the distance between the samples. There is a significant difdretweeen the distance between
similar signatures and the distance between eitherandomly chosen sigrataressgnature and its forged
version. Although these are only a few examples, they demonstrate thatrttieuous time warping measure
effectively captures an intuitive notion of curve similarity. We now evaluagepttrformance of this measure in
detail.

Data Simplification. Our purpose is to compare the quality of the DDTW and the CDTW measures on in
sufficiently sampled data. We approximate the signatures in the database wétheints through curve
simplification. Such signatures are callgidchplified signatures There are many efficient and effective ap-
proaches proposed for simplifying curves or approximating time serie8QAXCHPO1]. As our focus here

is to demonstrate the quality of our measure for data insufficiently sampledptychoose the Douglas-
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(@) (b)

Figure 9: Two examples of signature data. In each picture, two signatures made Bgrttee person are

depicted.

(a) (b)

Figure 10:The genuine signatures compared with forgeries.

M’/W

@ (b)

Figure 11:The genuine signatures compared with random signatures.

Num. Steiner points per edge
0 5 10

Same (Figure 9(a)) 119.41 87.96 81.163
Forgery (Figure 10(a)) 218.67 136.85 131.54
Different (Figure 11(a))] 413.08 313.86 306.09

Same (Figure 9(b)) 131.52 98.62 94.56
Forgery (Figure 10(b))| 213.42 160.27 157.52
Different (Figure 11(b))] 315.07 266.50 264.61

Pair being compared

Table 1: Approximation of of the optimal distanal between pairs.
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Forgery Skilled Random
Algorithm DDTW CDTW DDTW CDTW
Data| Setl| Set2| Setl| Set2|| Setl| Set2| Setl| Set?2
Original Sig.| 6.1 8.8 5.3 8.0 1.6 3.0 1.6 2.8
Simplified Sig.| 6.5 9.2 5.8 8.2 1.7 3.3 1.6 2.9

Table 2: Equal Error Ratfe) computed from the original signatures and the simplified signatGr&seiner
points per edge are used in both algorithms.

Peuker algorithm [DP73], one of the most popular curve simplification éligos. Note that the simplification
also brings other extra benefits such as eliminating small discontinuities or mowvermeduced by the mea-
surement and saving storage that could be a critical issue for some at@ificystems with a lot of users.
This technique is also often used when indexing very large time series datgd@HP01, PKCO1]. In our
experiments, when a tolerance of 0.2 is used, the simplification reducesiinof points for a signature
by 30% — 50% and only slightly changes the shape of the signature. (The minimum widtheagict lof the
signatures in the database are 22 and 14, respectively. The avedilgamd height are 82 and 54.).

Training and Testing. We choose the first 10 true signatures of each person as the training Slatdar

to [MPO03], we do pairwise alignments to pickeference signaturthat yields the minimum average alignment
cost with the other signatures. We consider baiidom andskilled forgeriesn our experiments. Aandom
forgeryis a signature from a subject other than the subject that the signature &rifiedvbelongs to. The
database can provide each subject up, 0 random forgeries, but only 10 skilled forgeries.

When evaluating the performance of a system, one indicator that is oftdnrusignature verification liter-
atures is thesrror tradeoff curve(See Figure 12). This parameter depicts the false acceptand&Afgas a
function of the false rejection ra{ERR) Here, FAR measures the number of forgeries being accepted as gen-
uine ones by the system while FRR refers to the number of genuine signatirg recognized as forgeries.
The error tradeoff curve is traditionally characterized byetgsial error rate(EER), the error rate at which the
FAR is equal to FRR. A lower EER represents better performance.

T BRTW ERR=0 450 " SET2 DDTW ERR=10.05% ——
[TSET1 DDTW ERR=9.42% ] 1l ET2 DDTW ERR-10.05% ]

[
'

SET1 CDTW ERR=4.86% -

PP
[SEEEN)
T T

FRR(%)
FRR(%)

0 2 4 6 8 10 12 14 o 2 4 6 & 10 12 14
FAR(%) FAR(%)

() (b)

Figure 12:Error tradeoff curves for DDTW and CDTW using skilled forgeriese BERS are marked as circles
in the figure.

Table 2 shows the EERs computed from the original signatures and the sithpliigatures by using
Steiner points per edge. As we can see, the CDTW measure performslightly better than the DDTW
measure on the original data, which suggests that the signatures in thealodgia are well sampled. As
expected, the skilled forgeries are shown to be more difficult to be vettiga the random ones in both of
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the two measures. In addition, both measures yield similar results on the orgidahe simplified data,
demonstrating that signature simplification is a feasible way in practice.

Figure 13 and Figure 14 show how the EERs of using random and skiligdrfes vary with the number of
Steiner points per edge added in the DDTW and CDTW algorithms. We ohisetvathough the performance
difference between DDTW and CDTW decreases as the number of peinedge added increases, CDTW
demonstrates more consistent results than DDTW. This indicates that the @EBAUre is less sensitive to
the sampling of the signatures and hence a more robust measure in practice.

We have thus demonstrated that the CDTW is a more robust measure fdicieatlfy sampled data than
the traditional DTW measure. In addition, it allows us to use simplifefdrence signaturefor signature
verification, which are favored by some verification systems in which stdeag critical resource.

0.06 T T T T 0.06 T T T -
SET-1 DDTW —— SET-2 DDTW ——
g 005 SET-1 CDTW x| S 005 SET-2 CDTW -
[}
g 004 £ o004 \M
o4 o4
g 003 \\\ﬁ B 003 | etk
I I
— 0.02 P 0.02
g S —— g
g o.01 & oo01f
0 ‘ : : : : 0 : : : : :
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge
@ (b)

Figure 13:EERs under different number of Steiner points used (Random fgrgery
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Figure 14:EERs under different number of Steiner points used (Skilled forgery)

9 Conclusions

Our goal in this paper was to study measures of curve similarity in the “dog-s&tting. Our study of
“continuous” dynamic time warping was motivated by the drawback of otheradstfe.g. Fechet distance
and dynamic time warping) and the resulting formulations in terms of weighteteshpaths demonstrate that
sum-based measures can have rich structure, as well as efficieriteftgor

The general nature af¢(A, B) (as modulated by the weight functidh suggests that this measure might be
utilized in a wide range of applications. We have shown the quality of this me#assignature verification.
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One interesting future direction would be to further evaluate the perforenainihe CDTW measure on other
data sets such as handwritten recognition data [RMO03],

Another promising direction is in the context of protein backbone matchinghiohwve wish to compare
the similarity of proteins represented as chains (in three dimensions) afrcatbms (theC ,, atoms). It would
be interesting to explore the efficacy of this measure in capturing the similastyobf backbones.
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