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Abstract

The problem of curve matching appears in many application domains, like time series analysis, shape
matching, speech recognition, and signature verification,among others. Curve matching has been studied
extensively by computational geometers, and many measuresof similarity have been examined, among them
being the Fŕechet distance (sometimes referred in folklore as the “dog-man” distance).

A measure that is very closely related to the Fréchet distance but has never been studied in a geometric
context is theDynamic Time Warpingmeasure (DTW), first used in the context of speech recognition. This
measure is ubiquitous across different domains, a surprising fact because notions of similarity usually vary
significantly depending on the application. However, this measure suffers from some drawbacks, most
importantly the fact that it is defined between sequences of points rather than curves. Thus, the way in
which a curve is sampled to yield such a sequence can dramatically affect the quality of the result. Some
attempts have been made to generalize the DTW to continuous domains, but the resulting algorithms have
exponential complexity.

In this paper we propose similarity measures that attempt tocapture the “spirit” of dynamic time warping
while being defined over continuous domains, and present efficient algorithms for computing them. Our
formulation leads to a very interesting connection with finding short paths in acombinatorial manifold
defined on the input chains, and in a deeper sense relates to the way light travels in a medium of variable
refractivity.

1 Introduction

The problem ofcurve matchingstudies ways of measuring the similarity between two curves. Curve matching
appears in a variety of different domains; analysis of stock market trends, protein shape matching, speech
recognition, computer vision,etc. The main questions associated with curve matching in a specific domain are:
(1) what is a good measure of similarity between curves?(2) how can we compute it (or some approximation of
it) efficiently? Other questions that are often of interest are: given a database of curves and a candidate curve,
can we find a nearest neighbor to this curve in the database? can wecluster curves with respect to a given
measure of similarity?

Curve matching has been studied extensively in the domain of computational geometry. Here the curves
are usually assumed to be represented as polygonal chains in the plane. The measures that have been used to
compare them include the Hausdorff distance [ABB95], theturning curvedistance [ACH+91, CG97], and the
Fréchet distance.

Dog-Man Measures The Fŕechet distance [AERW03, BBW06, AG95, AKW01, BPRW05, CM04, EIV01,
Ven99] has received much attention as a measure of curve similarity. It belongs to a general class of distance



measures that are sometimes called “dog-man” distances. This nickname arises for the following reason. Picture
a man and a dog, each of whom is positioned at the start of one of the two given curves. The man holds the
(elastic) leash that the dog is tied to. At time 0, the man and the dog start walking ontheir respective curves
towards the respective endpoints. Neither of them can teleport i.e jump fromone point to the next, and in most
settings (see [EIV01] for an exception), both the man and dog are constrained to move (monotonically) forward
along the curve, although they can move at arbitrary speeds relative to each other. We say that a motion of dog
and man islegal if it satisfies the above constraints. The distance between the two curves is now defined as a
function of the leash length (or the leash vector itself), typically minimized over all legal motions. For example,
the Fŕechet distance itself is the minimum (over all trajectories) of the maximum leash length needed for a fixed
trajectory. The general intuition behind the dog-man measures is that since they are defined over continuous
parametrizations, they preserve the notion of continuity along the curve andthus are well suited to measuring
curve similarity.

Sum Measures and Dynamic Time Warping The Fŕechet distance is a max measure; it is defined in
terms of the maximum leash length over a parametrization. This dependence on the maximum value can often
lead to non-robust behavior, where small variations in the input can distort the distance function by a large
amount. Sum- (or average-based) measures are a way of smoothing suchdistortions, and this motivates our
effort. We note that traditionally, it has been harder to compute such sum-measures than max-measures.

One sum-measure that has been in widespread use in various application areas is expressible as a “dog-man”
distance. It is known asDynamic Time Warping(DTW), and was first proposed in the 60s as a measure of speech
signal similarity [RH93]. Since then, it has been used in a variety of contexts: in databases [CW99, GS00], in
computer vision [SB94, MP99, MP03, RM02], in protein structure matching [WHSB98], and in time series
clustering and data mining [OFC00, KP99, RK04]. Serra and Berthod [SB94] propose a continuous dynamic
time warping technique for subpixel contour matching. Munich and Perona [MP99] explore the use of dynamic
time warping as a measure of signature similarity and pose the question of whether continuous versions of these
measures can be defined. However, the complexity of their algorithms growscombinatorially and heuristic
constraints are needed to make the problem tractable. In the dog-man setting,the DTW distance between two
curves (defined as sequences of points) is thesumof the leash lengths measured at each (discrete) position
(minimized over all trajectories).

The DTW is very easy to compute. Given polygonal curves representedby the sequences of the vertices, of
lengthm andn respectively, a simple dynamic programming algorithm yields the optimal solution inO(mn)

time. Given its wide usage in different domains, we would like to use the DTW as ameasure of curve similarity.
However, the DTW is defined over sequences of points, and is thus not immediately suitable for general curve
matching. One could conceivably sample the input curves, and then computethe DTW. However It is not hard
to construct examples of curves that are almost identical to each other butmay appear quite different under the
DTW because of an incorrect sampling of points on each curve (see Figure 1).

1.1 Our Work

Our goal in this paper is to presentcontinuousdynamic time warping measures for computing curve similarity.

We describe exact and approximate algorithms for computing the continuous warping distance, and demon-
strate their utility for practical applications.

Shortest Paths. The continuous DTW is strongly related to paths on 2D manifolds. We define auniversal
combinatorial manifold in terms of two input polygonal chains: we can represent all possible mappings between
two curves as paths on the manifold. We define a class of continuous generalizations of the DTW, and show that
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Figure 1:Matching two curves using the discrete DTW (top) and matching the same curves using Continuous
DTW (bottom). (a) shows two curves with a slight difference. (b) and (c)demonstrate the matching results
under two different samplings of the curves. The numbers shown in the images are the warping distance of the
matching. Note that the discrete DTW can lead to dramatically different results due to the sampling while the
continuous DTW is not significantly affected by the sampling.

computing any of these variants corresponds to computing an appropriatelyweighted geodesic on the universal
manifold. In the special case of a uniform weight function, the problem reduces to computing ordinary shortest
paths in a polyhedral surface, and we present an algorithm that computes this in timeO(nm(m+ n) log(m+

n)), wherem andn are the number of segments in the two curves. We also present an approximation algorithm
that runs in timeO(mnr2), wherer is a discretization parameter that controls the approximation ratio.

Light Fields. An interesting aspect of our approach is the connection it draws betweendynamic time warping
and light paths in a heterogenous medium. This analogy gives us a simple proof of the shortest path result
described above, and in general provides an alternate method to computinggeneralized forms of dynamic time
warping between curves.

Paper Outline. We define our continuous time warping measures in Section 3, and characterize them in
terms of shortest paths along a combinatorial manifold. In Section 4 we establish the analogy between the
continuous measures and light flow. Exact and approximate algorithms are presented in Section 5. We mention
in Section 6 possible strategies for solving generalized time warping problems via the use of thefast march
method of Sethian. Implementation details of our algorithms are described in Section 7. Finally in Section 8
we demonstrate the application of our measures to the problem ofsignature verification.

2 Definitions

We denote vectors as bold faced letters (a,b, . . .). A vectorv will have componentsvx, vy
1. The derivative of

a functionf(t) with respect to the parametert will be denoted aṡf(t). We denote the standard Minkowski sum
of two point setsA,B as the setA⊕ B = {a + b | a ∈ A,b ∈ B}, and defineA	 B = A⊕ (−B).

1In this paper, all vectors will be inR2 .

3



Let T = (t1, t2, . . . tn) be a sequence of time steps. LetA = (ai) andB = (bi) be two functions defined over
T i.e ai = A(ti) andbi = B(ti). We assume that these are the vertices of polygonal paths, which approximate
input curves. The Dynamic Time Warping (DTW) measuredDTW is a distance defined on these functionsA
andB to be:

dDTW(A,B) = min
σ

∑

σk=(i,j)∈σ

‖bj − ai‖ (1)

whereσ = (σ1, σ2, . . . , σm), σi ∈ [1 . . . n]2 is a sequence satisfying:

Monotonicity: For all (a, b), (c, d) ∈ σ wherea ≤ c, we haveb ≤ d.

Continuity: Forσi = (xi, yi), σi+1 = (xi+1, yi+1), we havexi+1 − xi ≤ 1, yi+1 − yi ≤ 1.

The underlying norm used is typically the`2 norm, although this is not essential.

A translation-invariantversion ofdDTW [MP99] can be defined as follows. Letσk = (i, j), and letvk =

bj − ai . We can rewrite equation 1 as

dDTW(A,B) = min
σ

∑

σk∈σ

‖vk‖

The measurẽdDTW is now defined as follows:

d̃DTW(A,B) = min
σ

∑

0≤k<m

‖vk+1 − vk‖

3 A Universal Manifold

For the purpose of this paper,A andB will be polygonal chains. Let a polygonal chainA : [0,m] → R
2 be

a curve such that for eachi ∈ {0, . . . ,m − 1}, A|[i,i+1] is affine, i.e.A(i + λ) = (1 − λ)A(i) + λA(i + 1),
0 ≤ λ ≤ 1. For such a chainA, denote|A| = m. Let A i denote the segmentA|[i,i+1], andA i(λ) denote the point
(1− λ)A(i) + λA(i + 1).

We define a combinatorial manifoldM(A,B). Let |A| = m, |B| = n. For 1 ≤ i ≤ m, 1 ≤ j ≤ n, let the
patchPij be defined as the setBj 	 A i (see Figure 2). PatchPij shares edges with the three patchesPi,j+1,
Pi+1,j, Pi−1,j, andPi,j−1 (see Figure 3). Since we define a patch as a closed surface, diagonallyadjacent
patchesPi,j andPi+1,j+1 share a point. It is possible that a patch degenerates into a line (for exampleif A i and
Bj are isometric and parallel); this will not affect the construction of the surface (the reader may realize at this
point that the manifoldM(A,B) is a PL 2-manifold [ACM97]). It is important to remember that this is not
an ordinary manifold in that patches may intersect each other and be degenerate; however its local adjacency
properties are all that we need for the algorithms we describe.

Each patch has its own local coordinate system. For a pointp = Bj (µ) − A i(λ), its coordinates onPij are
(λ, µ). Thus any curveC onPij defines a parametrizationα along the segmentsAi,Bj, and monotonicity ofα
is equivalent to monotonicity ofC.

3.1 A Continuous Measure

We now define a class of continuous time warping measures on curvesA,B. Let α : [0,m] → [0, n] be a
continuous monotone function, and letvα(t) = B(α(t)) − A(t). Note thatvα(t) is a function from[0,m] to
M(A,B). Let f(v) : M(A,B) → R be aweightfunction. We define the measuredf(A,B) as
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A i A i+1

B j+1

B j (i+1,j+1) (i,j+1)

(i,j)

Pi,j

(i+1,j)

Figure 2:A pair of segmentsA i andBj and the pathPi,j constructed from them. The four vertices of the patch
are(i, j), (i, j+ 1), (i+ 1, j+ 1)and(i+ 1, j).
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 0B

(0,0)
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Figure 3:A pair of curves and the corresponding manifoldM(A,B). The bold line is the shortest path from
(0, 0) to (2, 2).

df(A,B) = min
α

∫m

0

f(v) ‖v̇α(t)‖dt (2)

For the special casef ≡ 1,

d1(A,B) = min
α

∫m

0

‖v̇α(t)‖dt (3)

It can be shown that both measures are metrics. The measured1 has the additional property of being
translation-invariant: d1(A,B) = d1(A + t,b), wheret is an arbitrary vector. It can be thought of as the
continuous analogue of̃dDTW.

Intuitively, the key term indf(A,B) is‖v̇α(t)‖. As we see in Figure 4, the rate of change ofvα(t) captures the
variation in the parametrization, and the weight functionf allows us to penalize this variation non-uniformly.

Let f(x, y) : R
2 → R be a function on the plane, and letC be a curve inR2. The integral

∫

C

f(x, y)ds

denotes the path integral off overC whereds is the path element alongC. If C is written in terms of a parameter
t asC = C(t), t ∈ [0,m], the path elementds alongC can be written asds = ‖Ċ(t)‖dt and the above path
integral can be written as ([BL86]) ∫

f(Cx(t), Cy(t)) ‖Ċ(t)‖dt

Given a parametrizationα, the functionvα(t) is a curve inM(A,B). Thus,df(A,B) can be written as a
path integral inM(A,B).
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Figure 4:The rate of change ofvα(t)

3.2 Finding An Optimal Path

In order to evaluated1, we need to determine the nature of the optimal path inM(A,B).

Lemma 3.1 Let χi : [0, 1] → Ai be monotone parameterizations of the segmentsA1,A2 such thatχi(t) =

A i(0) + (A i(1) − A i(0))
∫t

0
αi(u)du whereαi(t) ≥ 0 ∀t ∈ [0, 1] and

∫1

0
αi(u)du = 1. Let Φ =

∫1

0
ψ( d

dt
(χ2(t) − χ1(t)))dt whereψ : R

2 → R is a convex function. ThenΦ is minimized whenα1(t) =

α2(t) = t.

Proof: Since d
dt
χi(t) = αi(t)[A i(1) − A i(0)], we have

Φ =

∫1

0

ψ(α2(t)A2(1) − A2(0) − α1(t)A1(1) − A1(0))dt

≥ ψ(

∫1

0

α2(t)(A2(1) − A2(0)) − α1(t)(A1(1) − A1(0))dt)

= ψ((A2(1) − A2(0)) − (A1(1) − A1(0)))

where the inequality follows from Jensen’s inequality. We can attain this minimum value by settingαi(t) = t.

The norm‖ · ‖ is convex, and thus the conditions of Lemma 3.1 apply. Thus the optimal path is theuniform
parametrization. Substitutingα in Equation 3 yields the following result.

Lemma 3.2 If A,B consist of single segments, then

d1(A,B) = ‖(B(1) − A(1)) − (B(0) − A(0))‖

But this is merely the shortest Euclidean distance between the points(0, 0) and(1, 1) onM(A,B). Extending
this over all patches, this yields the following theorem.

Theorem 3.1 d1(A,B) is equal to the length of the shortest monotone path inM(A,B) from the point(0, 0)
onP0,0 to the point(m,n) onPm,n.
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Proof: Define a pathπ onM to begoodif it is monotone, connects the point(0, 0) onP0,0 to the point(m,n)

on Pm,n, and its intersection with every patch ofM is, if not empty, consisting of a single edge. Note that
every good path corresponds to a matching betweenA andB, (i.e., the functionα() used in equation 3), and
the const of the corresponding matching is, according to Lemma 3.1, equals tothe length ofπ. In particular,
there is pathπ∗ that corresponds to the optimum matching. Clearly this is exactly the shortest good path.

4 Light Fields and the Eikonal Equation

In general, the form of the functionf will determine our ability to computedf(A,B). Traditional variational
methods can be employed to solve the functional [BM91], but it is typically hard to do this for arbitrary func-
tions.

However, there is an alternative formulation of the above path integral. Consider a two-dimensional refractive
medium whose refractive index at the point(x, y) is given by the functionf(x, y). Then the pathS that a light
beam will take to go from a pointa to a pointb in this medium is the curveS from a to b that minimizes the
path integral2 [BW80, §3.1] ∫

S

f(x, y)ds

Lemma 4.1 Let A i and Bj be two segments, and letPij be the associated patch. Assume that the path that
light takes to travel from(i, j) to (i + h, j + k), (h, k > 0) in Pij is monotone with respect to the patch. Then
df(A i ,Bj ) is equal to the length of the path that a light beam will take from(0, 0) to (1, 1) in a medium isometric
toPij, where the refractive index of any point(x, y) is f(x, y).

Light flow in nonhomogenous fields has been studied extensively [BW80], and working forwards from
Maxwell’s electromagnetic equations, the following equation can be derived[BW80, §3.1.1]:

‖∇F‖ = f (4)

This equation is called theeikonalequation, and the functionF is called the eikonal3. For isotropic media,F
can be thought of as describing the geometric wavefronts that propagatethe light rays; more formally, ifs is a
unit vector in the direction of the trajectory of a ray of light in this field, thens = ∇F/f.

This formulation provides an alternate proof for Lemma 3.1 that does not relydirectly on the calculus of
variations. Settingf ≡ 1, Equation 4 can be written as

‖∇F‖ = 1

The solution to this equation consists of the family of curves

t2 + u2 = const

In other words, the curves orthogonal to the light paths are circles around the origin, implying that the light
paths are straight lines emanating from the origin, hence in the optimal solutionα1(t) = α2(t) = t, as already
shown in Lemma 3.1.

2This is a version of Fermat’s principle of the shortest optical length.
3According to [BW80], the word comes from the Greek word for ’image’.
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5 Algorithms

In this section we discuss exact and approximation algorithms for computingd1(A,B). For clarity, we refer to
the traditional DTW method as discrete DTW (DDTW) and our continous measure as CDTW.

5.1 An exact algorithm

Mitchell, Mount and Papadimitriou [MMP87] presented an algorithm running inO(k2 logk) time to compute
s-t shortest paths on a general polyhedral surface withk triangles. This was subsequently improved by Chen
and Han [CH96] toO(k2), and recently, a result by Kapoor [Kap99] showed a bound ofO(k log2k). It is
easy to verify that the algorithm of [MMP87] can be modified to compute amonotoneshortest path. Also note
that by the unfolding property of shortest paths, we only need the combinatorial structure of the polytope and
the geometry of each face. Let|A| = m and |B| = n. There areO(mn) faces in the instance of the shortest
path problem that we construct, and hence a naive bound on the runningtime of the algorithm of [MMP87] is
O(m2n2). A more careful look at the algorithm reveals that the actual running time isO(Q logQ), whereQ
is the total number of subintervals of edges of triangles of the manifold. These subintervals are obtained by
splitting edges based on the combinatorial structure of shortest paths reaching points of this edge. We show that
in our settingQ is onlyO(mn(m+n)). Thus the running time of the algorithm of Mitchell et al. [MMP87] in
our setting is onlyQ = O(mn(m+ n) log(mn)).

A 0

A 2 B 0

B 2

A 4

A 1

B 1

B 3

A 3

P
 2,1

P
 2,2

P
 2,0

Figure 5: A vertical wall (i = 2) is shown as a bold line on the manifoldM(A,B). The wall is composed of
the left edges of patchP2,0,P2,1, andP2,2.

Bounding Q. We define thevertical wallof the patchPi,j to be the edge the patch shares withPi+1,j. We define
thei-vertical wall`i of M(A,B) to be the union of the left vertical wall of all pathesPi,j (for j = 0, . . . n− 1).
This is a connected polygonal path. See Figure 5 for an illustration. Fix1 ≤ i ≤ n andx ∈ `i, and consider
the monotone shortest path from the origin tox. Letσ(x) be the sequence of patches ofM(A,B) that this path
meets, in the order that they appear along the path. We divide`i into maximally connected intervals that form
equivalence classes forσ(x), i.e into subintervals such that for all pointsx in a subinterval,σ(x) is fixed.

Let y1, y2, . . . yk be points along̀i that have pairwise distinct patch sequencesσ(yr) (1 ≤ r ≤ k). Note
that to specifyσ(yr), it suffices to specify above which corners of cells of{Pij}, σ(yr) pass, and below which
corners. Observe (as in [MMP87]) thatσ(yr) is disjoint toσ(yr+1), and thus there must be a corner of a patch
Pi′,j′ thatσ(yr) passes below, andσ(yr+1) passes above. Thus there must be at leastk corners of cells of{Pij}

belowσ(yk), implying thatk ≤ mn. Summing this numbers for allm vertical walls{`1 . . . `m−2}, this bound
implies that the total number of maximally connected intervals isO(mn(m + n)). Since the running time of
the algorithm is directly proportional to this quantity, we obtain the result (exchanging the rules ofm andn if
needed)
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Theorem 5.1 Given two polygonal chainsA,B, where|A| = m, |B| = n, andm < n we can compute
d1(A,B) in timeO(nm2 log(n)).

5.2 An Approximation Algorithm

The exact algorithm described above is slow in practice, mainly due to problems in scaling existing code
([KO00]) for computing shortest path on a terrain. It is not clear whether a careful implementation of the
algorithm would resolve this problem. Thus, in this section we present a fastalgorithm that runs in time linear
inm · n and approximatesd1 to any desired factor.

Lanthier et al. [LMS97] compute an approximate weighted geodesic shortest path between two points on a
polyhedron surfaceP by adding additional vertices (known as Steiner points) on the edges ofP, breaking them
into shorter edges. These points are connected via straight segments, and the Dijkstra’s algorithm [Dij59] is
then used to find the shortest path. Here, we employ a similar idea of adding Steiner points to our problem.
However, the monotonicity requirement restricts the set of paths that we need to consider, and allows us to
compute an approximat shortest path by using dynamic programming, which is much easier to implement and
is faster than Dijkstra’s method by a factor of log(mn).

B 0

A 2 A 1

A 0

B 1

B 2

(0,0)

(2,2)

(a)

B 2

B 0

A 2 A 1

A 0

B 1

(2,2)

(0,0)

(b)

Figure 6:Steiner points andΓ -paths on a manifold. a) UNIFORM placement scheme and b) LENGTH place-
ment scheme. The dashed line is the optimal pathd1 and the bold line is the shortestΓ -path that approximates
d1.

We start by placing Steiner points on the edges of the manifoldM(A,B) (See Figure 6). LetS be the set
of Steiner points andΓ = S ∪ A ∪ B. A geodesic path is called aΓ -path if it is monotone and contains only
vertices fromΓ . Let Γ(p) be aΓ -path from the origin(0, 0) of M(A,B) to a pointp ∈ Γ . Observe thatd1 can
now be approximated by the shortestΓ -path to the point(m,n) onM(A,B). Let P be a patch ofM(A,B).
We denote the four edges ofP (left, right, bottom and top) asel, er, eb, andet respectively (See Figure 7). We
also denote theith point on an edgeex (x ∈ {l, r, b, f}) aspi

x. Monotonicity forces anyΓ -path of a pointp on
el or et to pass througheb or er. Thus if the shortestΓ -paths to all the points oner andeb are computed, the
shortestΓ -path top can be easily found by considering all the possible paths from the points oneb ander (See
Fig 7(a)). Specifically, the shortestΓ -path top can be computed as,

dmin(Γ(p)) = arg minp′{dmin(Γ(p ′)) + |pp ′|} (5)

wherep ′ ∈ eb ∪ er andpp ′ is locally monotone.

Dynamic programming can be used to compute the shortestΓ -paths to all the points onM(A,B). The pseudo
code is presented in Algorithm 1.
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Algorithm 1 Compute the CDTW distance between two curvesA andB
Require: CurveA = {a1, a2, . . . , an}

Require: CurveB = {b1, b2, . . . , am}

Require: s: Number of Steiner points per edge
Construct the manifoldM(A,B);
Place Steiner points onM(A,B);
for i = 2 ton do

for j = 1 tom do
Set values for points on the bottom and right edges of the patchPij;
for k = 1 to s+ 1 do

d(pk
l ) = min(arg min1≤k′≤s+1{d(p

k′

b ) + |pk
lp

k′

b |},arg min1≤k′≤k{d(pk′

r ) + |pk
lp

k′|
r })

end for
for k = 1 to s+ 1 do
d(pk

t) = min(arg min1≤k′≤s+1{d(p
k′

r ) + |pk
tp

k′

r |},arg min1≤k′≤k{d(pk′

b ) + |pk
tp

k′

b |})

end for
end for

end for
return d(ps+1

t ) computed over the patchPmn

r

1

e l

eb

e r

e t
p i

t

P

p

(a)

p
t
i

p
r
1

l

eb

r

e t

e

e

P

(b)

Figure 7:(a) Possible paths to a point on the top edge of a patchP in the CDTW approach. (b) Possible paths
to a point on the top edge of a patchP in the DDTW approach
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Lemma 5.1 Given two polygonal chainsA and B where|A| = m and |B| = n, thend1(A,B) can be ap-
proximated by a monotone shortest path inM(A,B) and computed inO(r2mn) time wherer is the number of
Steiner points added on each edge inM(A,B). The absolute difference in cost between the approximate and
optimal paths is at mostL(m+ n)/r, whereL is the length of the longest segment in either of the two chains.

Proof: For each patch, we need to compute the shortestΓ paths for2(r+1) points and for each point, we spend
O(r) time. Hence the time spent on each patch isO(r2). We have a total ofm · n patches, so the running time
bound holds. The approximation achieved by the algorithm follows the proofin [LMS97] directly.

The approximate algorithm proposed above has the same running time as the discrete DTW algorithm when
the same number of Steiner points are added to the input segments.

Remark 5.1 It is important to mention that although our approach is based on discretization, it discretizes
the manifold, rather than the input segments. The discreteDTW approach would never yield an arbitrarily
close approximation of the shortest path if thediscretizationor resamplingis not done appropriately. Figure
7 illustrates such an example. The discrete approach restricts the warpingpaths to only three “directions”:
left, up and diagonal, so no path can go fromp1

r to pi
t directly, which is the shortest path fromp1

r to pi
t on

the patchP. Simply adding more points on the edges would not improve the approximation. In contrast, our
continuous measure only requires that the warping paths are monotone.As shown by Lemma 5.1, as long as
there are enough Steiner points added on the manifold, the approximation can be made arbitrarily close to the
true answer.

6 df(A,B) And The Fast-March Algorithm

Solutions to the eikonal equation can in general be non-differentiable (aneasy example is the case of light
travelling through an interface between media of different refractivity),and thus computing closed form so-
lutions analytically can be hard in all but special cases. In addition, issuesof numerical accuracy need to be
addressed very carefully. Among the algorithmic solutions for weighted shortest path problems, the methods
of [ALMS00] express running terms in terms of numerical properties of theinput (such as the ratio of the
longest edge to the shortest edge etc).

In this section, we discuss a technique first proposed by Sethian [Set99], and applied by Kimmel and
Sethian [KS98] to solve the eikonal equation numerically in the context of computing weighted shortest paths4.
The advantage of this method (called thefast marching method) are that the solution it provides converges
monotonically to the exact answer as the error parameter tends to zero, andthus is a provably correct approx-
imation scheme. In addition, the method itself works by imposing a uniform grid (ortriangulation) on the
surface, and runs in time independent of numerical parameters of the surface.

The skeleton of the algorithm is a grid update procedure that expands outfrom the starting point in a fashion
much like the Dijkstra [Dij59] shortest path algorithm on graphs. At each stage, the unvisited grid point with
the smallest weight is visited, and all its neighbours are updated according the values at their neigbours.

The crucial difference between this technique and a standard Dijkstra-type algorithm is in the step where
weights are updated. This issue is discussed at length in [Set99,§8.6.1]; the basic idea is that by using an
update mechanism based on a second order finite difference operator,the method guarantees that the new
distance computed is a smooth interpolation of the values inside a grid cell.

4This technique has been applied to a wide class of geometric problems, like motion planning, surface reconstruction, and computing
shape differences. The interested reader is referred to [Set99] forfurther details.
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The algorithm is extremely easy to implement, requiring only standard heap data structures, and runs in time
O(mn/ε2), whereε is the length of the subdivision of each segment. Note that unlike other algorithms that
make use of these so-calledSteinerpoints, no careful placement of points is required. The fieldF̃ computed
can be shown to converge monotonically to the exact solution as the number ofgrid points increase, and the
process is second order convergent. The error in the computation (forexample thè 2 distance between the
approximate functionF̃ and the exact functionF) is linear in the length of the longest edge on the manifold.

7 Implementations

In order to implement the exact algorithm of Section 5.1, we chose to utilize Kaneva’s implementation ([KO00])
of Chen and Han’s shortest path algorithm ([CH96]). This is one of the few publicly released programs for
computing shortest paths on polyhedra. We construct the combinatorial manifold M(A,B) discussed in Section
3 for the curvesA andB and use Kaneva’s program to find the continuous dynamic time warping path (i.e the
shortest path) onM(A,B). This path is then used to match the two curvesA andB. Figure 1 illustrates such
a matching. Unfortunately, this implementation runs very slowly when the number of faces of the polyhedron
exceeds a few thousands, and it was impractical to use it for large data sets. We therefore implement the
approximate algorithm described in 5.2 and use it to conduct all the experiments below.

The approximate algorithm relies on placing Steiner points on the edges of the manifold. To see how the
placement of Steiner points affects the approximation, we experimented with twoschemes of placing Steiner
points. One scheme assigns the same number of points to each edge and the other determines the number of
points to be placed for an edge by its length. In both schemes, steiner points are uniformly spaced on edges.
We call the former “UNIFORM” and the latter “LENGTH” (See Figure 6). Wealso include the discrete DTW
algorithm with resampling for comparison.

We randomly generated a small data set of50 curves. Each curve has20 points and the maximum length
of a segment on the curve is50. For each pair of curves, we computed the approximate warping distance by
using different average number of Steiner points per edge and compared it to the optimal distance. The optimal
distance is approximated by the warping distance computed from the continuous DTW algorithm using500
Steiner points per edge with the ”LENGTH” placement scheme. Figure 8 shows the average relative difference
between the approximate and the optimal warping distance for the two placementschemes. Note that the contin-
uous measure can approximate the optimal distance much better than the discretemeasure under both schemes.
The continuous measure approaches the optimal distance slightly more quicklyunder the “UNIFORM” scheme
than the “LENGTH” scheme. It is likely that the bound we obtain can be improved slightly using an expander
technique as mentioned in the work of Lanthier et al. [LMS97].

The continuous measure can yield a very good approximation of the optimal warping path (above99%) by
using5 Steiner points per edge. Unless specified, this number is used for both the continuous and discrete DTW
algorithms in the experiments that follow.

8 Signature Verification

Dynamic time warping has been widely used in signature verification [MP99, MP03]. However, the quality
of the DDTW measure relies heavily on the sampling of signatures. In practice, inappropriate or even poor
sampling of signatures may occur from time to time for various reasons such asthe use of different tracking
devices or the change of signing behaviors (for example, signing heavilyor softly or emotionally) of the signer.
A possible solution for this problem is to resample the curves/signatures (forexample, using spline interpola-
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Figure 8:Relative difference between the approximate and optimal matching of curvesunder the “UNIFORM”
and “LENGTH” placement schemes.

tion) before matching them. However, there is no general principle regarding how the resampling should be
done to achieve desired results. Unlike DDTW, the CDTW measure can truly capture the similarity between
two signatures regardless of the way of sampling, thus making itself a more robust and reliable measure for sig-
nature verification. As we demonstrate later, the continuous measure yields much more consistent performance
than DDTW when the signatures are insufficiently sampled. We first briefly describe the data sets we use in the
experiments.

Signature Database.The database was collected by Munich [Mun] and includes two sets of signatures cap-
tured by a camera-based tracking system. The first set consists of signatures from 56 subjects and each subject
provides 25 signatures. The second set consists of signatures from 50 subjects and each subject provides 30
signatures. In addition, both sets include 10 skilled forgeries for each subject. Readers are referred to [Mun]
for details.

Figures 9−11 show some samples from the database. Table 1 summarizes the results of using our measure
to compute the distance between the samples. There is a significant difference between the distance between
similar signatures and the distance between eitherandomly chosen signaturesor a signature and its forged
version. Although these are only a few examples, they demonstrate that the continuous time warping measure
effectively captures an intuitive notion of curve similarity. We now evaluate the performance of this measure in
detail.

Data Simplification. Our purpose is to compare the quality of the DDTW and the CDTW measures on in-
sufficiently sampled data. We approximate the signatures in the database with fewer points through curve
simplification. Such signatures are calledsimplified signatures. There are many efficient and effective ap-
proaches proposed for simplifying curves or approximating time series [AV00, KCHP01]. As our focus here
is to demonstrate the quality of our measure for data insufficiently sampled, we simply choose the Douglas-
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(a) (b)

Figure 9: Two examples of signature data. In each picture, two signatures made by thesame person are
depicted.

(a) (b)

Figure 10:The genuine signatures compared with forgeries.

(a) (b)

Figure 11:The genuine signatures compared with random signatures.

Pair being compared
Num. Steiner points per edge
0 5 10

Same (Figure 9(a)) 119.41 87.96 81.163
Forgery (Figure 10(a)) 218.67 136.85 131.54
Different (Figure 11(a)) 413.08 313.86 306.09

Same (Figure 9(b)) 131.52 98.62 94.56
Forgery (Figure 10(b)) 213.42 160.27 157.52
Different (Figure 11(b)) 315.07 266.50 264.61

Table 1:Approximation of of the optimal distanced1 between pairs.
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Forgery Skilled Random
Algorithm DDTW CDTW DDTW CDTW

Data Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2
Original Sig. 6.1 8.8 5.3 8.0 1.6 3.0 1.6 2.8

Simplified Sig. 6.5 9.2 5.8 8.2 1.7 3.3 1.6 2.9

Table 2: Equal Error Rate(%) computed from the original signatures and the simplified signatures.5 Steiner
points per edge are used in both algorithms.

Peuker algorithm [DP73], one of the most popular curve simplification algorithms. Note that the simplification
also brings other extra benefits such as eliminating small discontinuities or movement introduced by the mea-
surement and saving storage that could be a critical issue for some verification systems with a lot of users.
This technique is also often used when indexing very large time series database.[KCHP01, PKC01]. In our
experiments, when a tolerance of 0.2 is used, the simplification reduces the number of points for a signature
by 30% − 50% and only slightly changes the shape of the signature. (The minimum width and height of the
signatures in the database are 22 and 14, respectively. The average width and height are 82 and 54.).

Training and Testing. We choose the first 10 true signatures of each person as the training data. Similar
to [MP03], we do pairwise alignments to pick areference signaturethat yields the minimum average alignment
cost with the other signatures. We consider bothrandom andskilled forgeriesin our experiments. Arandom
forgery is a signature from a subject other than the subject that the signature to be verified belongs to. The
database can provide each subject up to2, 000 random forgeries, but only 10 skilled forgeries.

When evaluating the performance of a system, one indicator that is often used in signature verification liter-
atures is theerror tradeoff curve(See Figure 12). This parameter depicts the false acceptance rate(FAR)as a
function of the false rejection rate(FRR). Here, FAR measures the number of forgeries being accepted as gen-
uine ones by the system while FRR refers to the number of genuine signatures being recognized as forgeries.
The error tradeoff curve is traditionally characterized by itsequal error rate(EER), the error rate at which the
FAR is equal to FRR. A lower EER represents better performance.
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Figure 12:Error tradeoff curves for DDTW and CDTW using skilled forgeries. The EERs are marked as circles
in the figure.

Table 2 shows the EERs computed from the original signatures and the simplified signatures by using5
Steiner points per edge. As we can see, the CDTW measure performs only slightly better than the DDTW
measure on the original data, which suggests that the signatures in the original data are well sampled. As
expected, the skilled forgeries are shown to be more difficult to be verifiedthan the random ones in both of
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the two measures. In addition, both measures yield similar results on the originaland the simplified data,
demonstrating that signature simplification is a feasible way in practice.

Figure 13 and Figure 14 show how the EERs of using random and skilled forgeries vary with the number of
Steiner points per edge added in the DDTW and CDTW algorithms. We observethat although the performance
difference between DDTW and CDTW decreases as the number of points per edge added increases, CDTW
demonstrates more consistent results than DDTW. This indicates that the CDTWmeasure is less sensitive to
the sampling of the signatures and hence a more robust measure in practice.

We have thus demonstrated that the CDTW is a more robust measure for insufficiently sampled data than
the traditional DTW measure. In addition, it allows us to use simplifiedreference signaturesfor signature
verification, which are favored by some verification systems in which storage is a critical resource.
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Figure 13:EERs under different number of Steiner points used (Random forgery)
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Figure 14:EERs under different number of Steiner points used (Skilled forgery)

9 Conclusions

Our goal in this paper was to study measures of curve similarity in the “dog-man” setting. Our study of
“continuous” dynamic time warping was motivated by the drawback of other methods (e.g. Fŕechet distance
and dynamic time warping) and the resulting formulations in terms of weighted shortest paths demonstrate that
sum-based measures can have rich structure, as well as efficient algorithms.

The general nature ofdf(A,B) (as modulated by the weight functionf), suggests that this measure might be
utilized in a wide range of applications. We have shown the quality of this measure in signature verification.
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One interesting future direction would be to further evaluate the performance of the CDTW measure on other
data sets such as handwritten recognition data [RM03],

Another promising direction is in the context of protein backbone matching, in which we wish to compare
the similarity of proteins represented as chains (in three dimensions) of carbon atoms (theCα atoms). It would
be interesting to explore the efficacy of this measure in capturing the similarity ofsuch backbones.
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