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Abstract

We address the problem of how to cover a set of required points by a

small number of axis-parallel ellipses that avoid a second set of forbidden

points. We study geometric properties of such covers and present an eÆ-

cient randomized approximation algorithm for the cover construction. This

question is motivated by a special pattern recognition task where one has

to identify ellipse-shaped protein spots in two-dimensional electrophoresis

images.

Keywords: Algorithms and data structures, Computational geometry, Ap-

proximation algorithm, Set cover, Proteomics.

1 Introduction and the application background

In this paper we develop an eÆcient randomized approximation algorithm for the

following problem:

The general ellipse covering problem. Given a set F of n forbidden points

and a set R of m required points, �nd a set E = fE1; : : : ; Ekg of axis-parallel

ellipses, of minimal cardinality k, such that their union [E := [E2EE covers R

and strictly respects F , i.e., R � int([E) and F \ int([E) = ;. Thus [E has

to fully contain R in its interior and may contain no points from F except on its

boundary.
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The lower right part of Figure 1 shows a set of 43 required points (black) and

24 forbidden points (white) forming a subset of the grid, and a cover by four

ellipses.

Figure 1: An instance of the ellipse covering problem. There are various ways

how a point set can be derived from a region. We challenge the reader to �nd a

cover with only three ellipses.

Motivation. This problem stems from a pattern recognition task in proteomics,

which is a rapidly growing �eld within molecular biology. In proteomics two-

dimensional gel electrophoresis (2DE) is a well known and widely used technique

to separate the protein components of a probe. A 2DE gel is the product of two

separations performed sequentially in acrylamide gel media: isoelectric focusing

as the �rst dimension and a separation by molecular size as the second dimension.

A two-dimensional pattern of spots each representing a protein is the result of that

process. Eventually, spots are made visible by staining or radiographic methods.

By analyzing series of such 2DE images one hopes to identify those proteins that

change their expression (size, intensity) and re
ect/cause certain biochemical and
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biomedical conditions of an organism, see [21]. The �rst step of the gel analysis,

the so-called spot detection, is the algorithmic problem to compute for a given

digital gel image all its protein spots. See Figure 2 for an example. Ideally, in

a gel image each spot has the shape of an axis-parallel ellipse, which is a widely

accepted modeling assumption, see, e.g., [2, 11].

Figure 2: Part of a gel image and spots computed

At �rst sight spot detection seems to be a pure image processing problem.

Usually, one starts with standard techniques like smoothing, segmentation, and

background extraction. The resulting image regions correspond ideally to single

spots. However, spots that are very close to each other can partially merge

(their elliptic shapes overlap) and form rather complicated regions as depicted in

Figure 3.

Figure 3: Twin spots, streaks and complex region

Since in such situations the overlapping spots are often oversaturated (black)

the standard image processing methods do not help. In order to solve this prob-

lem some heuristics have been implemented in several software packages. But

even then, the really complex regions are usually left to be subdivided manually.

Our approach is the �rst attempt to model and solve this problem by means of

computational geometry in the following form: Cover a given planar region R
by the union of a minimal number of axis-parallel ellipses. As in many applied

research problems there are some additional restrictions on the solution com-

ing from the application background. In [10] we have considered an application

speci�c model of the problem as well as several algorithms for this setting.
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Since the data are given as a grid of pixels, it makes sense to discretize the

problem and represent the region R by two sets of points F and R, where R is

a sample of required points to be covered (inside R) and F is a set of forbidden

points (outside R). The most straightforward way of selecting these sets it to

partition all grid points in a suitable bounding rectangle into R and F , as shown

in the upper left part of Figure 1.

The set F can be reduced to all pixels outside R that are adjacent to a point

of R on the grid without changing the problem, as shown in the lower left part

of Figure 1. Since every connected horizontal or vertical sequence of points of R

is now bounded from both sides by a point of F , it follows that no axis-parallel

ellipse that covers a point of R can cover a point outside R. (This follows from
the fact that the set of grid points in an axis-parallel ellipse is a connected set in

the grid.)

The set R can also be reduced by walking along the boundary of R and

choosing points inside within a small distance, as in the upper right part of

Figure 1. This approach mimics the general practice of experts who are looking

for ellipses approximating long parts of the boundary of R. However, this means

essentially that only the boundary of R is considered, and the computed cover

could leave holes in the interior of the region.

Note that the possibility of holes cannot be excluded altogether, as demon-

strated by the cover in the lower right part of Figure 1, but this is inherent in

the modeling of the problem by a discrete point set.

So will will stick with the choice of R and F that is shown in the lower part

of Figure 1. If the spot R is contained in an N �N grid, the cardinality m = jRj
will typically be quadratic in N , measuring the area of R, whereas F corresponds

to the boundary of R and n = jF j will be only linear in n. So we will typically

have m � const � n2. (The relation m = O(n2) follows from an isoperimetric

inequality on the grid graph.) Our algorithm is well adapted to this setting since

its running time depends to a higher degree on n than on m.

Related results. The optimization problem of covering a rectilinear polygon

with the minimum number of rectangles is NP-hard [8]. This problem is quite

similar to our problem of covering a shape with axis-aligned ellipses. Thus sug-

gests that the ellipse-covering problem might also be NP-hard, although we don't

have a proof of this.

Our problem is also related to the problem of covering a shape with strips [1],

and to the range covering problem in a hypergraph [5], see [4] for a recent survey

on geometric approximation results.

Overview. As every axis-parallel ellipse can be determined by 4 points, it is

easy to see that one can reduce the in�nite set of all axis-parallel ellipses to a

set S of size O((n +m)4) from which the optimal cover is chosen. In this way,
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the problem reduces to a set covering problem. The greedy algorithm for the set

covering problem [13] would yield an approximation factor of O(logm).

We improve this approach in two aspects. Firstly, we replace S by a smaller

set C of so-called canonical objects, which are de�ned in Section 2. The set C

contains a cover that is optimal up to a constant factor of 4. We prove subse-

quently in Section 3 that the size of C is only O(n2) and we describe how to

construct it eÆciently. The second idea, speci�ed in Section 5, is to adapt the

machinery of geometric set cover approximations [15, 20, 7, 5] to select a cover

of size O(k� log k�) from C, where k� is the size of the optimal cover. Making use

of augmented partition trees, we present an eÆcient implementation which runs

in expected time ~O(n2 + n3=2k� + mk� +
p
m(k�)2), where ~O denotes a variant

of the O-notation which subsumes polylogarithmic factors. The precise bound is

stated in Theorem 3.

We conclude with applying the results to the original gel analysis problem

and mentioning a few open problems.

A preliminary version of this work has been presented at the 13th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA) in San Francisco in

January 2002 [9].

2 Canonical covers

Let us start with two general remarks about the terminology used:

Degenerate ellipses. In our proofs we will deform an ellipse while keeping

some points of its boundary �xed. In this process an ellipse may degenerate into

an axis-parallel parabola or even into a hyperplane. Depending on the applica-

tion, one may or may not permit these \degenerate ellipses" in the covering. We

will discuss the treatment of these degeneracies in Section 5.2.

Convention. Whenever we speak about ellipses and parabolas, we actually

mean axis-parallel ellipses and parabolas. A vertical or horizontal parabola is a

parabola with a vertical or horizontal axis, respectively. The size of the optimal

cover is denoted by k�.

Canonical objects. As a �rst step we show that each ellipse in an optimal

cover can be covered by at most four canonical objects, each of which is de�ned by

at most four points of F and contains no point of F in its interior. Consequently

there exists a cover that uses only canonical objects whose cardinality is at most

four times larger than the size of an optimal cover with arbitrary axis-parallel

ellipses.

Ideally, we would like the canonical objects to be axis-parallel ellipses that

each have at least four points of F on their boundary. However, in general F
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might be in such a position that additionally we have to consider halfplanes and

axis-parallel parabolas, which are degenerate cases of axis-parallel ellipses.

De�nition 1. We call an axis-parallel ellipse, an axis-parallel parabola, or a half-

plane F -empty if it does not contain any point of F in its interior. We call it an

i-point ellipse (or parabola or halfplane) if it is F -empty and additionally contains

at least i points of F on its boundary. An i-point ellipse (vertical parabola, hori-

zontal parabola, halfplane) will be called canonical if there are i points such that

it is the only F -empty ellipse (vertical parabola, horizontal parabola, halfplane)

with these i points on its boundary.

All 2-point halfplanes and 3-point parabolas are canonical in this sense. In

most cases, four points uniquely determine an ellipse, but this is not always true,

as for the four corners of an axis-parallel square. Thus, not all 4-point ellipses

are canonical. Usually, when we consider an i-point canonical object, a set of i

points de�ning it will be given.

Reduction to canonical objects. The basic idea of the reduction is the fol-

lowing: we pick an axis-parallel ellipse E0 in an optimal cover; by de�nition E0

is F -empty. Now essentially we blow up E0 to E
0

0 until it hits a point in F ; we

continue this process until we have enough points on the boundary of E 0

0. During

the blow-up we maintain the property that E 0

0 is F -empty and that it contains

E0. However, in order to maintain this containment property we will have to

cover E0 not by a single ellipse but by up to four ellipses which are derived from

E0.

Lemma 1. Let E be an F -empty ellipse. Then there exist E1; E2 such that E �
E1 [ E2, where E1; E2 are either 3-point ellipses or 2-point halfplanes.

Proof. We describe a 4-step process that transforms E appropriately: First, scale

the plane so that E is a circle. If E does not touch F , increase its radius until

a point in F is hit. If E touches only one point p of F , blow it up from p, i.e.,

move the midpoint m of E away from p on the ray that emanates in m towards

p, and increase the radius of E so that it keeps touching p, until it either hits

a second point q of F or degenerates to a halfplane. If E becomes a halfplane

and still touches only one point of F , rotate two copies E0; E1 of E around p

in opposite directions, until they both hit a second point; in that case we are

�nished. Otherwise, if E touches two points p and q of F , move the centers

m0 and m1 of two copies E0 and E1 of E on the bisector of p and q into both

directions and keep touching p and q. Continue until each circle either hits a

third point of F or degenerates to a halfplane, c.f. Figure 4.

Lemma 2. Let E be a 3-point ellipse. Then there exist E1; E2 that have the

same three points of F on their boundary, such that E � E1 [ E2, where E1; E2

is either a 3-point parabola or a canonical 4-point ellipse.
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Figure 4: Illustration of the stopping rule

Proof. Assume that E = f (x; y) 2 R
2 j g(x; y) := ax2 + by2 + cx + dy + e � 0 g

with a + b = 1 is not already a canonical ellipse. Then there is a one-parameter

family of F -empty ellipses with the same three points as E on their boundary.

Let E 6= E 0 = f (x; y) 2 R
2 j g0(x; y) := a0x2 + b0y2 + c0x + d0y + e0 � 0 g

with a0 + b0 = 1 be such an ellipse. Note that a; b > 0, a0; b0 > 0, since E

and E 0 are ellipses, and (a; b) 6= (a0; b0), because otherwise E and E 0 would

intersect at most twice. Thus we can assume w.l.o.g. that a > a0 and b < b0. Let

g�(x; y) := (1� �)g(x; y) + �g0(x; y) and E(�) := f (x; y) 2 R
2 j g�(x; y) � 0 g.

Now, by the equation (�� �)g(x; y) = �g�(x; y)� �g�(x; y), we can conclude

that E � E(�) [ E(�) for all � � 0 � �. We let � grow from zero until at �0
either a� := a + �(a0 � a) becomes zero, or a fourth point of F is hit by E(�0);

in the �rst case, E1 := E(�0) is a 3-point horizontal parabola, and in the second

case E1 is a canonical 4-point ellipse. By decreasing � from zero to �0 in a similar

way we get E2 := E(�0).

Corollary 3. An F -empty ellipse E can be covered by at most four regions which

are either 2-point halfplanes, 3-point parabolas, or canonical 4-point ellipses.

De�nition 2. Let E+, H2, P
+
3 , and E

+
4 denote the set of all F -empty ellipses,

the set of all 2-point halfplanes, the set of all 3-point parabolas, and the set of all

canonical 4-point ellipses respectively. We call C := E+
4 [P+

3 [H2 the set of all

canonical objects for (R;F ). A subset E � C with R � int([E) will be called a

C-cover for (R;F ).

Corollary 4. If there is an E+-cover for (R;F ) of size k, then there is a C-cover

for (R;F ) of size at most 4k.

The Delaunay circles of F constitute an F -empty cover of the convex hull

of F . By adding half-planes to cover the exterior of the convex hull, we get an

E+-cover for (R;F ) of size less than 2n. (In fact, this is a cover of R2 � F .)

So we conclude that k� � min(m; 2n). However, an optimal ellipse cover can be

considerably smaller than an optimal circle cover.
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3 Constructing the canonical objects

We show that there are only O(n2) canonical objects, and give an algorithm to

construct them all within the same time bound.

4-point ellipses. First we will see how we can construct all 4-point ellipses,

and give a quadratic bound on their number by using dynamic Voronoi diagrams.

Let us recall one standard way of constructing the Voronoi diagram of a set

F of n points p = (px; py). The Voronoi diagram can be obtained as the lower

envelope of the n bivariate functions fp(x; y) := (x � px)
2 + (y � py)

2 which

measure the squared distance from (x; y) to p. For each point (x; y), the Voronoi

cell into which it belongs is determined by the point p with the smallest value

fp(x; y), i. e., the lower envelope of the functions fp. We can rewrite fp as follows:

fp(x; y) := hp(x; y) + x2 + y2, with hp(x; y) = �2pxx � 2pyy + p2yw + p2x. Since

the expression x2 + y2 is common to all functions fp, it plays no role in the

computation of the lower envelope, and hence we may as well determine the

lower envelope of the n linear functions hp(x; y), i. e., of n planes in 3-space. We

will use an extended version of this correspondence between Voronoi diagrams

and lower envelopes of planes in the proof below.

Lemma 5. E+
4 has at most

�
n

2

��5 elements and can be computed in O(n2) time.

Proof. Consider the linear map that maps a point (x; y) 2 R
2 to (x; ty) for

a parameter t 2 R. An F -empty ellipse with width w and height h is, for

t := w=h, mapped to an F (t)-empty circular disk of radius w, where F (t) :=

f (x; ty) j (x; y) 2 F g. So the vertices of the Voronoi diagram of the point set

F (t) correspond to F (t)-empty disks that have 3 points of F (t) on their boundary

(3-point disks), which, after y-scaling by 1=t yield F -empty 3-point ellipses. Let

us consider the dynamic Voronoi diagram of F (t), i.e., the Voronoi diagram for

varying t > 0. Vertices of degree four in this dynamic Voronoi diagram correspond

to 4-point discs, which in turn correspond to 4-point ellipses. Regarding time t as

a third dimension, this dynamic Voronoi diagram can be considered as the lower

envelope of the trivariate distance functions fp(x; y; t) := (x�px)2+(y� tpy)2 for
p = (px; py) 2 F . We can write these functions as fp(x; y; t) = hp(x; ty; t

2)+x2+y2

with hp(u; v; w) = �2pxu � 2pyv + p2yw + p2x. The common term x2 + y2 of all

functions fp can be omitted, and so the vertices of the lower envelope of the

original functions fp correspond to the vertices of the lower envelope of the n

hyperplanes hp in R
4 . The lower envelope of n hyperplanes in R

4 has at most�
n
2

�� 5 vertices and can be computed in O(n2) time [6, 18]. Therefore, there are

only
�
n

2

�� 5 F -empty 4-point ellipses.

This bound is asymptotically tight in the worst case: Two sets of n=2 points

on the positive x- and y-axis generate �(n2) F -empty ellipses. It may however

happen that the number of 4-point ellipses is substantially smaller than this
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bound O(n2). In this case an alternate procedure may be preferable: The Voronoi

diagram of F (t) can be dynamically updated, varying t from 0 to 1. Each 4-

point ellipse corresponds to an event where the combinatorial structure of the

Voronoi diagram changes. The update can then be performed in constant time,

plus an O(logn) overhead for maintaining the event queue. An event is triggered

when an edge of the Voronoi diagram is reduced to length 0. This procedure

constructs E+
4 in time O(jE+

4 j logn).

3-point parabolas. Next we prove that the number of 3-point parabolas is

only linear and describe how to compute them in O(n logn) time.

Lemma 6. P+
3 has size at most 4n�10 and can be computed in O(n logn) time.

Proof. Let us argue w.l.o.g. that the number of parabolas with a vertical axis

is at most 2n � 5. One way to see this is to look at the limit of the dynamic

Voronoi diagram in the proof of Lemma 5 as t ! 0. However, we use a more

direct argument. We map all the points p = (x; y) 2 F to p0 = (x; y; x2); this

corresponds to lifting F to a point set F 0 on the parabolic cylinder  given by

the equation z = x2. Note that every vertical axis-parallel parabola P is the

projection of the intersection curve of  with an appropriate (unique) plane hP .

Moreover a point p is contained in P i� p0 is below hP .

This implies that a plane hP that corresponds to an F -empty axis-parallel

parabola P has to lie completely below the lower convex hull of F 0. Moreover,

a plane that corresponds to a 3-point parabola has to touch this hull in at least

three non-collinear points from F 0; therefore it corresponds to (i.e., contains) a

facet of that hull. The lower convex hull of n points in 3-space has at most

2n � 5 facets. This shows that there are at most 2n� 5 such parabolas and we

can compute them all in O(n logn) time by constructing convex hulls in three

dimensions.

2-point halfplanes. The 2-point halfplanes correspond to the edges of the

convex hull of F . Thus there are at most n such halfplanes and they can be

computed in O(n logn) time:

Lemma 7. H2 has size at most n and can be computed in O(n logn) time.

By adding up the numbers from the three previous lemmas, we obtain:

Corollary 8. There are less than n2 canonical objects in C, and they can be

found in O(n2) time.
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4 The range space of ellipses

We review basic de�nitions and results about range spaces, VC-dimension, and

"-nets. The relevant material can be found in [19, 3, 12, 14].

A range space H = (V;S) consists of a �nite ground set V and a �nite family

S of subsets of V , the so-called ranges. The VC-dimension of a range space

H = (V;S) is the size of the largest subset A � V such that all subsets B � A

are of the form A \ S for some S 2 S, i.e., 2A = fA \ S j S 2 Sg. A collection

of ranges fSB j B � Ag with the property B = A \ SB is called a shattering set

for A.

Instead of the natural choice of taking the ellipses as ranges, we have to

consider the dual range space, where the canonical ellipse C form the ground set

V , and the ranges S correspond to the required points R. More precisely, the

range set S = SR consists of the subsets Cr � C that contain a required point

r 2 R in their interior, i.e., SR = fCr j r 2 Rg with Cr = fE 2 C j r 2 int(E)g.
Thus, the VC-dimension of (C;SR) is the size of the largest set A of canonical

objects, such that for any subset B � A there is a point rB 2 R which is inT
E2B int(E) n

S
E2AnB int(E).

Lemma 9. The VC-dimension of the range space H = (C;SR) is at most

d(C;SR) := 4.

Proof. Suppose that a set A consisting of �ve objects is shattered by the ranges

corresponding to a set P � R of 2jAj = 32 required points.

There must be a point p0 2 P which is not covered by any object in A, i.e.

p; 2 R
2 n SE2A int(E). By translating the points and ellipses, we can assume

that p; is the origin. Thus, the interior of any E 2 A can be written in the form

int(E) = f (x; y) j ax2 + bx+ cy2 + dy + e < 0 g with e � 0, including the case of

parabolas and halfplanes. Since P is �nite, each e can be increased by some small

amount to e0 > 0 (shrinking E to E 0) such that p 2 int(E)() p 2 Int(E 0) for all

p 2 P and E 2 A. Now, a point p 2 P is either in the interior or in the exterior

of an object E 0, but never on the boundary. Lifting the points p = (px; py) 2 P to

l(p) = (p2x; px; p
2
y; py) we observe that p 2 int(E) implies that l(p) is in the open

halfspace H�

E = f x 2 R
4 j ax1 + bx2 + cx3 + dx4 + e0 < 0 g, whereas p 62 int(E)

implies that l(p) 2 H+
E = f x 2 R

4 j ax1 + bx2 + cx3 + dx4 + e0 > 0 g. This way
the assumption that A is shattered by P is equivalent to the condition that the

points fl(p) j p 2 Pg are in di�erent 4-cells an arrangement of �ve hyperplanes in

R
4 . This is a contradiction because any arrangement of d+ 1 hyperplanes in Rd

has at most 2d+1�1 d-cells. Thus, the VC-dimension of (C;SR) is at most 4.

Let w : V ! N be a weight function on the vertex set of the range space

H = (V;S). The weight of a subset X � V is de�ned as w(X) :=
P

v2X w(v).

For " > 0, a set E � V is called an "-net for the range space H w.r.t. the weight

function w if E \ S 6= ;, for any S 2 S with w(S)=w(V ) > ".
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Lemma 10. [16] Let H = (V;S) be a range space of VC-dimension d, w : V ! N

be a weight function on V , and let " > 0. Then a set of d
"
(log 1

"
+ 2 log log 1

"
+ 3)

points from V drawn independently (i.e., with possible repetition) according to the

weight function w, constitutes an "-net for the range space H w.r.t. the weight

function w with probability at least 1=2.

5 The covering algorithm

We describe a randomized algorithm that computes a C-cover for (R;F ) which

consists of O(k� log k�) canonical objects. The main techniques applied here have

been developed in [15, 20, 7, 5]. For each ellipse E 2 C there is a weight w(E)

which estimates the importance of E for covering R. The weight of a set V � C

is given by w(V ) :=
P

E2V w(E). The algorithm proceeds in rounds. We start

with a simple version of the algorithm, which will be successively re�ned. In what

follows c := 2d(C;SR) = 8.

Algorithm 1.

Input: (R;F ) and a parameter k > 0.

Output: If the algorithm terminates, it returns a C-cover E for (R;F )

of size jEj � ck log k.

1. Initially set w(E) = 1 for all E 2 C.

2. Start a new round by picking a random sample E of size ck log k from C

according to the weight distribution w.

3. If E is a cover, halt.

4. Take a point q 2 R which is not covered by E, and determine the set

Cq = fE 2 C j q 2 E g.
5. If w(Cq) � w(C)=(2k) this round is declared to be successful and the weight

of all E 2 Cq is doubled.

6. Goto Step 2.

Lemma 11. If k � 4k� then

1. If the algorithm does not halt in a round, the probability that the round is

successful is at least 1=2, and

2. the number of successful rounds is at most 16k� log(n2=k�) � 8k logn.

11



Proof. 1. Let " := 1=(2k) and consider the range space H = (C;SR). Recall that
SR = fCr j r 2 Rg and Cr = fE 2 C j r 2 Eg. From Lemma 9 and 10 we can

conclude that a random sample E of size ck log k from C is an "-net for H w.r.t.

the weight function w with probability at least 1=2. Thus for any X � C with

w(X) � "w(C) it follows that E\X 6= ;. Now if E is indeed an "-net, and q 2 R
is not covered, i.e., E \ Cq = ;, it follows that w(Cq) � "w(C), so the round is

successful.

2. In each successful round the total weight w(C) increases by a factor of

at most (1 + ") � e" � 23=(4k) � 23=(16k
�). Thus, after s successful rounds

w(C) � n223s=(16k
�), using the fact that jCj < n2 (Corollary 8). Let E0 be an

optimal C-cover. By Corollary 4, we know that k� � jE0j � 4k�. Since E0 covers

R, E0 \ Cq 6= ; in each round, so in each successful round the weight of at least

one E 2 E0 is doubled. Now if dE denotes the number of times that the weight of

E 2 E0 has been doubled after s successful rounds, then
P

E2E0
dE � s, and we

can conclude w(E0) =
P

E2E0
2dE � jE0j2s=jE0j � k�2s=(4k

�), where the next-to-

last inequality follows from Jensen's inequality. Since w(E0) � w(C) we �nally

get s � 16k� log(n2=k�).

If k � 4k� we can view a single round of Algorithm 1 as a Bernoulli experiment

with success probability at least 1=2. We consider probabilty of the event that

Algorithm 1 does not halt after 8tk logn rounds (implying that the number of

successful rounds was smaller than 8k logn). This is bounded by the probability

that the sum S of 8tk logn independent random variables Xi with Pr[Xi = 1] =

Pr[Xi = �1] = 1

2
is larger than � = 8(t � 2)k logn. Applying Cherno� bounds

we obtain the following inequality

Pr[S > �] � e�
�
2

2�8k log n = e�
(t�2)2

t
4k log n

For t � 8 we have
(t�2)2

t
� 2t and Pr[S > �] � e�8tk log n. Now consider the fol-

lowing algorithm (call it Algorithm 2 ): Given k and Æ > 0, we run Algorithm 1 for

up to max(64k logn; ln (1=Æ)) rounds. This way the number of rounds is 8tk logn

with t � 8 and t � ln (1=Æ)

8k log n
. By the estimations above, the algorithms stops with

a cover of size at most 8k log k with probability at least 1 � Æ. Otherwise we

halt after max(64k logn; ln (1=Æ)) rounds. This constitutes a randomized approx-

imation algorithm for the decision problem variant of the minimal cover problem

with a one-sided error:

Theorem 1. Given k and Æ > 0, Algorithm 2 stops after max(64k logn; ln (1=Æ))

rounds, and if k � 4k� it returns a cover of size at most 8k log k with probability

at least 1� Æ.

Since the value of k� is not known beforehand, we have to perform an expo-

nential search for it: We run Algorithm 2 for k = 2; 4; 8; 16; : : : until it �nds a

cover (call this procedure Algorithm 3 ). In the dlog k�e-th step of the exponential
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search (when 4k� � k � 8k�), the algorithm is successful with probability at least

1� Æ, and we get a cover of size at most 8ck� log(8k�). The total runtime of the

exponential search procedure is dominated by the runtime of the last step.

Theorem 2. For any Æ > 0, Algorithm 3 computes after O(k� log(n) log(1=Æ))

rounds a cover of size at most 64k� log 8k� with probability at least 1� Æ.

5.1 Data structures and algorithms for the individual steps

It remains to devise eÆcient means and data structures to maintain the weights of

the objects in C such that they allow eÆcient sampling according to w. Moreover

we have to specify how to check whether a candidate sample E constitutes a cover.

We will �rst assume that C does not contain parabolas or halfplanes. Below we

show how to modify our algorithm to handle these objects as well.

Maintaining the weights. Each of the O(n2) ellipses E 2 C is speci�ed by

four real parameters and can be written in the following form:

E = f (x; y) 2 R
2 j g(x; y) := a(x2 � y2) + bx + cy + d+ y2 � 0 g; (1)

where 0 < a < 1 and b; c; d 2 R. We now perform a similar transformation as in

the proof of Lemma 9, except that we have used a di�erent normalization for the

equation of the ellipse. The ellipse E contains a point p = (x; y) i� g(x; y) � 0.

If we map E to the point pE := (a; b; c; d) 2 R
4 and the point p to the hyperplane

hp := f (A;B;C;D) 2 R
4 j A(x2� y2)+Bx+Cy+D+ y2 = 0 g then E contains

p i� pE is below hp.

We identify each ellipse E 2 C with the point pE. Let C
0 be the set of these

points. In order to eÆciently pick an ellipse at random and to maintain the

weights eÆciently we store C0 in a partition tree data structure: The partition

tree of [17] for these N = O(n2) points can be constructed in O(N logN) =

O(n2 logn) time, O(N) space, and allows halfspace range queries to be answered

in time O(N3=4 logO(1)N) = O(n3=2 logO(1) n). The �rst level of the tree stores a

partition of R4 into O(N3=4) simplices, where each simplex contains N1=4 points.

Recursively, a simplex representing r points stores a simplicial partition of size

O(r3=4). The height of the tree is O(log logN). In this tree data structure the

points themselves are stored only at the leaves. For our purposes we add the

weight information for the points to the tree as follows: We store at each node a

factor, initially set to one. The weight for an ellipse (in a leaf) is the product of

the factors on the path from the leaf to the root.

Now suppose an uncovered point q 2 R is given, for which we need to double

the weights of all ellipses in C that contain q. In other words, we have to double

the weights of all points in C0 that lie above hq. This can be done using the half-

space range query algorithm of [17] which touches all simplices in the partition,

and then goes recursively into those simplices that are cut by hq. When touching
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all simplices in a level, we simply have to double the factors of those simplices

that are completely above hq. So the doubling of the weights can be done in

O(n3=2 logO(1) n) time.

Random sampling. In order to eÆciently pick an ellipse at random from the

tree we have to add additional information to each node: In every inner node v we

store the sum sv of all weights in the subtree rooted at sv, divided by all factors

on the path from v (not including v) to the root. Note that we can initialize all

sv easily in a bottom-up manner. To �nd a random sample we recursively go

down the tree from the root, picking a random child at each vertex, according to

the weights that are stored in the children. To this end we store in each node a

sorted list of adjacent intervals whose lengths are the weights of the children. In

order to go to a random child, we generate a random number in the union of the

intervals and �nd the interval containing it by binary search in O(logn) time.

We can now pick a random ellipse by following a random path from the root to

a leaf in O(logn log logn) time. According to Lemma 10 the sample E can be

generated by independent draws of random ellipses, with replacement.

During a weight doubling step we can maintain the interval partitions at

asymptotically no extra cost since during a query we touch all children of each

node that we visit in the recursion anyway.

Verifying the cover. Now we need to check if E covers R. We �rst give a

simple algorithm which we speed up afterwards with a batching technique. We

proceed as follows: Compute the arrangement of the k1 := ck log k ellipses, to-

gether with an eÆcient point location data structure in O(k21 log k1) time; then

query this data structure with all points in R. This takes O(m log k1) time and

identi�es an uncovered point. Now if k1 �
p
m the total time spent in that proce-

dure is O((m+ k21) log k1) = O(m log k1) = O(m logm). If k1 >
p
m we can split

E into g := dk1=
p
m e groups of size at most

p
m and run the previously described

procedure for each of these groups. This requires O(k1
p
m logm) time. To sum-

marize, we can identify an uncovered point q 2 Rn[E in O((m+k1
p
m) logm) =

O((
p
m + k log k)

p
m logm) time.

Putting all this together, Algorithm 3 needs:

1. O(n2 logn) preprocessing time to initialize the partition tree, and

2. in each of the O(k� log(n) + log(1=Æ)) rounds

(a) O(n3=2 logO(1) n) time for the weight update and the sampling step,

and

(b) O((
p
m+ k� log k�)

p
m logm) time for the veri�cation step.
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Theorem 3. For any Æ > 0, Algorithm 3 computes with probability at least 1� Æ
in O(n2 logn+(k� log(n)+log(1=Æ))[(n3=2 logO(1) n+(

p
m+k� log k�)

p
m logm)]) =

~O(n2 + k�n3=2 + k�m + (k�)2
p
m) time a cover of size at most 2ck� log k�.

It may happen that the number of 4-point ellipses is substantially smaller than

the bound O(n2). This translates directly into a corresponding improvement of

the running time to ~O(jE+
4 j+ k�jE+

4 j3=4 + k�m+ (k�)2
p
m), see the remark after

Lemma 5.

5.2 Handling degenerate cases

To �nish the description of our approximation algorithm we need to clarify a few

points. First of all we have to show how to adapt our method so that it can

handle axis-parallel parabolas and halfplanes. Next, since our ultimate goal is

to �nd a cover with ellipses only, we also have to describe how to repair a cover

computed by the algorithm so that it only uses ellipses. This is actually quite

straightforward in the original setting but if we relax the covering condition to

allow covered points on the boundary of covering objects, this issue gets slightly

more intricate.

Parabolas and halfplanes. First note that axis-parallel parabolas can also

be written in the form of equation (1) if we allow 0 � a � 1. Therefore the

algorithm we just described can handle them without any modi�cations.

For halfplanes, we can adapt the techniques that work for parabolas and

ellipses. Each half-plane is represented by a point in a dual space, which is

just two-dimensional in this case. In order to �nd all halfplanes that contain a

point q 2 R, we have to perform a halfplane range-query in the dual setting.

We can also use eÆcient data structures for this problem and augment them

appropriately with the weight information for the halfplanes. Thus we end up

with two data structures: one that handles ellipses and parabolas and one that

handles halfplanes. In the sampling step we �rst decide, depending on the total

weight of the data structures, whether to take a halfplane or an ellipse/parabola,

and then continue the sampling in the appropriate data structures as described

above. The asymptotic performance of the algorithm is not a�ected by this

modi�cation.

Since the covering relation is strict, i.e., no point of R lies only on boundaries

of canonical objects, each halfplane and parabola in a C-cover can in the end

be perturbed into an F -empty ellipse covering the same points of R. This can

be done in O(m) time for each halfplane or parabola. However, the following

approach avoids this overhead: We select for each point of R only one object

that is required to cover it. (This can be carried out during the check that a

covering is given, by the algorithm in Section 5.1.) The �nal conversion can

then be done in O(K +m) time for a total of K parabolas and halfplanes in the
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cover, since di�erent parabolas and half-planes have to take care of disjoint sets

of R-points.

Non-strict covers. We can modify our approach so that it also works when

we allow the points of R to be covered by the boundary of the covering objects.

We call a set of axis-parallel ellipses E a non-strict cover of (R;F ) if the union

[E := [E2EE covers R and respects F , i.e., R � [E and F \ int([E) = ;. All
our previous arguments and algorithms carry over to this setting. In particular

we can compute a non-strict C-cover for (R;F ) of size O(k� log k�) within the

time bounds stated in Theorem 3.

A

B

C

D

�

(a) (b)

Figure 5: A parabola and a hyperplane in a non-strict covering

The only diÆculty arises in the last step when we have to replace halfplanes

and parabolas by ellipses. Consider the parabola shown in Figure 5a. Clearly,

a true F -empty ellipse cannot cover the same set of R-points as this parabola,

because any ellipse can intersect the parabola in at most four points, and hence

it can cut out at most two intervals of the parabola. Thus, if we want to insist

on real ellipses and want to exclude parabolas and halfplanes, we have to modify

the construction of the candidate set C:

By the arguments of Section 2, the parabolas that we have to consider arise

as limits of a family of 3-point ellipses (see Lemma 2). Consider the dynamic

Voronoi diagram in the proof of Lemma 5. We increase the scaling parameter

t beyond the point where the last combinatorial change in the Voronoi diagram

occurs. In other words, we select t larger than the largest value that corresponds

to a 4-point ellipse. Each vertex in the Voronoi diagram of F (t) represents now

a 3-point ellipse which \converges" to a horizontal parabola with the same three

points on the boundary. The vertical parabolas can be found analogously by

choosing t close enough to 0.
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There are O(n) of these ellipses. Suppose that such a 3-point ellipse is given

by three points A, B, C, see Figure 5a. All ellipses through A;B;C intersect the

3-point parabola � given by A;B;C in the same fourth point D. Thus, the set

of points on � that can be covered is �xed. It is now easy to select an ellipse

close enough to � such that all points of R in the interior of � are covered as

well. This would take O(m) time, for a total time of O(mn). Alternatively, it is

possible to represent the ellipse symbolically, by storing the parabola � and the

points A;B;C;D. Then it can be decided in O(1) time whether a given point of

R is covered by the ellipse. The conversion to true ellipses can be done at the

end for the parabolas that are selected for the covering, as described above for

the case of strict covering.

Half-planes are much simpler to deal with, see Figure 5b: we just create an

ellipse (it can even be a circle) for each set of R-points on the boundary which

form an interval which is not interrupted by F -points.

5.3 The application revisited

In the spot detection application for electrophoresis gels which we have described

in Section 1 the task is to cover a planar region by the union of a minimal

number of axis-parallel ellipses. Since for the computer-assisted analysis the

electrophoresis gels are scanned, the planar region is given as a pixel pattern.

As was argued in the introduction, n = jF j is approximately the length of the

boundary of the spot in this setting, andm = jRj = O(n2). Since every connected

horizontal or vertical sequence of points of R is bounded from both sides by a

point of F , halfplanes or parabolas cannot occur in a cover, so we need not take

the trouble to handle these special cases. By Theorem 3, we obtain a cover of

size O(k� log k�) cover in expected time ~O(n2k�). We can even omit the partition

tree data structure and �nd uncovered points and update the weights trivially in

O(n2) time and still achieve this time bound.

5.4 Open Questions

Whether our ellipse-covering problem is really NP-hard is of course an interesting

open problem. The proof of [8] for rectangle coverings is quite involved, and it

will be technically very diÆcult to extend it to ellipses.

Our problem has its origin in image processing. We have discretized the

problem by choosing points sets R and F as \hard" constraints for the ellipses.

Other approaches are conceivable. One could specify some maximum number of

ellipses and minimize the number of uncovered points of R, of covered points of F ,

or some combination. Each pixel might have a di�erent propensity to be covered

or uncovered, based on its gray-level, and one might minimize some objective

function based on the \mis-classi�ed" pixels.
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One could also model the geometry di�erently, by specifying some tolerance

and de�ning an annular region around the boundary of the spot in the image,

limited by an \inner boundary" and an \outer boundary". One looks for a set of

ellipses whose union covers the inner boundary including the interior but remains

within the outer boundary. Even if these boundaries are polygonal, our approach

does not readily generalize to this setting because it depends crucially on the

�niteness of the sets F and R.

Acknowledgments. We would like to thank Helmut Alt, Sariel Har-Peled, and

Ulrich Kortenkamp for fruitful discussions.

References

[1] P. K. Agarwal and C. M. Procopiuc. Approximation algorithms for projective

clustering. In Proc. 11th ACM-SIAM Sympos. Discrete Algorithms, pages

538{547, 2000.

[2] R. Appel, J. Vargas, P. Palagi, D. Walther, and D. Hochstrasser. Melanie

II, a third{generation software package for analysis of two{dimensional elec-

trophoresis images: II. Algorithms. Electrophoresis, 18:2735{2748, 1997.

[3] P. Assouad. Densit�e et dimension. Ann. Inst. Fourier, Grenoble, 3:232{282,

1983.

[4] M. Bern and D. Eppstein. Approximation algorithms for geometric prob-

lems. In D. S. Hochbaum, editor, Approximation Algorithms for NP-Hard

Problems, pages 296{345. PWS Publishing Company, Boston, MA, 1997.

[5] H. Br�onnimann and M. T. Goodrich. Almost optimal set covers in �nite

VC-dimension. Discrete Comput. Geom., 14:263{279, 1995.

[6] B. Chazelle. An optimal convex hull algorithm in any �xed dimension. Dis-

crete Comput. Geom., 10:377{409, 1993.

[7] K. L. Clarkson. Algorithms for polytope covering and approximation. In

Proc. 3rd Workshop Algorithms Data Struct., volume 709 of Lecture Notes

Comput. Sci., pages 246{252. Springer-Verlag, 1993.

[8] J. Culberson and R. A. Reckhow. Covering polygons is hard. J. Algorithms,

17:2{44, 1994.

[9] A. Efrat, F. Ho�mann, C. Knauer, K. Kriegel, G. Rote, and C. Wenk. Cov-

ering shapes by ellipses. In Proceedings of the 13th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 453{454, San Francisco,

USA, January 2002.

18



[10] A. Efrat, F. Ho�mann, K. Kriegel, C. Schultz, and C. Wenk. Geometric

algorithms for the analysis of 2d-electrophoresis gels. In Proceedings of the

Fifth Annual International Conference on Computational Molecular Biology

(RECOMB), pages 114{123, Montr�eal, Canada, 2001.

[11] J. Garrels. The QUEST system for quantitative analysis of 2D gels. J.

Biological Chemistry, 264:5269{5282, 1989.

[12] D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete

Comput. Geom., 2:127{151, 1987.

[13] D. S. Hochbaum. Approximation algorithms of the set covering and vertex

cover problems. SIAM J. Comput., 11(3):555{556, 1982.

[14] J. Koml�os, J. Pach, and G. Woeginger. Almost tight bounds for �-nets.

Discrete Comput. Geom., 7:163{173, 1992.

[15] N. Littlestone. Learning quickly when irrelevant attributes abound: A new

linear-threshold algorithm. In Proc. 28th Annu. IEEE Sympos. Found. Com-

put. Sci., pages 68{77, 1987.

[16] J. Matou�sek. Cutting hyperplane arrangements. Discrete Comput. Geom.,

6:385{406, 1991.

[17] J. Matou�sek. EÆcient partition trees. Discrete Comput. Geom., 8:315{334,

1992.

[18] R. Seidel. Small-dimensional linear programming and convex hulls made

easy. Discrete Comput. Geom., 6:423{434, 1991.

[19] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of

relative frequencies of events to their probabilities. Theory Probab. Appl.,

16:264{280, 1971.

[20] E. Welzl. Partition trees for triangle counting and other range searching

problems. In Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 23{33,

1988.

[21] M. R. Wilkins, K. L. Williams, R. D. Appel, and D. F. Hochstrasser, edi-

tors. Proteome Research: New Frontiers in Functional Genomics. Springer-

Verlag, 1997.

19


