
Computing Fair and Bottleneck Matchings in Geometric Graphs

Alon Efrat

�

Matthew J. Katz

y

May 15, 1996

Abstract

Let A and B be two sets of n points in the plane, and letM be a (one-to-one) matching

between A and B. Let min(M), max(M), and �(M) denote the length of the shortest edge,

the length of the longest edge, and the sum of the lengths of the edges of M respectively.

The uniform matching problem (also called the balanced assignment problem, or the fair

matching problem) is to �nd M

�

U

, a matching that minimizes max(M) � min(M). A

minimum deviation matching M

�

D

is a matching that minimizes (1=n)�(M)�min(M). We

present algorithms for computingM

�

U

andM

�

D

in roughly O(n

10=3

) time. These algorithms

are more e�cient than the previous O(n

4

)-time algorithms of Martello and Toth [19] and

Gupta and Punnen [11], who studied these problems for general bipartite graphs.

We also consider the (non-bipartite version of the) Euclidean bottleneck matching prob-

lem in higher dimensions. We extend the planar results of Chang et al. [4] and Su and

Chang [22], and show that given a set A of 2n points in d-space, it is possible to compute

a bottleneck matching of A in roughly O(n

3=2

) time, for d � 6, and in subquadratic time,

for any �xed dimension d.

�

School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69982, Israel. alone@cs.tau.ac.il

y

Department of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, The Netherlands.

matya@cs.ruu.nl

0

Introduction 1

1 Introduction

Let G = (A [B;E) be a bipartite graph. A Matching M in G is a subset of E such that

each v 2 A [B belongs to at most one edge of M . M is maximum if jM j � jM

0

j, for any

other matching M

0

in G. M is perfect if each v 2 A [B belongs to exactly one edge of M .

(Obviously, if a perfect matching exists then jAj = jBj.) The problem of computing a perfect

matching in G has been studied extensively. The best known solution is due to Hopcroft and

Karp [15]; it computes a perfect matching in G in time O(jEj

p

jV j). (See also [20].)

When weights are associated with the edges of G, it is often desirable to compute a perfect

matching which is optimal with respect to some criterion. A minimum weight matching min-

imizes the sum of the weights of the edges of the matching, a bottleneck matching minimizes

the maximum weight of an edge in the matching, a most uniform matching minimizes the

di�erence between the maximum weight and the minimum weight of edges of the matching,

and a minimum deviation matching minimizes the di�erence between the average weight and

the minimum weight of the matching (alternatively, minimizes the di�erence between the max-

imum weight and the average weight). Much work has been done on the problems of �nding

e�cient algorithms for computing these matchings; see e.g. [9, 11, 17, 18, 19].

In this paper we consider the last two of these four problems from a geometric point of

view. That is, we assume that the sets of vertices A and B are sets of points in the plane, and

that G is the complete bipartite graph over A,B. The weight associated with an edge (a; b)

is the Euclidean distance between a and b. In many of the cases where an optimal matching

of one of the above types is required, the underlying graph is indeed a Euclidean bipartite

graph (below we mention a few concrete examples). For the �rst two of these problems, there

exist algorithms for the geometric versions that are more e�cient than the corresponding more

general algorithms. The best algorithm for computing a minimum-weight Euclidean matching

was given by Agarwal et al. [3]; it runs in time O(n

2+"

) as opposed to the O(n

3

)-time algorithm

that is obtained from the standard Hungarian method [17, 18]. (The algorithm of Agarwal et

al. is based on a previous O(n

2:5

logn)-time algorithm of Vaidya [23].) Recently Efrat and

Itai [7] have proposed an O(n

1:5

log n)-time algorithm for computing a Euclidean bottleneck

matching, which is, again, faster than the best graph-theoretic algorithm by nearly a factor of

n.

Martello and Toth [19] consider the problem of computing a most uniform matching (or

a balanced assignment, as they call it) in general bipartite graphs, and present an O(n

4

)-time

solution. Here we present an O(n

10=3

logn)-time solution for this problem in the geometric

setting. Our solution is based on a technique for batched range searching, where the ranges

are congruent annuli [16], and it also borrows ideas from [7].

The problem of computing a most uniform Euclidean matching M

�

U

is strongly related to

the �eld of pattern matching. In Section 3 we show the connection between this problem and

the following problem. Find a translation of a point set B that maximizes the similarity (or

correspondence) between a large portion B

0

of B and a large portion A

0

of another point set

A. Also many natural problems arising in the �eld of operations research boil down to the

problem of computing M

�

U

.

The problem of computing a minimum deviation matching for an arbitrary graph was

Fair and Bottleneck Matchings May 15, 1996

Computing a Most Uniform Matching 2

considered by Gupta and Punnen [11] who gave an O(n

4

)-time solution. For this problem we

present an O(n

10=3+"

)-time solution

1

in the geometric setting. This solution is based on the

algorithm of [3] for computing the minimum-weight Euclidean matching.

We also study the (non-bipartite version of the) Euclidean bottleneck matching problem in

higher dimensions, that is, given a setA of 2n points in d-space, compute a bottleneck matching

in G, the (complete) Euclidean graph over A. (The weight associated with an edge (a; b) is the

Euclidean distance between a and b.) The best known algorithm for computing a bottleneck

matching in a general graph is due to Gabow and Tarjan [9]; it runs in time O((n logn)

1=2

m).

Chang et al. [4] have shown for d = 2 that a linear-size subgraph of G, called the 17 relative

neighborhood graph of A and denoted 17RNG (see de�nition in Section 5), already contains

a bottleneck matching of G. Thus, by applying the algorithm of Gabow and Tarjan to the

17RNG of A instead of to G, a bottleneck matching can be computed in O(n

3=2

log

1=2

n) time,

provided that the 17RNG of A can be computed within the same time bound. This however

is quite simple (assuming general position), see also [22].

We extend the main result of Chang et al. and show that for any �xed dimension d there

exists some constant k = k(d) such that the kRNG of A contains a bottleneck matching of

G. Since the size of a kRNG remains linear in higher dimensions, and since it (or related

linear-size supergraphs of it) can be computed e�ciently, we obtain subquadratic algorithms

for computing a bottleneck matching in any �xed dimension. In particular we show that up

to dimension 6, a bottleneck matching in G can be computed in roughly O(n

3=2

) time.

2 Computing a Most Uniform Matching

We assume some familiarity of the reader with the notion of augmenting paths in the context

of computing a maximum (cardinality) matching in a bipartite graph. See [18] for further

details.

Let A and B be two sets of n points in the plane. Let G[r; r

0

] denote the bipartite graph

whose set of vertices is A[B, and there is an edge between a 2 A and b 2 B if r � jja�bjj � r

0

,

where jja � bjj is the Euclidean distance between a and b. Let d

(1)

: : :d

(n

2

)

denote the n

2

distances between points of A and points of B, in increasing order. We refer to them as

critical distances, and we assume, for simplicity of exposition, that they are distinct. We will

maintain a maximum matching in G[r; r

0

], where r; r

0

are critical distances that vary. We start

with G[d

(i)

; d

(j)

] for i = j = 1 and with the empty matching. The top level of the algorithm

consists of the following loop. If there is no perfect matching in G[d

(i)

; d

(j)

] (i.e., if the current

maximum matching is of cardinality less than n) increase j by one, else increase i by one; in

either case compute a maximum matching in the new graph, and repeat. Increasing j adds

a single edge to the graph, and we must check whether the size of the maximum matching

increases by one. Increasing i deletes a single edge from the graph, and, if this edge was in

the current maximum matching, we must check whether the size of the maximum matching

remains as before or decreases by one. Both these conditions can be checked by trying to

1

Throughout the paper, " stands for a positive constant which can be chosen arbitrarily small with an

appropriate choice of other constants of the algorithms.

Fair and Bottleneck Matchings May 15, 1996

Computing a Most Uniform Matching 3

compute an augmenting path for the current matching (in the latter case, after deleting the

edge corresponding to the distance d

(i)

from the current matching). If such a path exists then

the answer is positive and we update the current maximum matching, otherwise, the answer

is negative. If a perfect matching was found, then we compare the appropriate di�erence, i.e.,

either d

(j+1)

�d

(i)

or d

(j)

�d

(i+1)

, with the di�erence corresponding to the best matching found

so far. Clearly, the most uniform matching will be discovered in this way, and the number of

times we need to compute an augmenting path is O(n

2

).

We next describe how to compute an augmenting path in G[r; r

0

] (if such a path exists)

in time O(n

4=3

log n). Let S � A be the set of all vertices in A that are currently unmatched

(exposed). If we can �nd an augmenting path (i.e., a path whose odd edges are edges of

G[r; r

0

] that are not in the current matching, and whose even edges are edges of the current

matching) from some vertex a 2 S to an exposed vertex b 2 B, then we can augment the

current matching. Otherwise, the current matching is also a maximum matching of the new

graph.

We need a data structure D

r;r

0

(P) over a set of points P , supporting the following opera-

tions.

� neighbor

r;r

0
(P; q): For a query point q, return a point p 2 P whose distance from q is

between r and r

0

. If no such p exists, then neighbor

r;r

0

(P; q) = ;.

� delete

r;r

0

(P; p): Delete the point p from P .

Using these operations, we can compute an augmenting path, if such exists, with the following

simple procedure, which is a variant of a procedure that appeared in [7]. The underlying data

structure is described immediately afterwards.

procedure FindAugmentingPath

L

1

 S ;

L

2

 ; ;

D D

r;r

0
(B) ;

Repeat forever

For each a 2 L

1

Do

/* Find all b's that are neighbors of a in G[r; r

0

] */

While neighbor

r;r

0

(D; a) 6= ;

b neighbor

r;r

0

(D; a) ;

If b is exposed, then stop. An augmenting path was found.

Add b to L

2

;

delete

r;r

0

(D; b) ; /* prevent re-�nding b */

End

End

If L

2

= ;, then stop. No augmenting path exists.

L

1

 all vertices connected to some b 2 L

2

by a matching edge.

L

2

 ;.

End

Fair and Bottleneck Matchings May 15, 1996

Computing a Most Uniform Matching 4

Note that this procedure performs O(n) operations of neighbor

r;r

0

and delete

r;r

0

, and

�nds an augmenting path (if such exists). The procedure actually computes a forest of trees

whose roots are the exposed vertices of A (i.e., the vertices in S). When an exposed vertex

b of B is reported, the path leading to b from the root of the tree to which b belongs is an

augmenting path. Below we describe the underlying data structure D

r;r

0

(B) that enables us

to perform the operations neighbor

r;r

0

and delete

r;r

0
in amortized time O(n

1=3

logn). The

data structure can be constructed in O(n

4=3

logn) time. Thus, an augmenting path can be

computed in total time O(n

4=3

log n), and, since we repeat this O(n

2

) times, we obtain an

O(n

10=3

logn)-time algorithm for computing a most uniform matching.

The data structure

The data structure is based on the following theorem.

Theorem 2.1 (Katz [16]) Let M be a set of m congruent annuli and A a set of n points

in the plane. One can compute the set of pairs of the form (c; a), where c 2 M, a 2 A,

and a lies inside c, as a collection fM

u

� A

u

g

u

of complete edge-disjoint bipartite graphs, in

O((m

2=3

n

2=3

+m+n) logm) time and space. The number of graphs obtained is O(m

2=3

n

2=3

+

m + n), and we have

P

u

jA

u

j;

P

u

jM

u

j = O((m

2=3

n

2=3

+ m + n) logm). Each such point-

annulus containment pair appears in exactly one of these graphs.

For each b 2 B draw the annulus of radii r and r

0

that is centered at b. Let M be the

set of these annuli. Clearly, r � jjq � bjj � r

0

for some point q i� q lies inside the annulus

associated with b. We apply Theorem 2.1 to the sets A andM and obtain in time O(n

4=3

logn)

a collection of O(n

4=3

) bipartite graphs H

u

such that

P

u

jA

u

j;

P

u

jM

u

j = O(n

4=3

logn). We

now create a few auxiliary linked lists so that we don't report a point in B more than once.

First, we convert the vertex sets of the graphs H

u

into doubly linked lists. Next, for each a 2 A

we create a doubly linked list of pointers to the occurrences of a in the lists A

u

, and have each

such occurrence of a point back at the pointer to it. For each point b 2 B we create a linked

list of pointers to its occurrences in the lists M

u

. All this can be done in O(n

4=3

logn) time

and space by traversing the vertex sets of the graphs H

u

.

Now in order to report all the neighbors of a point a 2 L

1

that have not been reported

yet for some other point, that is, in order to execute the While loop in the procedure above,

we proceed as follows. Traverse the list associated with a. For each occurrence of a in a list

A

u

report all the points b inM

u

. For each such reported b, remove all occurrences of b in the

lists M

u

. For each vertex a

0

in a list A

u

containing a, remove from the linked list associated

with a

0

the pointer to this occurrence. Clearly, the overall number of basic operations that are

performed during the construction of the forest is only O(n

4=3

logn).

Remark 2.2: Note that if the underlying norm is L

1

, then, even if the input points are

in d-space for some d > 2, it is easy to �nd a most uniform matching in time O(n

3

polylogn).

This is done by constructing a two level orthogonal range tree, where the �rst level enables us

to �nd the points of B lying at distance at least r from a query point, as a polylogarithmic

number of disjoint subsets of B, and the second level enables us to �nd out of the points found

in the �rst level those lying at distance at most r

0

from the query point. Details are standard

and hence omitted from this version. Summarizing, we have:

Fair and Bottleneck Matchings May 15, 1996

Applications to Pattern Matching 5

Theorem 2.3 Let A and B be two sets of n points. It is possible to compute a most uniform

matching in time O(n

10=3

logn) when the points are in R

2

and the underlying norm is L

2

, or

in time O(n

3

polylogn) when the points are in d-space, d � 2, and the underlying norm is L

1

.

3 Applications to Pattern Matching

Note that an obvious variant of the algorithm of the preceding section (with the same running

time) �nds a matching M

�

for which max(M)�min(M) is minimum among all matchings M

between A and B of cardinality k, where 1 � k � n is some pre-determined parameter. This

variant has the following interesting application.

Assume that the set B

0

� B is a translated copy of the set A

0

� A, but every point in B

0

has been independently slightly perturbed. In addition, A�A

0

and B �B

0

consist of spurious

points; that is, they were created as a result of noise. The problem is therefore to �nd A

0

, B

0

and the translation by which B

0

was translated with respect to A

0

. Assume furthermore that

we have some priori knowledge that the noisy points are spread randomly and that jA

0

j � k.

One approach for solving this problem is to �nd a translation that minimizes the Hausdor�

distance between large enough subsets of A and B; see [5, 6] for further details. This approach

has the drawback that the computed matching is not necessarily one-to-one, and hence might

not be appropriate, since we are certain in this case that a one-to-one matching between A

0

and B

0

exists.

On the other hand, it is reasonable to assume that the most uniform matching of size k

will �t points of A

0

to their images in B

0

, while most of the points of A� A

0

and B �B

0

will

remain unmatched. (If we don't have an exact estimation of the size of A

0

, we can compute

such an estimation by a binary search, since we expect a signi�cant increase in the di�erences

corresponding to the most uniform matchings that are computed when moving from sizes below

jA

0

j to sizes above jA

0

j.) Hence our algorithm is most likely to identify the sets A

0

and B

0

and

to give a useful initial translation to the algorithms of Efrat and Itai [7], He�ernan and Schirra

[13], or He�ernan [14] that compute the exact translation (once A

0

and B

0

are known). We are

not aware of any other way to solve this problem in less than O(n

3:5

) time.

4 Computing a Minimum Deviation Matching

In this section we show how to �nd M

�

D

, the matching that minimizes (1=n)�(M)�min(M).

We continue to use the same notation as in the previous section.

De�nition 4.1 Let M

i

be the perfect matching between A and B whose sum of distances is

minimum among all matchings M for which min(M) � d

(i)

.

Lemma 4.1 Assume that d

(i)

is the shortest edge of M

�

D

. Then M

�

D

=M

i

.

In [3] an O(n

2+"

)-time algorithm for �nding M

1

was proposed. This algorithm is a variant

of Vaidya's algorithm for solving the same problem. We use a variant of the algorithm of [3] for

�nding M

�

D

. First we �nd M

1

, using the algorithm of [3] mentioned above. Next we perform

Fair and Bottleneck Matchings May 15, 1996

Computing a Minimum Deviation Matching 6

n

2

� 1 phases of the algorithm, where in the j-th phase we use M

j�1

to �nd M

j

, and compute

(1=n)M

j

�d

(j)

. Lemma 4.1 shows that the smallest value encountered is M

�

D

. It will be shown

that the time needed for a phase (actually for obtaining M

j

from M

j�1

) is O(n

4=3+"

), so the

total running time is O(n

10=3+"

).

Let G be a general weighted bipartite graph on A[B, where each edge (a

i

; b

j

) is associated

with a weight d(a

i

; b

j

). The bipartite weighted matching problem can then be formulated as a

linear program:

min

X

i;j

d(a

i

; b

j

)x

ij

; subject to

n

X

j=1

x

ij

= 1; i = 1; : : : ; n;

n

X

i=1

x

ij

= 1; j = 1; : : : ; n;

x

ij

� 0; i; j = 1; : : : ; n;

where (a

i

; b

j

) is an edge of M if and only if x

ij

= 1. The dual linear program is

max

X

i

�

i

+

X

j

�

j

; subject to

�

i

+ �

j

� d(a

i

; b

j

); i; j = 1; : : : ; n;

where �

i

(resp. �

j

) is the dual variable associated with the point a

i

(resp. b

j

). A necessary and

su�cient condition for the optimality of the solution is that the orthogonal conditions below

hold:

x

ij

> 0) �

i

+ �

j

= d(a

i

; b

j

) i; j = 1 : : :n (1)

�

i

6= 0)

P

j

x

ij

= 1 i = 1 : : :n (2)

�

j

6= 0)

P

i

x

ij

= 1 j = 1 : : :n (3)

Assume that in the last phase we have computed M

k�1

. That is, we have found values

x

i;j

; �

i

; �

j

(for 1 � i; j � n) such that all orthogonal conditions (1), (2), and (3) hold. We

now seekM

k

. If the edge (a

i

0

; b

j

0

) whose length is d

(k�1)

is not in M

k�1

(and then all its edges

are of length at least d

(k)

), then surely M

k

= M

k�1

, and this phase is done. Otherwise we

want to delete this edge, and make sure that no matching in the future will use it. This will

be achieved by setting d(a

i

0
; b

j

0
) � 1, x

i

0

;j

0
= 0 (that is, delete (a

i

0
; b

j

0
) from the matching),

�

i

0

= 0, and �

j

0

is not changed. Hence all conditions remain valid, except for (3), which is

violated. Note that at this stage, for each pair a

i

; b

j

whose (Euclidean) distance jja

i

� b

j

jj is

less than d

(k)

, we have d(a

i

; b

j

) =1. For all other edges d(a

i

; b

j

) = jja

i

� b

j

jj.

The Hungarian method computes a matching in n stages, each of which augments the

matching by one edge and updates the dual variables. Let X be the current matching, i.e.,

X =M

k�1

� f(a

i

0

; b

j

0

)g. An edge (a

i

; b

j

) is called admissible if d(a

i

; b

j

) = �

i

+ �

j

. Due to the

orthogonal conditions, all the edges of X are admissible. As in the previous section, we use an

augmenting path to increase the cardinality of the matching back to n.

We search for an augmenting path consisting only of admissible edges, as follows. From

the unique exposed vertex b

j

0

2 B, we grow (in an implicit manner) an `augmenting tree'

Fair and Bottleneck Matchings May 15, 1996

Computing a Minimum Deviation Matching 7

whose paths are augmenting paths starting at b

j

0

. More precisely, each point of A [B in the

augmenting tree is reachable from b

j

0

by an augmenting path that consists only of admissible

edges. For a point w of A (resp. B), the path leading to w ends at an edge not in X (resp. in

X). Let S � B and T � A denote the set of points of B and of A that lie in the augmenting

tree. At the beginning of a phase, S � B is the singleton containing the exposed vertex b

j

0

,

and T = ;. Let

� = min

a

i

2A�T;b

j

2S

fd(a

i

; b

j

)� �

i

� �

j

g:

At each step, the algorithm takes one of the following actions, depending on whether � = 0 or

� > 0:

Case 1: � = 0. Let (a

i

; b

j

), for a

i

2 A� T and b

j

2 S, be an admissible edge (� = 0 implies

that such an edge must exist). If a

i

is the exposed vertex a

i

0

, then an augmenting path has

been found. Otherwise (a

i

is matched), let b

k

be the vertex matched (in X) to a

i

. We add the

edges (a

i

; b

j

) and (a

i

; b

k

) to the augmenting tree, the point a

i

to T , and the point b

k

to S.

Case 2: � > 0. The algorithm updates the dual variables, as follows. For each vertex a

i

2 T ,

it sets �

i

= �

i

� � and, for each b

j

2 S, it sets �

j

= �

j

+ �. Note that every edge of the

augmenting tree remains admissible.

The algorithm repeats these steps until it reaches an exposed vertex of A, thereby obtaining

an augmenting path. If an augmenting path � is found, we delete the edges of � \ X from

the current matching X and add the other edges of � to X (thereby increasing the size of the

current matching by 1) to obtain the new matching M

k

. Note that (1), (2), and (3) hold and

hence the optimality is provided. This completes the description of the algorithm. Further

details of the algorithm and the proof of its correctness can be found in [18, 23].

Vaidya suggested the following approach to expedite the running time of each step. Main-

tain a variable � and associate a weight with each point in A [B. In the beginning of each

phase, � = 0 and w(a

i

) = �

i

, w(b

j

) = �

j

for each 1 � i; j � n. During each step, the weights

and � are updated, but the values of the dual variables remain unchanged. This is done as

follows. If Case 1 occurs, then we set w(a

i

) = �

i

+� and w(b

k

) = �

k

��, and do not change

the value of �. (Note that a

i

62 T and b

k

62 S, so the values of �

i

and �

k

are the same as

at the beginning of the phase.) If Case 2 occurs, then we set � = � + �, and do not change

the weights. Notice that, for each b

j

2 S, the current value of �

j

is equal to w(b

j

) + �, and,

similarly, for each a

i

2 T , the current value of �

i

is equal to w(a

i

)��. Also, the current values

of the dual variables for other points are equal to their values at the beginning of the phase.

At the end of each phase, the values of the dual variables can be computed from � and from

the weights of the corresponding points. The weight of each point changes only once during a

phase, namely, when it is added either to S or to T . Moreover, at any time during a phase,

� = min

a

i

2A�T;b

j

2S

fd(a

i

; b

j

)� w(a

i

)� w(b

j

)g �� :

For a parameter r > 0, let F

r

denote the family of n functions whose i-th function is

d

i

(x) =

(

jjx� a

i

jj+ w(a

i

) if jjx� a

i

jj � r;

1 Otherwise.

Fair and Bottleneck Matchings May 15, 1996

Computing a Bottleneck Matching in Higher Dimensions 8

Using obvious abuse of notation, we say that a point a

i

2 A � T is the closest in A � T to a

point q 2 R

2

if d

i

(q) � d

j

(q); for a

j

2 A�T . Our problem in thus to maintain the closest pair

(using the distance functions de�ned above) between A�T and S. To bound the running time

of each operation, we need to argue about the complexity of the lower envelope of F

r

. The

best bound we are aware of is O(n

2+"

), which results from [12, 21]. Hence we can maintain �

using the following theorem.

Theorem 4.2 (Agarwal et al. [3, Thm. 6.8]) The closest pair between S and A�T , when the

distance is measured using the distance functions F

d

(k)

, can be maintained dynamically in time

O(n

1=3+"

) for each operation. This data structure can be built in time O(n

4=3+"

).

Since each step requires at most two update operations (inserting a point into S and

deleting a point from A�T), each phase can be performed in time O(n

4=3+"

) by Theorem 4.2.

Moreover, at the beginning of the k-th phase, we can build the data structure for F

d

(k)

in time

O(n

4=3+"

). Thus, we have:

Theorem 4.3 Given sets A;B � R

2

of n points, we can �nd M

�

D

in time O(n

10=3+"

), for

every " > 0.

5 Computing a Bottleneck Matching in Higher Dimensions

Let A be a set of n points in R

d

, where n is even and d � 3. In this section, we show how

to compute a bottleneck matching M

�

B

in the (complete) Euclidean graph over A. As in the

preceding sections, we assume that the

�

n

2

�

distances between pairs of points in A are distinct.

Let B

r

(p) denote the ball of radius r centered at point p. For two points p; q 2 R

d

, let lune(p; q)

denote the region B

jjp�qjj

(p)\B

jjp�qjj

(q), where jjp� qjj is the distance between p and q. The

k relative neighborhood graph of A, denoted kRNG, is a graph (A;E), where a pair of points

(p; q) 2 E if and only if the number of points of A other than p and q that lie in lune(p; q) is less

than k. In the plane, Chang et al. [4] have proven that the 17RNG of A contains a bottleneck

matching. Thus, in order to compute M

�

B

in this case, it is enough to consider the 17RNG

whose size is only O(n) rather than the complete Euclidean graph over A whose size is O(n

2

).

We then apply to it the general O((n logn)

1=2

m) algorithm of Gabow and Tarjan [9]. Chang

et al. compute the 17RNG in time O(n

2

), but it is easy to see that it can be computed in

O(n polylog(n)) time. Su and Chang [22] describe how to construct in O(n logn) time another

linear-size graph, called the 17-Gabriel graph, that contains the 17RNG. Thus in both cases

M

�

B

can be computed in total time O(n

1:5

log

0:5

n).

We show below that for any �xed dimension d, there exists a constant k = k(d) such that

the kRNG of A contains a bottleneck matching. Since the size of a kRNG for a constant k

remains linear also in higher dimensions (if the distances between pairs of points are distinct

2

), and since it can be computed in subquadratic time,M

�

B

can also be computed in total time

that is subquadratic even in higher dimensions. Moreover, we show that if the underlying norm

is the L

1

norm, then M

�

B

can be computed in time O(n

1:5

log

0:5

n) in any �xed dimension.

2

This size grows in degenerate situations; see [1]

Fair and Bottleneck Matchings May 15, 1996

Computing a Bottleneck Matching in Higher Dimensions 9

D

1

D

2

D

4

B

p

q

u

E

3

�B

Figure 1: R

1

divided into pyramid-like regions

The proof of Chang et al. [4] to the assertionM

�

B

� kRNG applies also in higher dimensions,

provided that the following lemma, which is proven in [4] for the planar case, remains correct

for an appropriate constant k = k(d). Below we show that indeed this is the case.

Let M be a bottleneck matching, and let (p; q) be an edge of M . Let S be the subset of

A consisting of the points that are matched with points lying in the interior of lune(p; q), and

assume that S \ lune(p; q) = ; (since, if u 2 S lies inside lune(p; q), then we could replace the

edges (p; q) and (u; v) of M , where v is the point inside lune(p; q) matched to u, by the edges

(p; u) and (q; v) and obtain an improved matching). Hence, we assume that all the points in

(the interior of) lune(p; q) are matched with points lying outside of lune(p; q). For a point

u 2 S, let n

u

be its nearest point on the boundary of lune(p; q) and put r = jjp� qjj.

Lemma 5.1 If for every u; v 2 S

(i) d(u; p) > r and d(u; q) > r,

(ii) d(u; v) > r, and

(iii) d(u; v) > d(u; n

u

) and d(u; v) > d(v; n

v

),

then the number of points in S is some constant k depending only on the dimension d.

Proof: For clarity, we restrict ourselves in the proof to R

3

, however, the same proof with

obvious modi�cations also holds for d > 3. We divide R

3

� lune(p; q) into three regions. Let

C

p

(resp. C

q

) be the cone whose origin is p (resp. q) and its boundary contains the boundary

of the disk (B

r

(p) \ B

r

(q)). The �rst region R

1

is C

p

� lune(p; q), the second region R

2

is

C

q

� lune(p; q), and the third region R

3

is R

3

� C

p

[C

q

. We will show that the number of

Fair and Bottleneck Matchings May 15, 1996

Computing a Bottleneck Matching in Higher Dimensions 10

points in each region is less than some constant. The di�cult case is to show this for the

regions R

1

; R

2

, since the boundary of these regions contains a 2-dimensional face of lune(p; q),

while the boundary of R

3

contains only a 1-dimensional face of lune(p; q). We will show this for

R

1

(the proof for R

2

is completely analogous). Assume that p is the origin of our coordinate

system and that the segment pq lies on the z-axis. We partition R

1

into a constant number of

pyramid-like regions as follows. Consider the planes containing the y-axis that form angles of

30 + �, 30 + 2�, etc. with the xy plane, and the planes containing the x-axis forming these

angles with the xy plane, for some su�ciently small but �xed angle �. These planes together

with the boundary of C

p

partition the �rst region R

1

into a constant number of pyramid-like

regions (see Figure 1 for an illustration in the plane). We will prove that each of these pyramids

D

i

contains only a constant number of points. Let B = B

�

(p), where � is an appropriate large

constant. Let u be the point in D

i

\ S that is furthest from p, and let E

i

= D

i

\ B

jjp�ujj

(p).

If u 2 B then so are all the other points in D

i

, and clearly the number of these points is

bounded by some constant, due to assumption (ii) above. Otherwise, u lies outside of B, but

then B

jju�n

u

jj

(u) � E

i

� B, so there can be no other point in D

i

outside of B, since such a

point would necessarily lie inside B

jju�n

u

jj

(u) violating assumption (iii) above. 2

In the next Lemma, whose proof appears in the appendix, we show that Lemma 5.1 is also

true when the underlying norm is L

1

.

Lemma 5.2 Assume L

1

is the underlying norm, and that p; q and S are de�ned as in

Lemma 5.1. Then jSj is a constant k = k(d).

The remarks preceding Lemma 5.1 also hold for the L

1

case, thus these remarks together

with Lemma 5.1 and Lemma 5.2 lead to the following theorem.

Theorem 5.3 Let A be a set of n points in d-space. Then for some appropriate constant k,

the kRNG of A contains a bottleneck matching of A.

Computing a bottleneck matching

Let A be a set of n points in d-space. We show how to compute a graph G = (A;E),

such that jEj = O(n), and the kRNG of A (where k is a constant) is contained in G. The

containment follows from arguments similar to those given in [4]. We �rst deal with the L

1

case. Recall that using a standard orthogonal multi-level range tree, we can count (and �nd)

all points lying in a query range in time O(log

d�1

n) (using fractional cascading). Let u 2 A,

and let R

+

denote the region of R

d

consisting of all points x such that all the components of

the vector x � u are non-negative (e.g., in the plane, R

+

is the north-eastern quadrant of u).

The idea is to �nd the k nearest neighbors of u in A \ R

+

. This process is repeated for all

u 2 A, and for all the 2

d

regions of R

d

symmetric to R

+

.

To �nd these neighbors, we check how many points of A are contained in a cube B of (yet

unknown) radius, whose most-negative corner coincides with u. We seek the one that contains

exactly k points. To determine the size of the cube, we use the technique of Fredrickson and

Johnson [8] to perform a binary search in the (implicitly de�ned) matrix M containing all

di�erences of the form u:x

i

� v:x

i

, where u; v 2 A, and u:x

i

is the i'th coordinate of u. Hence

Fair and Bottleneck Matchings May 15, 1996

Computing a Bottleneck Matching in Higher Dimensions 11

we can �nd G in time O(n log

d

n). We now apply the algorithm of Gabow and Tarjan to the

graph G to obtain a bottleneck matching of A in time O(n

1:5

log

0:5

n).

As to the L

2

case, Agarwal and Matou�sek [1] show how to compute the kRNG, where k

is some constant, in O(n

2(1�1=(d+1))+"

) time. They construct �rst a super graph of kRNG

which is also of linear size, so we may take this supergraph as input to the algorithm of

Gabow and Tarjan. The construction time of this supergraph is only O(n

4=3

log

2

n) for d = 3,

and O(n

2�2=(dd=2e+1)+"

) for d � 4 (See [2]). Thus we can compute M

�

B

in O(n

1:5

log

0:5

n) for

2 � d � 4, and O(n

2�2=(dd=2e+1)+"

) for d � 5. Hence we have

Theorem 5.4 Let A be a set of 2n points in d-space. A bottleneck matching of A can be

computed in O(n

1:5

log

0:5

n) time for 2 � d � 4, in O(n

1:5+"

) time for 5 � d � 6, and

in O(n

2�2=(dd=2e+1)+"

) for d > 6. Under the L

1

norm, a bottleneck matching of A can be

computed in O(n

1:5

log

0:5

n) time for any �xed d � 2.

Remark 5.5: The following observation is due to Pankaj Agarwal, it implies that �nding

a faster algorithm for computing a bottleneck matching in d-space, for d > 6, is probably a

non-trivial problem. Assume that the point set A consists of two disjoint subsets A

1

and A

2

,

such that jA

1

j = jA

2

j = n=2, where n=2 is odd. Assume furthermore that the diameter of

A

1

and the diameter of A

2

are very small compared to the diameter of A. In this case, a

bottleneck matching of A must match the closest mixed pair, i.e., a pair a

1

; a

2

where a

1

2 A

1

and a

2

2 A

2

. But this is actually the famous bichromatic closest pair problem in d-space (see

[2]), which for several years now has no faster solution that the one we gave.

Acknowledgment

We would like to thank Pankaj Agarwal, Ra� Hassin, Alon Itai and Micha Sharir for helpful

discussions on the contents of this paper.

Fair and Bottleneck Matchings May 15, 1996

References 12

References

[1] P.K. Agarwal and J. Matou�sek, Relative neighborhood graphs in three dimensions, Computational

Geometry: Theory and Applications 2 (1992), 1{14.

[2] P.K. Agarwal, J. Matou�sek and S. Suri, Farthest neighbors, maximum spanning trees and related

problems in higher dimensions, Computational Geometry: Theory and Applications 1 (1992), 189{

201.

[3] P.K. Agarwal, A. Efrat and M. Sharir, Vertical decomposition of shallow levels in 3-dimensional

arrangements and its applications, Proceedings 11 Annual Symposium on Computational Geometry,

1995, 39{50.

[4] M.S. Chang, C.Y. Tang, and R.C.T. Lee, Solving the Euclidean bottleneck matching problem by

k-relative neighborhood graphs, Algorithmica 8 (1992), 177{194.

[5] L.P. Chew, D. Dor, A. Efrat, and K. Kedem, Geometric pattern matching in d-dimensional space,

Proceedings of the Third Annual European Symposium on Algorithms 1995, edited by Paul Spirakis,

264{279.

[6] L.P. Chew and K. Kedem, Improvements on geometric pattern matching problems, Algorithm The-

ory { SWAT'92, edited by O. Nurmi and E. Ukkonen, Lecture Notes in Computer Science, Vol.

621, Springer-Verlag, July 1992, 318{325.

[7] A. Efrat and A. Itai, Improvements on bottleneck matching and related problems, using geometry,

Proceedings 12 Annual Symposium on Computational Geometry, 1996, to appear.

[8] G.N. Frederickson and D.B. Johnson, Generalized selection and ranking sorted matrices, SIAM J.

Computing 13 (1984), 14{30.

[9] H.N. Gabow and R.E. Tarjan, Algorithms for two bottleneck optimization problems, J. Algorithms

9 (1988), 411{417.

[10] Z. Galil and B. Schieber, On �nding most uniform spanning trees, Discrete Applied Mathematics

20 (1988), 173{175.

[11] S.K. Gupta and A.P. Punnen, Minimum deviation problems, Oper. Res. Lett. 7 (1988), 201{204.

[12] D. Halperin and M. Sharir, New bounds for lower envelopes in three dimensions, with applications

to visibility of terrains, Discrete and Computational Geometry 12 (1994), 313{326.

[13] P.J. He�ernan and S. Schirra, Approximate decision algorithms for point set congruence, SIAM J.

Computing 8 (1992), 93{101.

[14] P.J. He�ernan, Generalized approximate algorithms for point set congruence, Proceedings 3 Work-

shop on Algorithms and Data Structures, Lecture Notes in Computer Science 1993, Vol. 709,

Springer-Verlag, New-York{Berlin{Heidelberg, 373{384.

[15] J. Hopcroft and R. M. Karp, An n

5=2

algorithm for maximummatchings in bipartite graphs, SIAM

J. Comput. 2 (1973), 225{231.

[16] M. Katz, Improved algorithms in geometric optimization via expanders, Proc. 3rd Israel Sympo-

sium on Theory of Computing and Systems, 1995, 78{87. (See also, M.J. Katz and M. Sharir, An

expander-based approach to geometric optimization, SIAM J. Computing , to appear.)

Fair and Bottleneck Matchings May 15, 1996

References 13

[17] H. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistics Quarterly

2 (1955), 83{97.

[18] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,

New-York, 1976.

[19] S. Martello and P. Toth, Linear assignment problems, Annals of Disc. Mathematics 31 (1987),

259{282.

[20] S. Micali and V.V. Vazirani, An O(

p

jV j � jEj) algorithm for �nding maximummatching in general

graphs, Proceedings 21 Annual ACM Symposium on Theory of Computing, 1980, 17{27.

[21] M. Sharir, Almost tight upper bounds for lower envelopes in higher dimensions, Discrete and

Computational Geometry 12 (1994), 327{345.

[22] T.H. Su and R.C. Chang, The k-Gabriel graphs and their applications, Proc. 1st Annu. SIGAL

International Sympos. Algorithms, LNCS 450, 1990, Springer-Verlag, 66{75.

[23] P.M. Vaidya, Geometry helps in matching, SIAM J. Comput. 18 (1989), 1201{1225.

Fair and Bottleneck Matchings May 15, 1996

Appendix 14

Appendix

Proof: (of Lemma 5.2). Let A

1

� A be the points lying at distance at most 2r from the

boundary of lune(p; q). Surely, by the second condition of the lemma, their number is bounded

by some constant. Consider now the points in A

2

� A n A

1

. Let f be a (d � 1)-dimensional

face of @lune(p; q). Let A

f

� A denote those points of A

2

whose projection on lune(p; q) lies

on f , and let u be the point in A

f

whose distance from f is the largest, among all points of

A

f

. Surely the projection of the ball B

jju�n

u

jj

(in L

1

-norm) on f covers f , hence as is easily

seen, A

f

contains only u (d(u; n

u

) is of radius at least 2r). See Figure 2 for a demonstration.

p

u

B

jju�n

u

jj

(u)

f

lune(p; q)

q

Figure 2: lune(p; q) under the L

1

-norm

Next, let e be a (d � 2)-dimensional face of @lune(p; q), and let A

e

be those points of A

2

whose projection lies on e. Repeating the very same argumentation as in the previous case,

shows that jA

e

j � 1. Similarly, we treat faces of @lune(p; q) of lower dimensions. 2

Fair and Bottleneck Matchings May 15, 1996

