
Computing Euclidean Bottleneck Matchings in

Higher Dimensions

Alon Efrat

�

Matthew J. Katz

y

October 6, 1998

Abstract

We extend the planar results of Chang et al. [5] to higher dimen-

sions, and show that given a set A of 2n points in d-space it is possible

to compute a Euclidean bottleneck matching of A in roughly O(n

1:5

)

time, for d � 6, and in subquadratic time, for any constant d > 6. If

the underlying norm is L

1

, then it is possible to compute a bottleneck

matching of A in O(n

1:5

log

0:5

n) time, for any constant d � 2.

1 Introduction

Let G = (V;E) be a graph. A matching M in G is a subset of E such

that each v 2 V is adjacent to at most one edge of M . M is maximum if

jM j � jM

0

j, for any other matching M

0

in G. M is perfect if each v 2 V

belongs to an edge ofM . (Obviously, if a perfect matching exists then jV j is

even.) The problem of computing a perfect matching in G has been studied

extensively. The best known solution is due to Micali and Vazirani [13]; it

computes a perfect matching in G in time O(jEj

p

jV j). (See also [9].)

When weights are associated with the edges of G, it is often desirable to

compute a perfect matching that is optimal with respect to some criterion.

A minimum weight matching minimizes the sum of the weights of the edges

of the matching, a bottleneck matching minimizes the maximum weight of

an edge of the matching, a most uniform matching minimizes the di�erence

�

School of Mathematical Sciences, Tel Aviv University, Tel-Aviv 69978, Israel.

alone@cs.tau.ac.il

y

Department of Mathematics and Computer Science, Ben-Gurion University of the

Negev, Beer-Sheva 84105, Israel. matya@cs.bgu.ac.il

1

between the maximum weight and the minimum weight, and a minimum

deviation matching minimizes the di�erence between the average weight and

the minimum weight (alternatively, minimizes the di�erence between the

maximum weight and the average weight). Much work has been done on

the problems of �nding e�cient algorithms for computing these matchings;

see e.g. [7, 8, 10, 11, 12].

The Euclidean versions of these problems have also been studied. They

are special important cases of these problems that admit more e�cient so-

lutions that exploit Geometry. In the Euclidean versions, the set of vertices

V is a set of points in R

d

, and G is the complete graph over V . The weight

associated with an edge (a; b) is the Euclidean distance between a and b.

See [2, 5, 6, 14, 16] for a sample of results concerning Euclidean matching.

In this paper we consider the Euclidean version of the bottleneck match-

ing problem. Let A be a set of 2n points in R

d

, and let G be the complete

graph over A. The weight of an edge (a; b) is simply the Euclidean distance

between a and b, and we assume that all weights are distinct. We wish to

compute a perfect matching M in G such that the weight of the `heaviest'

edge in M is minimal, that is, the maximum distance between a matched

pair of points is minimal. The best known algorithm for computing a bottle-

neck matching in a general graph is due to Gabow and Tarjan [7]; it runs in

time O(m

p

n logn), where n is the number of vertices and m is the number

of edges. Chang et al. [5] have shown for d = 2 that a subgraph of G of size

O(n), called the 17 relative neighborhood graph of A and denoted 17RNG(A)

(see de�nition in Section 2), already contains a bottleneck matching of G.

Thus, by applying the algorithm of Gabow and Tarjan to 17RNG(A), a bot-

tleneck matching in the plane can be computed in O(n

1:5

log

0:5

n) time, after

computing 17RNG(A), which can be done within the same time bound. See

also [14].

We extend the elegant planar results of Chang et al. [5] to higher di-

mensions, and show that for any �xed dimension d there exists a constant

k = k(d) such that kRNG(A) contains a bottleneck matching of A. Since

the size of kRNG(A) is linear in n in any dimension, and since kRNG(A)

(or related linear-size supergraphs of it) can be computed e�ciently, we ob-

tain subquadratic algorithms for computing a bottleneck matching in any

�xed dimension. In particular, for d � 6 a bottleneck matching of A can be

computed in roughly O(n

1:5

) time. Moreover, if the underlying norm is L

1

,

then for any �xed dimension a bottleneck matching of A can be computed

in time O(n

1:5

log

0:5

n).

2

2 Bottleneck Matching in Higher Dimensions

Let A be a set of 2n points in R

d

, d � 3. We show how to compute a

bottleneck matching M

�

in the (complete) Euclidean graph over A. We

assume that the

�

n

2

�

distances between pairs of points in A are distinct.

Let B

r

(p) denote the ball of radius r centered at point p. For two points

p; q 2 R

d

, let lune(p; q) denote the region B

jp�qj

(p)\B

jp�qj

(q), where jp� qj

is the distance between p and q. The k relative neighborhood graph of A,

denoted kRNG(A), is a graph G(A;E), whose nodes are the points of A, and

for p; q 2 A, the edge (p; q) is in the set of edges E if and only if the number

of points of A other than p and q that lie in lune(p; q) is less than k. In the

plane, Chang et al. [5] have proven that 17RNG(A) contains a bottleneck

matching. Thus, in order to compute M

�

in this case, it is enough to

consider 17RNG(A) whose size is only O(n). We then apply to it the general

O(m

p

n logn)-algorithm of Gabow and Tarjan [7]. Chang et al. compute

the 17RNG in time O(n

2

), but it can be computed in time O(n polylog n).

Su and Chang [14] describe how to construct in O(n logn) time another

linear-size graph, called the 17-Gabriel graph, that contains the 17RNG.

Thus in both cases M

�

can be computed in total time O(n

1:5

log

0:5

n).

We show below that for any �xed dimension d, there exists a constant

k = k(d) such that kRNG(A) contains a bottleneck matching. Since the

size of a kRNG (for constant k) remains linear also in higher dimensions

(assuming the distances between pairs of points are distinct

1

), and since

it can be computed in subquadratic time, M

�

can also be computed in

subquadratic time even in higher dimensions. We also show that if the

underlying norm is L

1

, then M

�

can be computed in time O(n

1:5

log

0:5

n)

in any �xed dimension.

We will need the following de�nition. A perfect matching M

1

is lexico-

graphically smaller than another perfect matchingM

2

, if v

M

1

is lexicograph-

ically smaller that v

M

2

, where v

M

is the decreasing sequence consisting of

the distances corresponding to the edges of the matchingM .

In order to prove that 17RNG(A) contains an optimal matching, Chang

et al. [5] show how to transform an arbitrary bottleneck matching M

�

1

to

a bottleneck matching M

�

2

that is contained in 17RNG(A), by repeatedly

applying one of four basic transformations to the current matching (initially

M

�

1

). An application of a basic transformation rematches the points adjacent

to two or three edges of the current matching, so that the resulting matching

1

This size might grow in degenerate situations; see [3].

3

is still optimal but is lexicographically smaller. After a �nite sequence of ba-

sic transformations, a matching that is contained in 17RNG(A) is obtained.

The proof of Chang et al. [5] holds also in higher dimensions (where 17 is

replaced by an appropriate constant k(d)), provided that Lemma 2.1 below,

which is proven in [5] for d = 2, remains correct for higher dimensions. Next

we show that this is indeed the case.

Let M be a bottleneck matching. We may assume that none of the

edges (u; v) of M is contained in the lune of another edge (p; q) of M .

Otherwise, we could replace these two edges of M by the edges (p; u) and

(q; v), and obtain a lexicographically smaller bottleneck matching, since

maxfjp � qj; ju � vjg > maxfjp � uj; jq � vjg. Thus, after a �nite num-

ber of such transformations we will end up with a bottleneck matching that

satis�es this assumption. Let (p; q) be an edge of M , and let S be the sub-

set of A consisting of the points that are matched with points lying in the

interior of lune(p; q). According to our assumption S \ lune(p; q) = ;. For

a point u 2 S, let n

u

be its nearest point on the boundary of lune(p; q) and

put r = jp� qj.

Lemma 2.1 If for every u; v 2 S

(i) ju� pj > r and ju� qj > r,

(ii) ju� vj > r, and

(iii) ju� vj > ju� n

u

j and ju� vj > jv � n

v

j,

then jSj is a constant depending only on the dimension d. More precisely,

jSj � b

11

d

!

d

c+ d2

d

(d

p

d� 1e)

d�1

;

where !

d

is the volume of a d-dimensional unit ball.

Proof: Assume p and q lie on the x

d

-axis at heights r=2 and �r=2, respec-

tively, and letO denote the origin. Let C be the (d-dimensional) axis-parallel

cube whose center is O and whose edge length is 9r. Using condition (ii)

above, we can easily bound the number of points of S that lie inside C; it

is less than b

(11r)

d

!

d

r

d

c = b

11

d

!

d

c.

We now show that the number of points of S that lie in R

d

� C is also

bounded by some constant depending on d. Divide each facet f of @C into

a disjoint collection of (d� 1)-dimensional cubes with edge length at most

4

p

q

O

a pyramid

C

Figure 1: In the plane the `pyramids' are wedges

5

, where = (d) is such that for any two points a; b 2 f that lie in the

same cube, the angle \aOb � 45. Let C denote the collection of cubes that

is obtained from this decomposition of @C. It is easy to see that if we divide

f so that its center point does not lie in the interior of a cube, then we may

choose = 4:5r=

p

d� 1 (since the shortest segment on f that is contained

in a single `quadrant' of f and rests on an angle of 45 degrees is of length

4:5r), and then jCj � 2d(2d

p

d� 1e)

d�1

= d2

d

(d

p

d� 1e)

d�1

. We partition

R

d

into a collection of jCj `pyramids' by drawing all rays emanating from O

and passing through a point on the boundary of a cube in C (see Figure 1).

Let P be such a pyramid. We now prove that the number of points of

S in P �C is at most one. Assume there are two points u; v of S in P �C,

where jv � Oj � ju � Oj. Put juj = ju� Oj, jvj = jv � Oj, and � = \uOv.

Notice that � � 45, since both segments Ou and Ov intersect @C in the

same cube of C, i.e., in the cube de�ning P . Notice also that juj; jvj � 4:5r,

since u and v do not lie inside C. According to the cosine theorem

ju� vj

2

= juj

2

+ jvj

2

� 2jujjvj cos� :

We show that the right side of the above equation is not greater than jv�n

v

j

2

,

and therefore ju� vj � jv � n

v

j in contradiction with condition (iii) above.

Indeed

juj

2

+ jvj

2

� 2jujjvj cos�

� juj

2

+ jvj

2

�

p

2jujjvj

� jujjvj+ jvj

2

�

p

2jujjvj= jvj

2

� (

p

2� 1)jujjvj

� jvj

2

� 4:5(

p

2� 1)rjvj = jvj(jvj � 4:5(

p

2� 1)r) :

Notice that jvj � jv � n

v

j +

p

3

2

r, since the distance between a point on

the boundary of lune(p; q) and the origin is at most

p

3

2

r. Therefore we may

continue the sequence of inequalities by replacing jvj by jv � n

v

j +

p

3

2

r to

obtain, after some rearrangements, the following expression

� jv � n

v

j

2

+ (

p

3� 4:5(

p

2� 1))rjv� n

v

j+ (3=4� 4:5(

p

2� 1)

p

3=2)r

2

:

However, both the coe�cient of jv�n

v

j and the free coe�cient are negative,

and thus the above expression is less than jv � n

v

j

2

. We conclude that the

number of points of S that lie in R

d

� C is at most jCj.

6

Combining the two cases (inside C and in R

d

� C) we obtain

jSj � b

11

d

!

d

c+ d2

d

(d

p

d� 1e)

d�1

:

2

Using similar ideas it is easy to show that Lemma 2.1 is also true (with

another constant depending on d) when the underlying norm is L

1

.

Lemma 2.1 together with the remarks preceding it lead to the conclusion

that there exists a constant k = k(d) such that kRNG(A) contains a bottle-

neck matching, and this conclusion is also true when the underlying norm

is L

1

. Moreover, k is equal to the largest possible value for the expression

jSj+ 1 ([5]). However, if k

0

is a bound for jSj+ 1, then clearly k

0

RNG(A)

contains a bottleneck matching, since kRNG(A) � k

0

RNG(A). Our proof of

Lemma 2.1 implies, for example, that in R

3

a bottleneck matching is con-

tained in 414RNG(A). (A slightly more careful calculation gives 358 instead

of 414, which is probably still far from the optimum.)

Computing a bottleneck matching. Instead of computing kRNG(A),

we prefer to compute a graph G = (A;E), such that jEj = O(n), and

kRNG(A) � G. We �rst deal with the L

1

case. Let u 2 A, and let R

+

denote the region ofR

d

consisting of all points x such that all the components

of the vector x�u are non-negative (e.g., in the plane R

+

is the north-eastern

quadrant of u). The idea is to �nd the k nearest neighbors of u in A \ R

+

(under the L

1

norm) and to connect each of them by an edge to u. This

process is repeated for all u 2 A, and for all the 2

d

regions of R

d

symmetric

to R

+

. In this way a graph G of size O(kn) is obtained, and it is easy to

verify that G contains kRNG(A). Indeed, if (u; v) is an edge of kRNG(A),

then the number of points in lune(u,v) (see Figure 2) is less than k, and

therefore v is among the k nearest neighbors of u in the region of u that

contains v (the north-eastern quadrant of u in Figure 2), which implies that

(u; v) is an edge of G.

We compute G as follows. Let B be the smallest axis-parallel cube such

that (i) its most-negative corner coincides with u, and (ii) the number of

points of A (other than u) lying in it is exactly k. In order to �nd the k

nearest neighbors of u in A \ R

+

, we determine the edge length of B and

then perform a reporting query with B. The edge length b of B is equal to

the di�erence between the j'th component of some point x

u

in A \R

+

and

the j'th component of u, where 1 � j � d. Thus, for each dimension j, we

perform a binary search for b among the di�erences of the form x:j � u:j,

where x is a point in A \ R

+

. For this, we use a standard d-dimensional

7

u

v

Figure 2: lune(u,v) under the L

1

norm

orthogonal range tree that allows us to determine the number of points lying

in a query range (i.e., an axis-parallel box) in time O(log

d

n) and to report

the k points lying in B in time O(log

d

n + k). The number of counting

queries that we perform in order to determine b is O(logn), and hence it is

possible to compute G in time O(n log

d+1

n). We now apply the algorithm

of Gabow and Tarjan to the graph G (that contains kRNG(A)) to obtain a

bottleneck matching of A in time O(n

1:5

log

0:5

n).

As to the L

2

case, Agarwal and Matou�sek [3] show how to compute

a kRNG, where k is some constant, in O(n

2(1�1=(d+1))+"

) time (assuming

general position); see also [15].

2

They �rst construct a supergraph of the

kRNG which is also of linear size, so we may take this supergraph as input

to the algorithm of Gabow and Tarjan. The construction time of this su-

pergraph is only O(n

4=3

log

2

n) for d = 3, and O(n

2�2=(dd=2e+1)+"

) for d � 4;

[1, 3, 4]. Thus we can compute M

�

in O(n

1:5

log

0:5

n) time for 2 � d � 4,

and O(n

2�2=(dd=2e+1)+"

) time for d � 5. Hence we have:

Theorem 2.2 Let A be a set of 2n points in d-space. A bottleneck matching

of A can be computed in O(n

1:5

log

0:5

n) time for 2 � d � 4, in O(n

1:5+"

)

time for 5 � d � 6, and in O(n

2�2=(dd=2e+1)+"

) time for any �xed d >

6. Under the L

1

norm, a bottleneck matching of A can be computed in

O(n

1:5

log

0:5

n) time for any �xed d � 2.

Remark 2.3: The following observation is due to Pankaj Agarwal, it

implies that �nding a faster algorithm for computing a bottleneck matching

2

In what follows, " stands for a positive constant which can be chosen arbitrarily small

with an appropriate choice of other constants of the algorithms.

8

in d-space, for d > 6, is probably a non-trivial problem. Assume that A

consists of the two subsets A

1

and A

2

, where jA

1

j = jA

2

j = n=2, and that

n=2 is odd. Assume furthermore that the diameter of A

1

and the diameter of

A

2

are very small compared to the diameter of A. In this case, a bottleneck

matching of A must match the closest mixed pair a

1

; a

2

where a

1

2 A

1

and

a

2

2 A

2

. But this is actually the famous bichromatic closest pair problem in

d-space (see [4]), whose best known solution has the above bound.

Acknowledgment

We would like to thank Pankaj Agarwal and Micha Sharir for helpful dis-

cussions on the contents of this paper.

References

[1] P.K. Agarwal, personal communication.

[2] P.K. Agarwal, A. Efrat and M. Sharir, Vertical decomposition of shallow levels

in 3-dimensional arrangements and its applications, Proc. 11th ACM Symp.

Comput. Geom., 1995, 39{50.

[3] P.K. Agarwal and J. Matou�sek, Relative neighborhood graphs in three dimen-

sions, Computational Geometry: Theory and Applications 2 (1992), 1{14.

[4] P.K. Agarwal, J. Matou�sek and S. Suri, Farthest neighbors, maximum span-

ning trees and related problems in higher dimensions,Computational Geometry:

Theory and Applications 1 (1992), 189{201.

[5] M.S. Chang, C.Y. Tang, and R.C.T. Lee, Solving the Euclidean bottleneck

matching problem by k-relative neighborhood graphs, Algorithmica 8 (1992),

177{194.

[6] A. Efrat and A. Itai, Improvements on bottleneck matching and related prob-

lems using geometry, Proc. 12th ACM Symp. Comput. Geom., 1996, 301{310.

See also: A. Efrat, M.J. Katz and A. Itai, Improvements on bottleneck matching

and related problems, using geometry, manuscript.

[7] H.N. Gabow and R.E. Tarjan, Algorithms for two bottleneck optimization prob-

lems, J. Algorithms 9 (1988), 411{417.

[8] S.K. Gupta and A.P. Punnen, Minimum deviation problems, Oper. Res. Lett.

7 (1988), 201{204.

9

[9] J. Hopcroft and R.M. Karp, An n

5=2

algorithm for maximum matchings in

bipartite graphs, SIAM J. Computing 2 (1973), 225{231.

[10] H. Kuhn, The Hungarian method for the assignment problem, Naval Research

Logistics Quarterly 2 (1955), 83{97.

[11] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rine-

hart and Winston, New-York, 1976.

[12] S. Martello, W.R. Pulleyblank, P. Toth and D. de Werra, Balanced optimiza-

tion problems, Operations Research Letters 3 (1984), 275{278.

[13] S. Micali and V.V. Vazirani, An O(

p

jV j � jEj) algorithm for �nding maxi-

mum matching in general graphs, Proc. 21st IEEE Symp. on Foundations of

Computer Science, 1980, 17{27.

[14] T. Su and R. Chang, The k-Gabriel graphs and their applications, 1st Annual

SIGAL International Symp. Algorithms, LNCS 450, 1990, 66{75.

[15] T. Su and R. Chang, On constructing the relative neighborhood graphs in

Euclidean k-dimensional spaces, Computing 46 (1991), 121{130.

[16] P.M. Vaidya, Geometry helps in matching, SIAM J. Computing 18 (1989),

1201{1225.

10

