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Abstract

This paper considers the computation of motion strategies
to efficiently build polygonal layouts of indoor environments
using a mobile robot equipped with a range sensor. This
problem requires repeatedly answering the following ques-
tion while the model is being built: Where should the robot
go to perform the next sensing operation? A next-best-view
planner is proposed which selects the robot’s next position
that maximizes the expected amount of new space that will
be visible to the sensor. The planner also takes into ac-
count matching requirements for reliable self-localization of
therobot, aswell as physical limitations of the sensor (range,
incidence). The paper argues that polygonal layouts are a
convenient intermediate model to perform other visual tasks.

1. Introduction

Automatic model constructionisacore problemin mo-
bilerobotics[1, 2, 3]. After being introducedinto an un-
known environment, a robot, or a team of robots, must
perform sensing operations at multiple locations and
integrate the acquired data into a representation of the
environment. Several types of models have been pro-
posed, e.g., topol ogical maps[4], polygona layouts[1],
occupancy grids[2], 3-D models[5], and feature-based
maps [6]. Prior research has mainly focused on devel-
oping techniques to extract relevant data (e.g., edges,
corners) from raw sensory data and to integrate col-
lected datainto asingle, consistent model.

Here we consider the motion planning aspect of
model construction, and we propose techniques to ef-
ficiently build a polygonal layout model of an indoor
environment. We have tested these techniques both in
simulation and with a mobile robot equipped with a
laser range finder. The core of our systemisan on-line
next-best-view (NBV) planner that repeatedly answers
the following question: Where should the robot go to
performthe next sensing operation? To reduce thetotal
duration of the exploration, the NBV planner computes
thenext sensing | ocation by optimizing autility criterion
that is a function of both the amount of new informa-
tionthat isexpected to become availabl e at thislocation
and the length of the motion to go there (given the par-

tial model built so far). The planner aso takes other
important requirementsintroduced bel ow into account.

To build accurate models, it iscrucial that the robot
localizes itself precisely relative to previous sensing
locations (the so-called simultaneous localization and
map building problem) [7, 8]. Dead-reckoning aloneis
often too imprecise and does not allow the merging of
partial models built separately by multiplerobots. Our
system uses matching techniques to align and merge
partial models into a single one. Such techniques re-
quire that the portion of the environment seen by the
robot at each new sensing location has significant over-
lap with the portions of the environment seen at previous
sensing locations[7].

Motion planning for model construction must also
take into account the physical limitations of the sensor.
The classica line-of-sight model — a point on an ob-
jectisvisibleif the line segment connecting the sensor
to this point does not intersect any object in the envi-
ronment — is often too simplistic. Sensors have range
limitations, both minimal and maximal, and object sur-
faces oriented at grazing angles relative to the line of
sight may not be sensed properly. Our planner reads
parameters specifying such limitationsas inputs. In the
same environment, but with different sensing parame-
ters, it typically produces different motion strategies.

Several NBV techniques have been previously pro-
posed [9, 10, 11, 12, 13, 14]. Severd authors have
considered the problem of building a 3-D model of a
relatively small obj ect using apreci serange sensor mov-
ing around the object [10, 12, 13]. Typicaly, a model
isfirst built by stitching together the data obtained from
afew uniformly distributed viewpoints. The resulting
model may include gaps caused by visual occlusions
due to object’s concavities, and an NBV technique is
then used to select additional viewpointsthat will pro-
videthedataneeded tofill them. Thisapproach doesnot
seem efficient, if possibleat al, for modeling unknown
indoor environments. Like ours, the NBV agorithm
proposed in [11] constructs a 2-D layout model of an
indoor environment from data acquired by asensor ona
mobile robot. It assumes continuous sensing and com-
putes at each step the direction of infinitesimal motion
that produces the largest expected gradient of informa:



tion. This technique, however, is too local and may
yield very inefficient overall strategies. The need to
take physical limitations of sensors into account was
previously noted in [12, 13].

Section 2 gives additional motivation for our work.
Section 3 presents the techniques used to construct a
polygonal layout model independent of the NBV plan-
ner. Section 4 describes the agorithm of the NBV
planner. Section 5 discusses the implementation of our
system and its experimentation. Section 6 identifies
areas requiring futher research.

2. Motivation

A 2-D layout is alimited model of an indoor environ-
ment, and constructing such amode is not the ultimate
goa of our research. But it is nevertheless a crucial
step toward building robots that we call autonomous
observers [15, 16]. These are mobile robots equipped
with visual sensors that can autonomously achieve vi-
sual tasks (in contrast to manipulation tasks), such as
building a 3-D model of an environment or finding and
tracking atarget. Unlikethe simpler “Go from A to B”
task, these tasks require reasoning about both motion
and visibility obstructions:

- In 3-D model construction, we usethe 2-D layout to
compute “good” locations where to perform 3-D sens-
ing operations. Theselocationsare sel ected sothey col-
lectively “see” the entire contour of the layout, or most
of it (art-gallery problem[17]). Our agorithm samples
the layout at random and computes the portion of con-
tour visiblefrom each sample. It usesagreedy set-cover
technique to retain non-redundant samples [18].

- Finding an evasive target requires one or severa
robotsto sweep the environment so that the target does
not eventually sneak into an area that has already been
explored. The planner usesthe input layout to compute
a robot’s motion such that, for any point p aong this
path, the section of the environmemt that has aready
been explored before reaching p isfully separated from
the unexplored one by the region visiblefrom p [19].

- In the target-tracking task, the robot must visually
track atarget that may try to escape its field of view,
for instance, by hiding behind an obstacle. The online
planner usesa2-D layout to decide how therobot should
move. At each step, it computes the visibility region
of the robot at several sample locations picked in a
neighborhood of its current location, identifies the one
that is most likely to contain the target, and commands
the robot to move there[16, 20].

In each task, a frequently performed operation is to
compute the visibility region of the robot at a given lo-
cation. Inapolygonal model withn edges, thisiseasily
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Figure1: Rangesensing: (a) Scene, (b) Captured points

donein O(nlogn) timeby aclassical line-sweep tech-
nique. Other representations, such as topol ogical maps
and occupancy grids, do not alow such computation or
make it much more time consuming.

Planar layouts offer other advantages. They allow
efficient collision-free path planning. They are more
compact than most other model's, thus facilitating wire-
| ess communi cati on between onboard and offboard pro-
cessors, and between cooperating robots, under limited
bandwidth. They can be extended to include uncer-
tainty information, e.g., in away similar to tolerance
representation in mechanical drafting. Finally, they are
easy to understand by human users.

3. Construction of 2-D Layouts

|deally, the 2-D layout of an indoor environment is the
projection, into a horizonta plane, of the portions of
objects in this environment that are obstacles to the
robot’s motion and/or may obstruct the field of view
of its sensors. However, due to sensor limitations, the
layout is often approximated as a cross-section through
theenvironment at agiven height. Inthecase of amulti-
floor environment, themodel may consist of several 2-D
layouts connected by passageways.

We assume here that the robot is equipped with a



polar range sensor measuring the distance between the
robot’s centerpoint and the objects in the environment
along several raysregularly spaced in ahorizontal plane
at height h above the floor. The sensor driver converts
these measurements into alist of point coordinatesrep-
resenting a cross-section of the environment at height »
in a coordinate system attached to the sensor. Figure 1
shows such pointsfor a 180-dg field of view, with 0.5-
dg spacing between every two consecutive rays. Our
model of range sensing is specified by four parameters:
field-of-view angle «r, minimal range », maximal range
R, and maximal incidence angle . The later is set to
be the incidence angle above which range sensing is
observed to be unreliablein practice.

The robot builds a polygona layout by moving at
successive sensing positions, which are chosen by the
NBYV planner described in Section 4. These positions
could a so be chosen by another software module or by
ahuman user. We present below the steps performed at
each sensing position ¢, independent of the NBV plan-
ner. We introduce an important novel concept which
we call the robot’s safe region.

Polyline generation Let /. be the list of points ac-
quired by thesensor at ¢. L istransformedintoacollec-
tion p of polygonal lines called polylines. Our polyline
extraction algorithm operates in two steps: (1) group
data into clusters and (2) fit a polylineto each cluster.
The goal of clustering is to group points that can be
traced back to the same object surface. A sensor with
infinite resolution would capture a curve (), instead
of asequence of points. This curve would be discontin-
uous exactly where occlusions occur. For areal sensor,
discontinuities are detected using thresholds selected
according to the sensor’s accuracy.

We fit the points in each cluster by a polyline so
that no data point is farther away from the polyline
than a given ¢. We aso try to minimize the num-
ber of vertices. The computation takes advantage of
the fact the data points delivered by our polar sen-
sor satisfy an ordering constraint along the noise-
free G-coordinate axis. We apply the transformation
u = cosf/sinf,v = 1/(rsin@), and fit lines of the
formv = a+bu (Whichmapstoba+ay = 1incartesian
(z, y)-space). Severa well-knownrecursiveagorithms
exist to find polylinesin (u, v)-space. We convert ¢ to
the position-dependent error bound e = ev+/(a” + 4?)
in the (u, v)-space, in order to guarantee that, in the
(z, y)-space, each data point is within ¢ from the com-
puted polyline.

Figure 2 shows the three polylines generated from
the data points of Figure 1(6). A more complicated
example, in acluttered office environment, is displayed
inFigure 3. Theareain light grey in (b) isthe robot’s

Figure 3: A more complicated example of polyline fit

visibility region under the classicd line-of-sight model.
As explained below, thisregion is not guaranteed to be
entirely safe for robot motion.

Safespacecomputation A saferegion f isthen com-
puted, inwhich therobot isguaranteed to move without
collision. f isthe visibility region of the robot’s cen-
terpoint computed by taking the range/incidence con-
straints on sensing into consideration. While the range
restrictions (» and R) have an obvious impact on f,
incidence () has amore subtle effect illustratedin Fig-
ure 4. The light-grey region in («) is the visibility
region computed with » = 0 and some given R, but
ignoring the incidence constraint. It contains obstacles



Figure 4: Impact of incidence constraint on safe region
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Figure 5: Computed safe regions: (a) R = 275 cm and
n =50dg; (b) R =550 cmand n = 85 dg

bounded by surfaces oriented at grazing angles relative
to the sensor. Taking the incidence constraint specified
by = 60 dg into account yieldsthe safe regionin (b).

The safe region £ is bounded by both the polylines
in p and free curves connecting the polyline endpoints
so that no unseen obstacle (at the sensor’s height) lies
in f’sinterior. Establishing the equations of these free
curves is rather straighforward, but requires close at-
tention to details and we omit it for lack of space. We
approximate the free curves by polygonal linesto sm-
plify subsequent computations. Hence, the safe regions
is bounded by solid edges (derived from the polylines)
and free edges (derived from the free curves). The pair
m = (p, f) isthelocal model constructed at g.

Figure 5 shows two safe spaces computed for the
scene of Figure 3 with different values of the maximal
range R and the incidence angle » (the minimal range
7 was set to 0 in both cases).

Model alignment Let M = (P, F) be the partia
layout model built prior to reaching ¢. P isthe set of
polylinesof M and /' theassociated saferegion. A best
match is computed between the line ssgmentsin P and
thosein p, yielding an euclidean transform aigning P
with p. Our agorithmissimilar to apreviousagorithm
used to discover and align substructures shared by 3-D
molecular structures [21]. It samples pairs of line seg-
mentsfrom p at random. For each pair (uq, us), itfinds
apair of segments (vq, v2) in P with the same angle.
Thecorrespondence u; —wv1, us—vs yieldsatransform
T(z,y,0) obtained by solving least-square eguations.

FATR
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Figure 6: (a) Unaligned polylines; (b) Computed alignment

The algorithm then identifies the segments of p and P
which match under this transform, and creates a new
correspondence u;—uvy, us—vs, ..., U.—v,, Where
the u;"sand v;’s are not necessarily distinct. It recal cu-
lates the transform based on this new correspondence
and evaluates the quality of fit. The above steps are
repested for each pair of line segments sampled from p,
and thetransform with the best quality isretained. If all
segmentsin p are approximately parallel, thealgorithm
uses endpoints and odometric sensing to estimate the
missing parameter of the transform.

Figure6(a) showstwo sets of polylinesbefore aign-
ment. The computed alignment of these two sets is

displayedin (b).

Model merging The selected transform is applied to
thesafe space F', and thenew safe space F’ iscomputed
astheunion of thetransformed /' and f. Thesolidedges
of I form the new set of polylines P’. To avoid edge
fragmentation, consecutive solid (resp. free) edges in
P’ that are amost colinear are fused into asingle edge.
The new moddl M’ = (P’, F') is represented in the
coordinate system attached to the robot at its current
position ¢. If F’ contains no free edge, the 2-D layout
iscomplete; otherwise, M’ ispassedtothenext iteration
of the mapping process. A weaker termination test —
e.g., nofreeedgein F’ islonger than acertain threshold
— can be used instead, to handle environmentsthat are
too time consumming to fully map (which is almost
alwaysthe case in practice).

Figure 7 displays four partial models. The robot
is at some location where it rotates to four successive
orientations spaced by 90 dg. The local model in (a)
was built at the first orientation. The model in (b)
was obtained by merging the model of (@) with the
local model generated at the second orientation, and so
on. The model in (d) combines the data collected at
the four orientations. In addition to illustrating model
merging, Figure7 showstheartificeweuseto“give’ the
sensor a 360-dg field of view. Note that the matching
operation compensates for any small variation in the
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Figure 7: Merging four partial models at a given position.

Figure 8: Small obstacles extracted from Figure 3(b).
robot’sposition asit rotates to a new orientation.

Dealing with small obstacles and transient objects
A horizonta cross-section through an indoor environ-
ment often intersects small objects, e.g., chair legs.
Such objects are detected by a good range sensor and
hence appear in the polyline p extracted at a sensing
position ¢ (see Figure 3). But, due to small errorsin
aligning polylines, such obstaclestend to be eliminated
when the union of two safe spaces is computed. Other
model merging techniques could be used, but modeling
small obstacles by closed polygona contoursis known
to bedifficult and not very redlistic. In many instances,
a map is more useful when small obstacles are omit-
ted, since the positionsof such obstaclestend to change
often over time. So, we proceed as follows. Small
obstacles result into narrow “spikes’ pointing into the
safe space f obtained at ¢. These spikes can be auto-
matically detected. The apex of each detected spikeis
a small isolated polyline, which we save in a separate
small-object map. Hence, thefinal model consists of a
main layout (polylinesand safe space) and a secondary
map (small-object map). Figure 8 shows the small ob-

stacles (apexes enclosed into square boxes) detected in
the scan of Figure 3; the small obstacles include an
aluminium camera tripod, a narrow wooden bar, and a
swivel chair.

Merging partial models by taking the union of their
safe spaces has the advantage of eiminating transient
objects. Comparing solid edges in successive partial
models makes it possible to detect such objects and
record them into a separate representation (in a way
similar to small objects). However, this capability has
not yet been implemented in our current system.

4. Next-Best View Algorithm

We now describe the online NBV planning algorithm
to construct a polygonal layout of an environment. An
initial partial layout A, is constructed from the data
acquired by therange sensor at thelocation ¢, wherethe
robot isintroduced. Thelayout model isthen expanded
iteratively. At each iteration £ = 1,2, ..., the planner
uses the model M1 = (Px_1, F,—1) constructed so
far to select the next sensing position ¢;,.

qr must be selected in the safe space Fj,_; (after
shrinking it by the radius of the robot). To decide
whether apositionq in Fj,_; isagood candidate for ¢y,
one must estimate how much new information about the
environment may be obtained at ¢. This criterion leads
to considering positions in Fi_, that may see large
unexplored areas through the free edges of F_;. We
generate such positions using a randomized agorithm
similar to the art-gallery algorithm presented in [18].
We sample a number of positionsin Fj_; a random,
among which ¢;, will eventualy be selected. For each
sample position ¢, we compute the length of the solid
edgesin Fj,_ that arevisiblefrom ¢ under therangeand
incidence constraints defined by », R, and . Weretain
q onlyif thislengthisgreater than somethreshold. This
filter ensuresthat the line matching a gorithmwill work
reliably at the position ¢;. We measure the goodness
of every remaining position ¢ by afunction of both the
area of the unexplored subset of the environment that
may bevisiblefrom ¢ “through” the free edges and the
length of the shortest path inside F, _; connecting gy 1
to ¢. We choose ¢, to be the sample ¢ that maximizes
this function. Taking path length into account in the
goodness function isimportant, as it prevents the robot
from going back and forth between regionswith similar
potentialsin term of visibility gain.

The amount of new space potentialy visibleat ¢ is
evaluated by casting a fixed number of equally spaced
rays from ¢. Along each ray, we consider the segment
between » and R from ¢. If this segment intersects a
solid edge, we eiminate the portion beyond the edge
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Figure 9: Example 1 of model construction in simulation
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Figure 10: Example 2 of model construction in simulation

and we compute the length ¢ of the portions of the re-
mai ning segment which are outside Fy, _; . We estimate
the amount of new space visible from ¢ as the sum of
the ¢’s computed along al rays casted from q.

Figure 9 shows partial modelsgenerated at several it-
erations (0, 2, 6, and 19) during a run of the planner on
simulated data, and the path followed by therobot. The
layout model was completed in 19 iterations. Because
path length istaken into account in the goodness func-
tion, the robot fully explores the bottom-right corridor
before moving to theleft corridor. Figure 10 showsan-
other series of snapshotsfor the same environment, the
same initial position, but greater R and . The motion
strategy issimpler with only 7 iterations required.

5. Implementation and Experimentation

Robot platform  Our robot is a Nomadic SuperScout
wheeled platform equi pped with a Sick laser range sen-
sor (Figures 1(a) and 3(a)). This sensor uses atime-
of-flight technique to measure distances. The robot’s

onboard processor (Pentium 233 MM X) acquiresa 360-
point 180-dg scan in 32 msthrough a Seal evel 500K bs
PCl seria card. At each sensing location, a 360-dg
view is obtained by taking 4 scans (Figure 7).

The onboard processor is connected to thelocal-area
network via 2 Mbs radio-ethernet. The NBV planner
and the navigation monitor run on an offboard Pen-
tium 11 450 MHz Dell computer. The softwareis writ-
ten in C++ and uses geometric functions available in
the LEDA-3.8 library.

System architecture The software consists of sev-
eral modules executing speciaized functionsand com-
municating using TCP/IP socket connections under a
client/server protocol.

A Sick sensor server handlescommunication through
the Seal evel card. It allows the connecting clients to
assume they read datafrom adeviceresembling anideal
sensor and offers the following capabilities:

- choice among 3 speed modes: 1, 5, and 30 scans/sec,
- batch transmission of multiple scans on request,

- scan averaging using sensor electronics,

- operation in continuous mode,

- real-time polylinefitting with 2.5-cm error bound.
Since our fitting technique is fast enough to be per-
formed on-lineat any of the 3 speed modes, itisincluded
in the server capabilites, which reduces the amount of
data transmitted to clients.

A navigation monitor allows a user to supervise the
exploration process. The user may query the NBV
modul e for the next position and/or the most recent en-
vironment model, or decide to select the next position
manually. He may aso operate the robot and laser in
continuous mode, receiving scan updates every 0.5 sec.
The navigation module is aso reponsible for aigning
new data with the previous model using robot’s odom-
etry for pre-alignment before calling the model aign-
ment function. The computed transform is sent to the
NBV module with each new scan.

An NBV module computes the next position given
the current model of the world. The model is updated
whenever anew scan isreceived.

Layout construction  Figure 11 shows a sequence of
partial layouts built by the intergrated robot system in
our laboratory. The robot isinitialy placed in a messy
office with many small obstacles (chair and table legs,
and cables). The polylinesextracted at thisinitial loca
tionareshownin («) and thesaferegion isdisplayedin
(b) dong with the next sensing position computed by
the NBV planner. The safe region is bounded by many
free edges forming spikes, but our candidate evalua-
tion function automatically detects that little additional
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Figure 11: Experiment with the integrated system

space can be seen through such free edges. Conse-
quently, theNBV planner reliably selects the next sens-
ing position near the exit door of the office. Figures
(¢)-(e) show the safe region after the robot has reached
the second, fourth and sixth sensing positions, respec-
tively. At that stage, the layout consists of the initial
office, a second office (incompletely mapped), and two
perpendicular corridors.

6. Current and Future Research

The experiments with our system, both in simulated
and real environments, show that the NBV planner can
considerably reduce the length of a robot motion and
the number of sensing operations to obtain a polygo-
nal layout model of an indoor environment. Thisclaim
is difficult to quantify, as this would reguire extensive
comparison with strategies produced by other means
(e.g., trained human operators). But in none of our
experiments could we imagine a strategy significantly
better than the one produced by the planner. Our sys
tem also demonstrates that current sensing technology
makes it possible to construct good-quality polygonal
layouts. Aswe have argued in Section 2, thisrepresen-
tation has significant advantages over other representa-
tions.

The most obvious limitation of our system is that
it only builds a cross-section of the environment at
fixed height. Therefore, important obstaclesmay not be
sensed. Oneway toimprovesensing isto emit laser rays
at multipleheights. Thetechniquesdescribedinthispa-
per would remain applicable with very little changes.

A more fundamenta limitation of the system is its
lack of error-recovery capabilities. Any serious error
in extracting polylinesfrom data points or in matching
polylines can result in an inacceptable model. For that
reason, our basic algorithms are very conservative. For
instance, to avoid generating incorrect polylines, we of -
ten discard many points delivered by the sensor. This
may lead the robot to sense the same part of an environ-
ment severa times, henceresultinginto alonger motion
path. Themodel alignment function still remains under
the control of the user, who callsit back whenever the
computed alignment is not accurate enough.

Matching transforms are computed locally to align
the current partial model with the local model gener-
ated at the robot’s current location. Once a transform
has been computed it is never revised. In the future,
we plan to keep track of the successive loca models
and transforms to make possibl e the periodic optimiza-
tion of a global matching criterion, especialy after the
robot has completed along “loop”. We expect that in
large environments such global optimization will pro-
duce more precise layouts. In corridors bounded by
parallel featureless walls, line matching only allows
offsetting positioning errors in the direction orthogonal
to thewalls. Odometry isthen used, but imprecisionin
thedirection parallel tothewallsgrowsbigger with dis-
tance. Global optimization should also help in dealing
with this difficulty.

Finally, we expect our system to handle multiple
robots with relatively minor changes. If NV robots are



available and they know their relative positions, a sin-
gle model can be generated and a central NBV planner
can compute N positionsthat, together, can potentially
see a large area through the free edges of the current
safe region. If the robots do not know their relative
positions, they can act independently (distributed plan-
ning) until their partial models have enough overlap to
make alignment possible, and then switch to centralized
planning.
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