
Planning Robot Motion Strategies for Efficient Model Construction

H. González-Baños, E. Mao, J.C. Latombe, T.M. Murali, and A. Efrat

Computer Science Department, Stanford University, Stanford, CA 94305, USA

Abstract

This paper considers the computation of motion strategies
to efficiently build polygonal layouts of indoor environments
using a mobile robot equipped with a range sensor. This
problem requires repeatedly answering the following ques-
tion while the model is being built: Where should the robot
go to perform the next sensing operation? A next-best-view
planner is proposed which selects the robot’s next position
that maximizes the expected amount of new space that will
be visible to the sensor. The planner also takes into ac-
count matching requirements for reliable self-localization of
the robot, as well as physical limitations of the sensor (range,
incidence). The paper argues that polygonal layouts are a
convenient intermediate model to perform other visual tasks.

1. Introduction

Automatic model construction is a core problem in mo-
bile robotics [1, 2, 3]. After being introduced into an un-
known environment, a robot, or a team of robots, must
perform sensing operations at multiple locations and
integrate the acquired data into a representation of the
environment. Several types of models have been pro-
posed, e.g., topological maps [4], polygonal layouts [1],
occupancy grids [2], 3-D models [5], and feature-based
maps [6]. Prior research has mainly focused on devel-
oping techniques to extract relevant data (e.g., edges,
corners) from raw sensory data and to integrate col-
lected data into a single, consistent model.

Here we consider the motion planning aspect of
model construction, and we propose techniques to ef-
ficiently build a polygonal layout model of an indoor
environment. We have tested these techniques both in
simulation and with a mobile robot equipped with a
laser range finder. The core of our system is an on-line
next-best-view (NBV) planner that repeatedly answers
the following question: Where should the robot go to
perform the next sensing operation? To reduce the total
duration of the exploration, the NBV planner computes
the next sensing location by optimizing a utility criterion
that is a function of both the amount of new informa-
tion that is expected to become available at this location
and the length of the motion to go there (given the par-

tial model built so far). The planner also takes other
important requirements introduced below into account.

To build accurate models, it is crucial that the robot
localizes itself precisely relative to previous sensing
locations (the so-called simultaneous localization and
map building problem) [7, 8]. Dead-reckoning alone is
often too imprecise and does not allow the merging of
partial models built separately by multiple robots. Our
system uses matching techniques to align and merge
partial models into a single one. Such techniques re-
quire that the portion of the environment seen by the
robot at each new sensing location has significant over-
lap with the portions of the environment seen at previous
sensing locations [7].

Motion planning for model construction must also
take into account the physical limitations of the sensor.
The classical line-of-sight model – a point on an ob-
ject is visible if the line segment connecting the sensor
to this point does not intersect any object in the envi-
ronment – is often too simplistic. Sensors have range
limitations, both minimal and maximal, and object sur-
faces oriented at grazing angles relative to the line of
sight may not be sensed properly. Our planner reads
parameters specifying such limitations as inputs. In the
same environment, but with different sensing parame-
ters, it typically produces different motion strategies.

Several NBV techniques have been previously pro-
posed [9, 10, 11, 12, 13, 14]. Several authors have
considered the problem of building a 3-D model of a
relatively small object using a precise range sensor mov-
ing around the object [10, 12, 13]. Typically, a model
is first built by stitching together the data obtained from
a few uniformly distributed viewpoints. The resulting
model may include gaps caused by visual occlusions
due to object’s concavities, and an NBV technique is
then used to select additional viewpoints that will pro-
vide the data needed to fill them. This approach does not
seem efficient, if possible at all, for modeling unknown
indoor environments. Like ours, the NBV algorithm
proposed in [11] constructs a 2-D layout model of an
indoor environment from data acquired by a sensor on a
mobile robot. It assumes continuous sensing and com-
putes at each step the direction of infinitesimal motion
that produces the largest expected gradient of informa-



tion. This technique, however, is too local and may
yield very inefficient overall strategies. The need to
take physical limitations of sensors into account was
previously noted in [12, 13].

Section 2 gives additional motivation for our work.
Section 3 presents the techniques used to construct a
polygonal layout model independent of the NBV plan-
ner. Section 4 describes the algorithm of the NBV
planner. Section 5 discusses the implementation of our
system and its experimentation. Section 6 identifies
areas requiring futher research.

2. Motivation

A 2-D layout is a limited model of an indoor environ-
ment, and constructing such a model is not the ultimate
goal of our research. But it is nevertheless a crucial
step toward building robots that we call autonomous
observers [15, 16]. These are mobile robots equipped
with visual sensors that can autonomously achieve vi-
sual tasks (in contrast to manipulation tasks), such as
building a 3-D model of an environment or finding and
tracking a target. Unlike the simpler “Go from A to B”
task, these tasks require reasoning about both motion
and visibility obstructions:

- In 3-D model construction, we use the 2-D layout to
compute “good” locations where to perform 3-D sens-
ing operations. These locations are selected so they col-
lectively “see” the entire contour of the layout, or most
of it (art-gallery problem [17]). Our algorithm samples
the layout at random and computes the portion of con-
tour visible from each sample. It uses a greedy set-cover
technique to retain non-redundant samples [18].

- Finding an evasive target requires one or several
robots to sweep the environment so that the target does
not eventually sneak into an area that has already been
explored. The planner uses the input layout to compute
a robot’s motion such that, for any point p along this
path, the section of the environmemt that has already
been explored before reaching p is fully separated from
the unexplored one by the region visible from p [19].

- In the target-tracking task, the robot must visually
track a target that may try to escape its field of view,
for instance, by hiding behind an obstacle. The online
planner uses a 2-D layout to decide how the robot should
move. At each step, it computes the visibility region
of the robot at several sample locations picked in a
neighborhood of its current location, identifies the one
that is most likely to contain the target, and commands
the robot to move there [16, 20].

In each task, a frequently performed operation is to
compute the visibility region of the robot at a given lo-
cation. In a polygonal model withn edges, this is easily

(a)

(b)

Figure 1: Range sensing: (a) Scene, (b) Captured points

done in O(n logn) time by a classical line-sweep tech-
nique. Other representations, such as topological maps
and occupancy grids, do not allow such computation or
make it much more time consuming.

Planar layouts offer other advantages. They allow
efficient collision-free path planning. They are more
compact than most other models, thus facilitating wire-
less communication between onboard and offboard pro-
cessors, and between cooperating robots, under limited
bandwidth. They can be extended to include uncer-
tainty information, e.g., in a way similar to tolerance
representation in mechanical drafting. Finally, they are
easy to understand by human users.

3. Construction of 2-D Layouts

Ideally, the 2-D layout of an indoor environment is the
projection, into a horizontal plane, of the portions of
objects in this environment that are obstacles to the
robot’s motion and/or may obstruct the field of view
of its sensors. However, due to sensor limitations, the
layout is often approximated as a cross-section through
the environment at a given height. In the case of a multi-
floor environment, the model may consist of several 2-D
layouts connected by passageways.

We assume here that the robot is equipped with a



polar range sensor measuring the distance between the
robot’s centerpoint and the objects in the environment
along several rays regularly spaced in a horizontal plane
at height h above the floor. The sensor driver converts
these measurements into a list of point coordinates rep-
resenting a cross-section of the environment at height h
in a coordinate system attached to the sensor. Figure 1
shows such points for a 180-dg field of view, with 0:5-
dg spacing between every two consecutive rays. Our
model of range sensing is specified by four parameters:
field-of-view angle �, minimal range r, maximal range
R, and maximal incidence angle �. The later is set to
be the incidence angle above which range sensing is
observed to be unreliable in practice.

The robot builds a polygonal layout by moving at
successive sensing positions, which are chosen by the
NBV planner described in Section 4. These positions
could also be chosen by another software module or by
a human user. We present below the steps performed at
each sensing position q, independent of the NBV plan-
ner. We introduce an important novel concept which
we call the robot’s safe region.

Polyline generation Let L be the list of points ac-
quired by the sensor at q. L is transformed into a collec-
tion p of polygonal lines called polylines. Our polyline
extraction algorithm operates in two steps: (1) group
data into clusters and (2) fit a polyline to each cluster.
The goal of clustering is to group points that can be
traced back to the same object surface. A sensor with
infinite resolution would capture a curve r(�), instead
of a sequence of points. This curve would be discontin-
uous exactly where occlusions occur. For a real sensor,
discontinuities are detected using thresholds selected
according to the sensor’s accuracy.

We fit the points in each cluster by a polyline so
that no data point is farther away from the polyline
than a given �. We also try to minimize the num-
ber of vertices. The computation takes advantage of
the fact the data points delivered by our polar sen-
sor satisfy an ordering constraint along the noise-
free �-coordinate axis. We apply the transformation
u = cos �= sin �; v = 1=(r sin �), and fit lines of the
formv = a+bu (which maps to bx+ay = 1 in cartesian
(x; y)-space). Several well-knownrecursive algorithms
exist to find polylines in (u; v)-space. We convert � to
the position-dependent error bound e = �v

p

(a

2

+ b

2

)

in the (u; v)-space, in order to guarantee that, in the
(x; y)-space, each data point is within � from the com-
puted polyline.

Figure 2 shows the three polylines generated from
the data points of Figure 1(b). A more complicated
example, in a cluttered office environment, is displayed
in Figure 3. The area in light grey in (b) is the robot’s

Figure 2: Polyline fit for the data of Figure 1(b)

(a)

(b)

Figure 3: A more complicated example of polyline fit

visibility region under the classical line-of-sight model.
As explained below, this region is not guaranteed to be
entirely safe for robot motion.

Safe space computation A safe region f is then com-
puted, in which the robot is guaranteed to move without
collision. f is the visibility region of the robot’s cen-
terpoint computed by taking the range/incidence con-
straints on sensing into consideration. While the range
restrictions (r and R) have an obvious impact on f ,
incidence (�) has a more subtle effect illustrated in Fig-
ure 4. The light-grey region in (a) is the visibility
region computed with r = 0 and some given R, but
ignoring the incidence constraint. It contains obstacles



(a) (b)

Figure 4: Impact of incidence constraint on safe region

(a) (b)

Figure 5: Computed safe regions: (a) R = 275 cm and
� = 50 dg; (b) R = 550 cm and � = 85 dg

bounded by surfaces oriented at grazing angles relative
to the sensor. Taking the incidence constraint specified
by � = 60 dg into account yields the safe region in (b).

The safe region f is bounded by both the polylines
in p and free curves connecting the polyline endpoints
so that no unseen obstacle (at the sensor’s height) lies
in f’s interior. Establishing the equations of these free
curves is rather straighforward, but requires close at-
tention to details and we omit it for lack of space. We
approximate the free curves by polygonal lines to sim-
plify subsequent computations. Hence, the safe regions
is bounded by solid edges (derived from the polylines)
and free edges (derived from the free curves). The pair
m = (p; f) is the local model constructed at q.

Figure 5 shows two safe spaces computed for the
scene of Figure 3 with different values of the maximal
range R and the incidence angle � (the minimal range
r was set to 0 in both cases).

Model alignment Let M = (P; F ) be the partial
layout model built prior to reaching q. P is the set of
polylines ofM andF the associated safe region. A best
match is computed between the line segments in P and
those in p, yielding an euclidean transform aligning P
with p. Our algorithm is similar to a previous algorithm
used to discover and align substructures shared by 3-D
molecular structures [21]. It samples pairs of line seg-
ments from p at random. For each pair (u

1

; u

2

), it finds
a pair of segments (v

1

; v

2

) in P with the same angle.
The correspondence u

1

!v

1

; u

2

!v

2

yields a transform
T (x; y; �) obtained by solving least-square equations.

(a) (b)

Figure 6: (a) Unaligned polylines; (b) Computed alignment

The algorithm then identifies the segments of p and P

which match under this transform, and creates a new
correspondence u

1

!v

1

; u

2

!v

2

; : : : ; u

r

!v

r

, where
the u

i

’s and v
i

’s are not necessarily distinct. It recalcu-
lates the transform based on this new correspondence
and evaluates the quality of fit. The above steps are
repeated for each pair of line segments sampled from p,
and the transform with the best quality is retained. If all
segments in p are approximately parallel, the algorithm
uses endpoints and odometric sensing to estimate the
missing parameter of the transform.

Figure 6(a) shows two sets of polylines before align-
ment. The computed alignment of these two sets is
displayed in (b).

Model merging The selected transform is applied to
the safe space F , and the new safe space F 0 is computed
as the union of the transformedF and f . The solid edges
of F 0 form the new set of polylines P 0. To avoid edge
fragmentation, consecutive solid (resp. free) edges in
P

0 that are almost colinear are fused into a single edge.
The new model M 0

= (P

0

; F

0

) is represented in the
coordinate system attached to the robot at its current
position q. If F 0 contains no free edge, the 2-D layout
is complete; otherwise,M 0 is passed to the next iteration
of the mapping process. A weaker termination test —
e.g., no free edge inF 0 is longer than a certain threshold
— can be used instead, to handle environments that are
too time consumming to fully map (which is almost
always the case in practice).

Figure 7 displays four partial models. The robot
is at some location where it rotates to four successive
orientations spaced by 90 dg. The local model in (a)

was built at the first orientation. The model in (b)

was obtained by merging the model of (a) with the
local model generated at the second orientation, and so
on. The model in (d) combines the data collected at
the four orientations. In addition to illustrating model
merging, Figure 7 shows the artifice we use to “give” the
sensor a 360-dg field of view. Note that the matching
operation compensates for any small variation in the



(a) (b)

(c) (d)

Figure 7: Merging four partial models at a given position.

Figure 8: Small obstacles extracted from Figure 3(b).

robot’s position as it rotates to a new orientation.

Dealing with small obstacles and transient objects
A horizontal cross-section through an indoor environ-
ment often intersects small objects, e.g., chair legs.
Such objects are detected by a good range sensor and
hence appear in the polyline p extracted at a sensing
position q (see Figure 3). But, due to small errors in
aligning polylines, such obstacles tend to be eliminated
when the union of two safe spaces is computed. Other
model merging techniques could be used, but modeling
small obstacles by closed polygonal contours is known
to be difficult and not very realistic. In many instances,
a map is more useful when small obstacles are omit-
ted, since the positions of such obstacles tend to change
often over time. So, we proceed as follows. Small
obstacles result into narrow “spikes” pointing into the
safe space f obtained at q. These spikes can be auto-
matically detected. The apex of each detected spike is
a small isolated polyline, which we save in a separate
small-object map. Hence, the final model consists of a
main layout (polylines and safe space) and a secondary
map (small-object map). Figure 8 shows the small ob-

stacles (apexes enclosed into square boxes) detected in
the scan of Figure 3; the small obstacles include an
aluminium camera tripod, a narrow wooden bar, and a
swivel chair.

Merging partial models by taking the union of their
safe spaces has the advantage of eliminating transient
objects. Comparing solid edges in successive partial
models makes it possible to detect such objects and
record them into a separate representation (in a way
similar to small objects). However, this capability has
not yet been implemented in our current system.

4. Next-Best View Algorithm

We now describe the online NBV planning algorithm
to construct a polygonal layout of an environment. An
initial partial layout M

0

is constructed from the data
acquired by the range sensor at the location q

0

where the
robot is introduced. The layout model is then expanded
iteratively. At each iteration k = 1; 2; :::, the planner
uses the model M

k�1

= (P

k�1

; F

k�1

) constructed so
far to select the next sensing position q

k

.
q

k

must be selected in the safe space F

k�1

(after
shrinking it by the radius of the robot). To decide
whether a position q in F

k�1

is a good candidate for q
k

one must estimate how much new informationabout the
environment may be obtained at q. This criterion leads
to considering positions in F

k�1

that may see large
unexplored areas through the free edges of F

k�1

. We
generate such positions using a randomized algorithm
similar to the art-gallery algorithm presented in [18].
We sample a number of positions in F

k�1

at random,
among which q

k

will eventually be selected. For each
sample position q, we compute the length of the solid
edges inF

k�1

that are visible fromq under the range and
incidence constraints defined by r, R, and �. We retain
q only if this length is greater than some threshold. This
filter ensures that the line matching algorithm will work
reliably at the position q

k

. We measure the goodness
of every remaining position q by a function of both the
area of the unexplored subset of the environment that
may be visible from q “through” the free edges and the
length of the shortest path insideF

k�1

connecting q
k�1

to q. We choose q
k

to be the sample q that maximizes
this function. Taking path length into account in the
goodness function is important, as it prevents the robot
from going back and forth between regions with similar
potentials in term of visibility gain.

The amount of new space potentially visible at q is
evaluated by casting a fixed number of equally spaced
rays from q. Along each ray, we consider the segment
between r and R from q. If this segment intersects a
solid edge, we eliminate the portion beyond the edge



(a) (b)

(c) (d)

Figure 9: Example 1 of model construction in simulation

(a) (b)

(c) (d)

Figure 10: Example 2 of model construction in simulation

and we compute the length ` of the portions of the re-
maining segment which are outsideF

k�1

. We estimate
the amount of new space visible from q as the sum of
the `’s computed along all rays casted from q.

Figure 9 shows partial models generated at several it-
erations (0, 2, 6, and 19) during a run of the planner on
simulated data, and the path followed by the robot. The
layout model was completed in 19 iterations. Because
path length is taken into account in the goodness func-
tion, the robot fully explores the bottom-right corridor
before moving to the left corridor. Figure 10 shows an-
other series of snapshots for the same environment, the
same initial position, but greater R and �. The motion
strategy is simpler with only 7 iterations required.

5. Implementation and Experimentation

Robot platform Our robot is a Nomadic SuperScout
wheeled platform equipped with a Sick laser range sen-
sor (Figures 1(a) and 3(a)). This sensor uses a time-
of-flight technique to measure distances. The robot’s

onboard processor (Pentium 233 MMX) acquires a 360-
point 180-dg scan in 32 ms through a SeaLevel 500Kbs
PCI serial card. At each sensing location, a 360-dg
view is obtained by taking 4 scans (Figure 7).

The onboard processor is connected to the local-area
network via 2 Mbs radio-ethernet. The NBV planner
and the navigation monitor run on an offboard Pen-
tium II 450 MHz Dell computer. The software is writ-
ten in C++ and uses geometric functions available in
the LEDA-3.8 library.

System architecture The software consists of sev-
eral modules executing specialized functions and com-
municating using TCP/IP socket connections under a
client/server protocol.

A Sick sensor server handles communication through
the SeaLevel card. It allows the connecting clients to
assume they read data from a device resembling an ideal
sensor and offers the following capabilities:
- choice among 3 speed modes: 1, 5, and 30 scans/sec,
- batch transmission of multiple scans on request,
- scan averaging using sensor electronics,
- operation in continuous mode,
- real-time polyline fitting with 2.5-cm error bound.
Since our fitting technique is fast enough to be per-
formed on-line at any of the 3 speed modes, it is included
in the server capabilites, which reduces the amount of
data transmitted to clients.

A navigation monitor allows a user to supervise the
exploration process. The user may query the NBV
module for the next position and/or the most recent en-
vironment model, or decide to select the next position
manually. He may also operate the robot and laser in
continuous mode, receiving scan updates every 0.5 sec.
The navigation module is also reponsible for aligning
new data with the previous model using robot’s odom-
etry for pre-alignment before calling the model align-
ment function. The computed transform is sent to the
NBV module with each new scan.

An NBV module computes the next position given
the current model of the world. The model is updated
whenever a new scan is received.

Layout construction Figure 11 shows a sequence of
partial layouts built by the intergrated robot system in
our laboratory. The robot is initially placed in a messy
office with many small obstacles (chair and table legs,
and cables). The polylines extracted at this initial loca-
tion are shown in (a) and the safe region is displayed in
(b) along with the next sensing position computed by
the NBV planner. The safe region is bounded by many
free edges forming spikes, but our candidate evalua-
tion function automatically detects that little additional



(a) (b)

(c)

(d)

(e)

Figure 11: Experiment with the integrated system

space can be seen through such free edges. Conse-
quently, the NBV planner reliably selects the next sens-
ing position near the exit door of the office. Figures
(c)-(e) show the safe region after the robot has reached
the second, fourth and sixth sensing positions, respec-
tively. At that stage, the layout consists of the initial
office, a second office (incompletely mapped), and two
perpendicular corridors.

6. Current and Future Research

The experiments with our system, both in simulated
and real environments, show that the NBV planner can
considerably reduce the length of a robot motion and
the number of sensing operations to obtain a polygo-
nal layout model of an indoor environment. This claim
is difficult to quantify, as this would require extensive
comparison with strategies produced by other means
(e.g., trained human operators). But in none of our
experiments could we imagine a strategy significantly
better than the one produced by the planner. Our sys-
tem also demonstrates that current sensing technology
makes it possible to construct good-quality polygonal
layouts. As we have argued in Section 2, this represen-
tation has significant advantages over other representa-
tions.

The most obvious limitation of our system is that
it only builds a cross-section of the environment at
fixed height. Therefore, important obstacles may not be
sensed. One way to improve sensing is to emit laser rays
at multiple heights. The techniques described in this pa-
per would remain applicable with very little changes.

A more fundamental limitation of the system is its
lack of error-recovery capabilities. Any serious error
in extracting polylines from data points or in matching
polylines can result in an inacceptable model. For that
reason, our basic algorithms are very conservative. For
instance, to avoid generating incorrect polylines, we of-
ten discard many points delivered by the sensor. This
may lead the robot to sense the same part of an environ-
ment several times, hence resulting into a longer motion
path. The model alignment function still remains under
the control of the user, who calls it back whenever the
computed alignment is not accurate enough.

Matching transforms are computed locally to align
the current partial model with the local model gener-
ated at the robot’s current location. Once a transform
has been computed it is never revised. In the future,
we plan to keep track of the successive local models
and transforms to make possible the periodic optimiza-
tion of a global matching criterion, especially after the
robot has completed a long “loop”. We expect that in
large environments such global optimization will pro-
duce more precise layouts. In corridors bounded by
parallel featureless walls, line matching only allows
offsetting positioning errors in the direction orthogonal
to the walls. Odometry is then used, but imprecision in
the direction parallel to the walls grows bigger with dis-
tance. Global optimization should also help in dealing
with this difficulty.

Finally, we expect our system to handle multiple
robots with relatively minor changes. If N robots are



available and they know their relative positions, a sin-
gle model can be generated and a central NBV planner
can compute N positions that, together, can potentially
see a large area through the free edges of the current
safe region. If the robots do not know their relative
positions, they can act independently (distributed plan-
ning) until their partial models have enough overlap to
make alignment possible, and then switch to centralized
planning.

Acknowledgments

This work was funded by DARPA/Army contract
DAAE07-98-L027, ARO MURI grant DAAH04-96-1-
007, and NSF grant IIS-9619625. A. Efrat was also sup-
ported by a Rotschild Fellowship. L. Guibas, C.-Y. Lee,
D. Lin, R. Murrieta, and S. Yao helped developing the
ideas presented in this paper and/or implementing the
robot system. T.M. Murali is now an employee of Com-
paq Computer Corp.

References

[1] Chatila, R. and J.P. Laumond (1985). Position Referenc-
ing and Consistent World Modeling for Mobile Robots.
Proc. IEEE Int. Conf. Rob. and Aut., 138–143.

[2] Elfes, A. (1987). Sonar-Based Real World Mapping and
Navigation. IEEE J. Rob. and Aut., RA-3(3):249–265.

[3] Thrun, S., D. Fox, and W. Burgard (1998). Probabilis-
tic Mapping of an Environment by a Mobile Robot.
Proc. IEEE Int. Conf. Rob. and Aut., Leuven, Belgium.

[4] Choset, H. and J. Burdick (1997). Sensor Based Mo-
tion Planning: The Hierarchical Generalized Voronoi
Diagram. In Algorithms for Robotic Motion and Ma-
nipulation, J.P. Laumond and M. Overmars (eds.), A K
Peters, Wellesley (MA), 47–61.

[5] Teller, S. (1998). Automated Urban Model Acquisition:
Project Rationale and Status. Proc. 1998 DARPA Image
Understanding Workshop.

[6] Kuipers, B., R. Froom, W.K. Lee, and D. Pierce (1993).
The Semantic Hierarchy in Robot Learning. In Robot
Learning, J. Connell and S.Mahadevan (eds.), Kluwer
Acad. Pub.

[7] Moutarlier, P. and R. Chatila (1989). Stochastic Multi-
sensory Data Fusion for Mobile Robot Location and En-
vironment Modeling. Proc. 5th Int. Symp. on Rob. Res.,
H. Miura and S. Arimoto (eds.), 85–94.

[8] Leonard, J.J. and H.F. Durrant-Whyte (1991). Simul-
taneous Map Building and Localization for an Au-
tonomous Mobile Robot. Proc. IEEE Int. Conf. on In-
telligent Robot Syst..

[9] Banta, J.E., Y. Zhien, X.Z. Wang, G. Zhang, M.T. Smith,
and M. Abidi (1995). A Best-Next-View Algorithm for

Three-Dimensional Scene Reconstruction Using Range
Images. Proc. SPIE, Vol. 2588, 418–429.

[10] Curless, B. and Levoy, M., A Volumetric Method
for Building Complex Models from Range Images.
Proc. ACM SIGGRAPH 96.

[11] Kakusho, K., T. Kitahashi, K. Kondo, and J.C. Latombe
(1995). Continuous Purposive Sensing and Motion for
2-D Map Building. Proc. IEEE Int. Conf. of Syst., Man
and Cyb., Vancouver (BC), 1472–1477.

[12] Maver, J. and R. Bajcsy (1993). Occlusions as a Guide
for Planning the Next View. IEEE Tr. on Patt. Anal. and
Mach. Intell., 15(5), 417–433.

[13] Pito, R. (1995). A Solution to the Next Best View Problem
for Automated CAD Model Acquisition of Free-Form
Objects Using Range Cameras,TR 95-23, GRASP Lab.,
U. of Pennsylvania.

[14] Wixson, L. (1994). Viewpoint Selection for Visual
Search. In Proc. IEEE Conf. on Computer Vision and
Pattern recognition, 800–805.

[15] González-Baños, H.H., L.J. Guibas, J.C. Latombe,
S.M. LaValle, D. Lin, R. Motwani, and C. Tomasi
(1997). Motion Planning with Visibility Constraints:
Building Autonomous Observers. In Robotics Res.,
Y. Shirai and S. Hirose (eds.), Springer, New York (NY),
95–101.

[16] González-Baños, H., J.L. Gordillo, D. Lin, J.C. Lat-
ombe, A. Sarmiento, C. Tomasi (1999). The Au-
tonomous Observer: A Tool for Remote Experimenta-
tion in Robotics. Proc. SPIE Conf. on Telemanipulator
and Telepresence Techn., Boston (MA).

[17] O’Rourke, J. (1997). Visibility. In Handbook of Discrete
and Comp. Geometry, J.E. Goodman and J. O’Rourke
(eds.), CRC Press, Boca Raton (FL), 467–479.

[18] González-Baños, H.H. and J.C. Latombe (1998). Plan-
ning Robot Motions for Range-Image Acquisition and
Automatic 3-D Model Construction. In Proc. AAAI Fall
Symp., AAAI Press, Menlo Park (CA).

[19] Guibas, L.J., J.C. Latombe, S.M. LaValle, D. Lin, and
R. Motwani (1997). Visibility-based pursuit-evasion in
a polygonal environment. Proc. 5th Workshop on Algo-
rithms and Data Structures (WADS’97), Springer, New
York (NY), 17–30.

[20] LaValle, S.M., H.H. Gonzalez-Bãnos, C. Becker, and
J.C. Latombe (1997). Motion strategies for maintaining
visibility of a moving target. Proc. IEEE Int. Conf. on
Rob. and Aut..

[21] Finn, P.W., L.E. Kavraki, J.C. Latombe, R. Motwani,
C. Shelton, S. Venkatasubramanian, and A. Yao (1998).
RAPID: Randomized Pharmacophore Identification for
Drug Design. J. of Comp. Geometry: Theory and Ap-
plic., 10:263-272.


