
Geometry Helps in Bottleneck Matching and Related

Problems∗

Alon Efrat† Alon Itai‡ Matthew J. Katz§

This paper is accepted for publication in ALGORITHMICA

Abstract

Let A and B be two sets of n objects in R

d , and let Match be a (one-to-one)
matching between A and B. Let min(Match), max(Match), and Σ(Match) denote the
length of the shortest edge, the length of the longest edge, and the sum of the lengths
of the edges of Match respectively. Bottleneck matching—a matching that minimizes
max(Match)—is suggested as a convenient way for measuring the resemblance between
A and B. Several algorithms for computing, as well as approximating, this resemblance
are proposed. The running time of all the algorithms involving planar objects is roughly
O(n1.5). For instance, if the objects are points in the plane, the running time of the exact
algorithm is O(n1.5 log n). A semi-dynamic data-structure for answering containment
problems for a set of congruent disks in the plane is developed. This data structure
may be of independent interest.

Next, the problem of finding a translation of B that maximizes the resemblance to
A under the bottleneck matching criterion is considered. When A and B are point-sets
in the plane, an O(n5 log n) time algorithm for determining whether for some translated
copy the resemblance gets below a given ρ is presented, thus improving the previous
result of Alt, Mehlhorn, Wagener and Welzl by a factor of almost n. This result is used
to compute the smallest such ρ in time O(n5 log2 n), and an efficient approximation
scheme for this problem is also given.

The uniform matching problem (also called the balanced assignment problem, or the
fair matching problem) is to find Match

∗

U , a matching that minimizes max(Match) −
min(Match). A minimum deviation matching Match∗

D is a matching that minimizes
(1/n)Σ(Match) − min(Match). Algorithms for computing Match∗

U and Match∗

D in
roughly O(n10/3) time are presented. These algorithms are more efficient than the
previous O(n4)-time algorithms of Martello, Pulleyblank, Toth and de Werra, and of
Gupta and Punnen, who studied these problems for general bipartite graphs.
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Introduction 2

1 Introduction

In the field of pattern recognition it is often required to measure the resemblance between
two sets A and B of objects in d-dimensional space. This problem often arises when an
input image is given, and we seek, among model images stored in some library, the one that
is most similar to the given image.

Many methods have been suggested for quantifying this similarity. Perhaps the most
common of which is the Hausdorff distance, defined as the maximum distance between an
object in one set and its closest neighbor in the other set. Many algorithms and applications
have been suggested for computing and applying the Hausdorff distance (e.g. [12, 13, 14,
33, 34]). However, measuring the resemblance by the Hausdorff distance suffers from the
following problem which is sometimes a fundamental drawback: the mapping defined by
associating each object in A to its closest neighbor in B is not necessarily a bijection (one-
to-one).

Figure 1: A set A of points represented as solid disks, and a set B of points, represented as
empty disks.

Quite often it is required that each object in an image be matched by one and only one
object in the other image. In such cases the Hausdorff distance is meaningless, see Figure 1.

In this paper we propose a different measure of similarity: We assume that both images
A and B have the same number of objects, a perfect bipartite matching is a bijection Match

from A to B. Let max(Match) denote the maximal distance between any matched pair of
objects. We seek a matching Match that minimizes max(Match). We refer to this measure
as the bottleneck matching criterion, and define the distance between the two images as the
longest distance between any matched pair. Let Match(A,B) denote this distance.

The disadvantage of bottleneck matching, as well as any distance that relies on one-
to-one matching, is that it is probably more complicated to compute than the Hausdorff
distance, and the algorithms tend to be less efficient. A partial explanation is that the known
algorithms attack the problem as a purely graph-theoretic one without taking advantage of
its geometric nature.

Furthermore, the problem of minimizing the resemblance under some rigid motion or
other transformation of one image relative to the other, has been investigated mainly from a
practical point of view, and the best known algorithms are either computationally inefficient
(see Alt et al. [5]), or significantly restrict the inputs (see Arkin et al. [6]).

For the case where the sets A and B are points in the plane, Vaidya [46] explored the
geometric structure of the problem to obtain an algorithm for finding a matching between
A and B, for which the sum of distances between the matched points is minimal (among
all perfect matchings between A and B). (This criterion is different from our bottleneck
criterion.) He obtained an O(n2.5 log n)-time algorithm for the Euclidean distance, and an
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Introduction 3

Dim A B Norm Oracle Thm. Match Thm.

R

2 points points Lp ∀p O(n1.5 log n) 5.4 O(n1.5 log n) 5.10
additive O(n1.5+ε) 6.7 O(n1.5+ε) 6.8
weights

segments Lp ∀p O(n1.5+ε) 6.7 O(n1.5+ε) 6.8

R

3 points points L2 O(n11/6+ε) 6.2 O(n11/6+ε) 6.3

R

d points points L∞ O(n1.5 logd−1 n) 6.4 O(n1.5 logd n) 6.5

Table 1: Computing Match(A,B) in different settings

O(n2 log3 n)-time algorithm for the L∞ distance. The solution of the Euclidean case has
recently been improved by Agarwal et al. [2] to O(n2+ε)1. However, the resulting algorithms
remain relatively complicated. See also Buss and Yianilos [11] for fast algorithms for other
types of graphs related to geometric configurations.

For computing Match(A,B) we introduce in Section 3 an oracle that determines, for a
parameter r, whether Match(A,B) ≤ r. The exact running times depend on the norm and
the dimension.

The oracle is then used to find Match(A,B); that is, the minimal r for which
Match(A,B) ≤ r. Clearly, Match(A,B) must equal a distance between an object of A
and an object in B. Thus our search space is confined to n2 such distances. In Section 4
we show how to conduct the search efficiently. In some cases (Sections 5.3, 6.1 ) the time
required for finding the matching is the same as the oracle time.

Sections 5-6 discuss the implementation of the data structures needed for the oracle and
for finding the matching itself, for different choices of the dimension of the space, the sets
A and B and the underlying norm. These results are listed in Table 1.

When A,B ⊆ R

2 are point-sets, and the underlying norm is L2 (the planar Euclidean
point-sets case) our algorithm runs in time O(n1.5 log n). For this case, we developed (Sec-
tion 5.1) a semi-dynamic linear-size data structure for a set S of equal-size disks in the
plane, so that finding a disk containing a query point, and deleting a disk from S, can both
be performed in time O(log n). We believe that this data structure is of interest of its own.

In Section 5.2 we show how to conduct the search efficiently, so the running time is
O(Oracle-Time · log n) = O(n1.5 log2 n). Moreover, for this case we can shortcut the generic
algorithm and find the matching in the same time as the oracle (Section 5.3), i.e., in time
O(n1.5 log n) (Theorem 5.10).

Additional settings are discussed in Section 6. Assume first that A and B are point-sets
in Rd . For d = 3 and the L2 norm (the 3-dimensional Euclidean point-sets case), we propose
a O(n11/6 + ε) time algorithm (Theorem 6.3). When the norm is L∞ (the L∞ point-sets
d-space case), the running time is O(n1.5 logd n) (Theorem 6.5).

When A is a set of n points in the plane, B is a set of n segments in the plane, and
the norm is an arbitrary Lp, or when A and B are sets of points in the plane and the

1Throughout the paper, ε stands for a positive constant which can be chosen arbitrarily small with an
appropriate choice of other constants of the algorithms.
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Matching in General Bipartite Graphs 4

distance is additively weighted (i.e., distw(a, b) = ||a− b||p + w(b) for some non-negative
weight function w), the running time of the algorithm for computing Match(A,B) is slightly
worse— O(n1.5+ε), for any ε > 0 (Theorem 6.8).

Section 7 presents an approximation scheme that computes an ε-approximation for
Match(A,B), in any dimension in time O(n1.5 log n), where A and B are point-sets and
the constant of proportionality depends on the dimension and on ε. We believe that this
scheme is relatively easy to implement, with reasonably small constant of proportionality,
and therefore would do reasonably well in practice.

We also show in Section 8 an application of our technique for the translation problem:
Let A and B be two n-point sets in the plane, and ρ a fixed number. The problem is to
find a translation B′ of B such that Match(A,B′) is at most ρ, or determine that no such
translation exists. Alt et al. [5] gave an O(n6)-time algorithm for this problem. We improve
this bound to O(n5 log n), and show how to find in O(n5 log2 n) time a translation B∗ of B
that minimizes Match(A,B′), over all translations B′. We also present a scheme to find a
translation that approximates Match(A,B∗).

In Section 9 we discuss two problems strongly related to the matching problem. The
first is Partial Matching in which we are given A,B (not necessarily of the same cardinality)
and a parameter 1 ≤ p ≤ min{|A|, |B|}, and we seek a matching of cardinality p for which
its longest edge is as short as possible. The second problem is Longest Perfect Matching in
which we are given A,B, and seek Match(A,B), the largest r for which a perfect matching
exists, such that the length of all its edges is r or more. Surprisingly, for points in R

3 , this
problem is easier to tackle than the problem of finding Match(A,B).

Finally, we consider the problem of finding a matching Match between A and B which
is as balanced as possible. We consider (most) uniform matching M∗

U which minimizes
max(Match) − min(Match), where min(Match) is the the minimum distance between any
matched pair. Martello et al. [40] considered this problem (or a balanced assignment, as they
called it) for general bipartite graphs, and presented an O(n4)-time solution. In Section 9.4
we present an O(n10/3 log n)-time solution for this problem in the geometric setting. Our
solution uses both the technique for computing a bottleneck matching, and a technique for
batched range searching, where the ranges are congruent annuli (see Katz and Sharir [36]).

Another criterion for balancing matchings is to minimize (1/n)Σ(Match)−min(Match),
where Σ(Match) is the sum of lengths of the edges of Match. A best matching under this
criterion is called a minimum-deviation matching M∗

D and is discussed in [19] and in [21].

2 Matching in General Bipartite Graphs

Let us first discuss the connection between our problem and standard graph-matching the-
ory. A graph-matching of a bipartite graph G = (X ∪ Y, E) is a set of edges M ⊆ E(G)
such that no vertex of G is incident to more than one edge of M . A graph-matching M is
perfect if every vertex of G is incident to an edge of M . The problem of finding a perfect
matching in a bipartite (or arbitrary) graph has been well studied. See for example [38, 39]
for textbooks on this subject. The best known algorithm for finding a perfect matching
in a bipartite graph runs in time O(m

√
n) (where n is the number of vertices and m is

the number of edges) and is due to Hopcroft and Karp [32]. When a weight is associated
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Matching in General Bipartite Graphs 5

with each edge, and we seek a perfect matching for which the sum of weights of its edges
is minimal, the best known algorithm runs in time O(n3), using the so called Hungarian
method, and is due to Kuhn [37].

Let us define our problem in graph-theoretical terms: The images A and B are each a
set of n vertices of a complete bipartite graph G = (A ∪ B,E). The weight of the edge
(a, b) ∈ E is dist(a, b)—the distance between a ∈ A and b ∈ B. Let max(M) denote as
above, the weight of the heaviest edge of a graph-matching M . The bottleneck matching is
a perfect graph-matching M ⊆ E that minimizes max(M).

Let G[r] be the bipartite graph whose vertex set is A∪B, and whose edges consist of all
pairs (a, b) a ∈ A, b ∈ B for which dist(a, b) ≤ r. Note that Match(A,B) ≤ r if and only
if there exists a perfect graph-matching in G[r]. We therefore focus on finding a maximum
graph-matching in G[r]—a graph-matching of largest cardinality.

Given a graph-matching M of a bipartite graph G = (A ∪ B,E), the vertices incident
to edges of M are called matched and the remaining vertices are exposed. The path π =
(v1, ..., v2t) is an alternating path if v1 is an exposed vertex of A, (v2i, v2i+1) ∈ M (i =
1, ..., t − 1) and (v2i−1, v2i) ∈ E \M (i = 2, ..., t). Note that the odd vertices of π belong
to A, and the even ones to B. This path is called an augmenting path if v2t is an exposed
vertex. If π is an augmenting path then M ′ = M⊕π = (M \π)∪(π\M) is a graph-matching
too and |M ′| = 1 + |M |.

A theorem of Berge [10] states that a matching is maximum if and only if there are
no augmenting paths. Thus one may start with the empty matching and augment it by
augmenting paths found in a greedy fashion.

Edmonds and Karp [18] showed how to compute augmenting paths by order of increasing
length. Instead of finding the augmenting paths one by one, Hopcroft and Karp [32], and
also Karzanov [35] who followed the techniques of Dinitz [16], find all shortest augmenting
paths together. We follow Dinitz’s terminology (see also [45]).

To find all shortest augmenting paths, we conduct a breadth-first-search to get layers
L1, . . . , L2t. The first layer, L1, consists of all exposed vertices of A; L2i contains all vertices
of B not appearing in

⋃

j<2i Lj and connected (in G) to some vertex of L2i−1. If L2i contains
exposed vertices, then it is the last layer. Otherwise, we define L2i+1 to contain all vertices
connected (in the matching M) to vertices in L2i. Note that the odd layers contain only
vertices of A and the even layers only vertices of B.

The layered graph L consists of the vertex set
⋃2t

i=1 Li, and edges of M that connect
vertices of L2j to vertices of L2j+1, and edges of G that connect vertices of L2j−1 to vertices
of L2j.

Dinitz showed how to compute a maximal set of edge-disjoint augmenting paths by
conducting a depth-first search of the layered graph. His algorithm requires O(|E|) time to
construct the layered graph and to find the augmenting paths. For sufficiently large values
of r, G[r] contains Θ(n2) edges, hence his algorithm applied to our setting requires O(n2)
time per layered graph. We take advantage of the geometric features of G[r] to improve the
efficiency of Dinitz’s algorithm. We will represent the edges of L implicitly, and thus our
construction will enable us to find the augmenting paths in L in almost O(n) time.
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Maximal matching in G[r] 6

3 Maximal matching in G[r]

In this section we describe an oracle to decide whether a given r is less than, equal to or
greater than r∗ = Match(A,B). The oracle searches for a perfect matching in G[r], using
Dinitz’s algorithm and taking advantage of the geometric setting.

3.1 Constructing L implicitly

Our goal is to find the set of vertices of each layer Li; however, we will not explicitly
construct all the edges of L. Instead, we shall use an abstract data-structure Dr(S) for a
set of objects S ⊆ B. The data-structure supports the following operations:

• neighborr(Dr(S), q): For a query point q, return an element s ∈ S whose distance
from q is at most r. If no such s exists, then neighborr(Dr(S), q) = ∅.

• deleter(Dr(S), s): Delete the object s from S.

The implementation of Dr(·) depends on the dimension, the objects of S and the un-
derlying norm. Various implementations will be described in Sections 5–6.3. Let T (|S|)
denote an upper bound on the time of performing one of these two operations on Dr(S).
We disregard the time needed to construct the data structure, since in all relevant cases it
is bounded by O(n · T (n)), and does not influence the overall complexity.

Let us turn now to the algorithm for generating L. Initially, set D ← Dr(B). In the
course of the algorithm, some vertices of B will be deleted. Using this data structure, the
layered graph is constructed by the following procedure:
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procedure ConstructLayerGraph(G,M)
L1 ← exposed vertices of A;
i← 1; D ← Dr(B);
Repeat forever

L2i ← ∅;
For each a ∈ L2i−1 Do

/* Find all b’s which are neighbors of some a in G[r] */
While neighborr(D, a) 6= ∅

b← neighborr(D, a);
Add b to L2i;
deleter(D, b); /* in order to prevent re-finding b */

End
End
If L2i is empty

Then no augmenting path exists. Stop.
Else If L2i contains exposed vertices,

Then the construction of L is complete;
Output L;

Else L2i+1 ← all vertices of A adjacent to L2i via edges of M .
i← i + 1;

End

Each matched vertex of A is reached in O(1) time from its pair in M . Also, each vertex
of B is found at most once by a query of neighborr(D, ·) and deleted from D at most once.
Thus the construction time of L is O(n · T (n)).

3.2 Finding augmenting paths in L
We now show that the augmenting paths in any maximal set of edge-disjoint augmenting
paths are vertex disjoint.

Lemma 3.1 Let M be a graph-matching of a bipartite graph G = (A ∪ B,E), let Π be a
set of edge-disjoint augmenting paths, and let v be an intermediate vertex of some path of
Π. Then v cannot participate in any other augmenting path of Π.

Proof: Since v is neither the first nor the last vertex of the augmenting path, v is not
exposed so it must be incident to exactly one edge (v, v′) ∈ M . Suppose v ∈ L2j . By our
construction, (v, v′) connects L2j and L2j+1. Hence, every augmenting path that contains
v must also contain the edge (v, v′). Since the paths of Π are edge disjoint, v cannot belong
to any other path of Π. A similar argument holds when v belongs to an odd layer. 2

Next we look for augmenting paths from the exposed vertices of L1 to exposed vertices
of L2t (the last layer). First we construct D2i ≡ Dr(L2i) for each of the even layers L2i ⊆ B.
Then we conduct a depth-first search: We start from an exposed vertex in L1 and construct
an alternating path. To advance from a vertex a ∈ L2i−1, we perform neighborr(D2i, a).
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If it returns a vertex b ∈ L2i then we add (a, b) to the current path and advance to b.
Otherwise, it returns ∅ indicating that no neighbors of a remain in L2i. Thus a does not
lead to an exposed vertex of L2t and we should backtrack.

To advance from b ∈ L2i (i < t), let (b, a+) ∈ M . We add (b, a+) to the path and
advance to a+ (b is not exposed since in ∩L all exposed vertices of B belong to L2t). If
b ∈ L2t is an exposed vertex then we have found an augmenting path. We increase M
and delete all its intermediate vertices from the appropriate L2i’s. (This is justified by
Lemma 3.1.)

To backtrack from a ∈ L2i−1 (i ≥ 2), let (b−, a) ∈M and let a− be the vertex preceding
b− on the path. We remove a and b− from the path and continue from a−. If a ∈ L1 we
simply delete it from L1.

The search for augmenting paths (and the phase) terminates when there remain no more
exposed vertices in L1.

If all the vertices are matched, then we conclude that r∗ ≤ r, otherwise, we conclude
that r∗ > r. If during the construction of L one doesn’t reach any exposed vertex of B,
then G[r] contains no perfect matching. We therefore halt and conclude that r∗ > r.

Note that the time spent on finding all alternating paths in a single layered graph is
again O(n · T (n) ). By a theorem of Hopcroft and Karp [32], Dinitz’s matching algorithm
requires O(

√
n ) phases. Hence we have the following theorem:

Theorem 3.2 Let A and B be two sets of n objects and r > 0. Then the oracle that deter-
mines whether r ≤Match(A,B) requires time O(n1.5 · T (n) ), where T (|S|) is a (monoton-
ically nondecreasing) upper bound on the time required to perform an operation on Dr(S).

4 Finding the Optimum Matching

The oracle is now used to find Match(A,B); that is, the minimal r for which Match(A,B) ≤
r. Clearly, Match(A,B) must equal a distance between an object of A and an object in B.
Thus our search space is confined to n2 such distances.

Rather than calling the oracle for all these distances, we wish to conduct a binary search.
Thus, naively, we would have to first calculate all n2 distances, sort them, and then conduct
the binary search, calling the oracle at most 2 log n times. However, if the oracle requires
time o(n2), the time to find the distances and sort them will dominate the total running
time.

In order to minimize the number of times the oracle is called, we need to efficiently
solve the following variant of the the k’th distance selection problem. For ai ∈ A, bj ∈ B
let dist(ai, bj) denote the distance from ai to bj . The k’th bi-chromatic distance selection

problem is to find dist(k), the k’th largest value in the multiset {dist(ai, bj)|1 ≤ i, j ≤ n},
where k is a given parameter.

If we can find dist(i) in time Select-Time = o(n2), then since the time required by
each iteration requires Select-Time + Oracle-Time, the time to find a minimum matching
will become O((Select-Time + Oracle-Time) log n). If Select-Time = O(Oracle-Time) then
Select-Time can be ignored.
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5 The Euclidean Planar Case

We start with our most involved example—points in the Euclidean plane—for which we
have the strongest results. Let A and B be sets of n points in R

2 and let the underlying
norm be the Euclidean norm—L2. The same data structure may also be used for the norms
Lp, for any 1 ≤ p ≤ ∞.

5.1 The oracle

To get the oracle that checks whether r < Match(A,B), we have to show how to implement
neighborr(Dr(S), q) for a query point q ∈ R2 , and S ⊆ B, and deleter(Dr(S), q)—delete
the point q from S.

To simplify the notation, we scale the coordinates so that r = 1. Let S = {d1, . . . , dn}
be a set of unit disks, q ∈ R

2 , and let the operation member(q, S) return a disk di ∈ S
containing q, and ∅ if no such disk exists. In order to implement our algorithm, we need a
data structure that supports efficiently membership queries and deletion of disks.

To that end, we divide the plane using the axis-parallel grid Γ consisting of orthogonal
cells of edge length 1/2 that passes through the origin. Since the disks have unit radius,
each disk intersects O(1) cells, hence, only O(n) cells have a non-empty intersection with
disks of S. We maintain these cells in a balanced search tree (ordered lexicographically).
For each such cell Q, we maintain a list of disks whose center lies in Q, and a data structure
Db, which maintains the upper envelope of SQ

b —the disks set of disks that intersect Q, and
whose centers lie below the line containing the lower boundary of Q. (The upper envelope
of SQ

b consists of all points p ∈ Q∩⋃
D∈SQ

b
D such that no point of this union lies above p.)

Similar data structures Dl,Dr and Da are maintained for SQ
l , SQ

r and SQ
a , the set of disks

intersecting Q whose centers lie (respectively) to the left of, to the right of and above the
lines containing the left, right and upper boundaries of Q. The space needed for Db will be
shown to be O(|SQ

b |), and similarity for the other data structures. Since each disk intersects
O(1) grid cells, the space requirement for all these data structures is O(n).

To answer the query member(q, S), we consider the cell Q of Γ containing q in its interior
(we ignore the degenerate and easy situation that q is on a boundary of a cell). If the center
of a disk di lies inside Q then q ∈ di, and can be output as di = member(q, S). Otherwise,
we use Db to find if any disk of SQ

b contains q, which happens if and only if q lies below the

upper envelope of SQ
b . We repeat this process (if needed) for Dl,Dr and Da.

Let us describeDb. The data structuresDl,Dr andDa are similar. Similar data structure
was also used by Sharir [44]. Db is similar to the segment tree (Overmars and van Leeuwen
[42]) and the one used by Hershberger and Suri [30]. Order the disks of SQ

b from left to
right by their centers, and construct a complete binary tree T whose leaves are these disks.
With each node v ∈ T we associate the set S(v) of disks corresponding to the leaves of the
subtree rooted at v. Let UE(v) denote the upper envelope of S(v). As easily seen, not all
the disks of S(v) must participate in UE(v), but those that do, appear along UE(v) (when
scanned, from left to right) in the same order as the order of their centers, from left to right.

Lemma 5.1 Let v be a node of T , and let left(v) and right(v) denote its left and right
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children. Then UE(left(v)) and UE(right(v)) have at most one intersecting point.

p1
p2

UE(right(v))

UE(left(v))

Figure 2: The proof of Lemma 5.1

Proof: Refer to Figure 2. Assume that two such intersection points exist, say p1 and p2,
where p1 is to the left of p2, and no third intersection point exists between them. Assume
without lost of generality that in the open infinite vertical strip whose boundaries pass
through p1, and p2, UE(left(v)) is below UE(right(v)). Consider dl and dr, the disks of
S(left(v)) and S(right(v)) respectively, containing p2 on their boundaries. As easily seen,
the center of dl is to the right of the center of dr, which is a contradiction. 2

Corollary 5.2 Let UE(left(v)) consist of arcs of the (boundary of the) disks ℓ1, . . . , ℓL, and
let UE(right(v)) consists of arcs of = r1, . . . , rR, where the centers of these disks are ordered
from left to right in this order. Then there exist i, j ( 0 ≤ i ≤ L, 1 ≤ j ≤ R + 1 ) such that
UE(v) consists of the arcs of disks ℓ1, . . . , ℓi, rj , . . . , rR in this left-to-right order.

The data structure: Let p(v) be the (single) intersection point of UE(left(v)) and
UE(right(v)). We call this point the junction point of v. Associated with v we keep p(v),
ℓi, rj and LIST (v)—a doubly-linked list of the vertices of UE(v) (with the disks defining
them) that do not belong to UE(parent(v)). (If a disk does not intersect any disk to its
left (right) we add the left (right) intersection of the disk with the bottom line of Q.)
Observe that LIST (v) represents a connected portion of UE(left(v)) concatenated to a
connected portion of UE(right(v)), where p(v) is a common endpoint of these two portions.
We maintain pointers from v to the corresponding “middle” vertices in LIST (left(v)) and
LIST (right(v)).

Construction of the data structure: The construction is performed bottom-up from the
leaves of T up to its root. In each step, we are at a node v, and we have computed UE(left(v))
and UE(right(v)). We merge UE(left(v)) and UE(right(v)), in linear time using a standard
line sweep procedure to find p(v), and we store in LIST (left(v)) (resp. LIST (right(v)) )
the portion of UE(left(v)) (resp. UE(right(v)) ) which does not appear in UE(v). Since at
each level of the tree we process O(n) disks, the time required for the entire construction is
O(n log n).

Membership queries: To carry out member(q, S), we consider the tree as a binary
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search tree on the values x(p(v))—the x-coordinate of p(v)’s. Let x(p1) < . . . < x(pn−1)
denote these values. Then the i’th leaf ui corresponds to the interval (x(pi−1),x(pi)). We
find a leaf uj such that x(pj−1) < x(q) < x(pj). The query point q is covered by

⋃

SQ
b if

and only if it belongs to dj . The time complexity of this operation is O(log n).

Deletions: The difficulty with deletions is that deleting a disk d might cause disks
that were occluded by d to appear in the upper-envelope UE(v). The deletion of d proceeds
bottom up: We first mark the leaf corresponding to d as being deleted, update LIST (v) = ∅,
and continue to v’s parent. No change takes place in the topology of the tree itself.

In a general step we are at a node v, and d appears in S(v), say in S(left(v)). The case
that d ∈ S(right(v)) is symmetric. We obtain the following information from the previous
step:

• A linked list L of all disks presently in UE(left(v)) which were occluded by d. Let u1

and u2 be the left and right endpoints of L, respectively.

• Pointers q1 and q2 to the vertices (in the appropriate LIST (·) fields) u1 and u2. See
Figure 3 for a demonstration.

Let p′(v) denote p(v) before the deletion of d took place.

u1 u2

d

p′(v)

UE(left(v))

UE(right(v))

(i)

u1

u2

d

p′(v)

UE(left(v))

UE(right(v))

(ii)

Figure 3: The two cases where d does not contain p(v).

Three cases might arise:

(i) x(p′(v)) ≤ x(u1)

(see Figure 3 (i)). This implies that d does not appear in UE(v), that is p′(v) = p(v). This
only requires us to insert L into LIST (left(v)) at the appropriate place, which is pointed
at by q2. This case terminates the deletion process.
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(ii) x(u2) ≤ x(p′(v))

(see Figure 3(ii).) We conclude again that p(v) = p′(v), we do not change L, q1, q2 nor the
fields within v, and continue to parent(v).

p(v)

d

w

u2

u1
p′(v) UE(right(v))

UE(left(v))

Figure 4: Exploring a new junction point p(v), which was occluded by d

(iii) x(u1) ≤ x(p′(v)) ≤ x(u2)

(see Figure 4). This is the most involved case. Let p(v)p′(v) denote the part of UE(right(v))
from p(v) to p′(v), and let p(v)u2 denote the part of UE(left(v)) from p(v) to u2. We can
traverse L, since it is organized as a linked list. Moreover, observe that p(v)p′(v) must be a
connected portion of LIST (right(v)) (organized as a linked list), hence we can easily travel
along this list as well.

Traversing along the envelopes

Out of the points p′(v) and u2, choose the point which is furthest to the right (u2 in Figure 4).
We roll from this point to the left, along the corresponding envelope of UE(left(v)), until
we arrive at a point w with the same x-coordinate as the other point (p′(v) in Figure 4).
Next we travel simultaneously on both UE(left(v)) and UE(right(v)) leftwards, maintaining
the points we are in on both chains vertically one below the other, until we reach p(v). The
time complexity of this stage is proportional to the number of disks of p(v)u2 plus that of
p(v)p′(v).

Next we delete p(v)p′(v) from LIST (right(v)), and insert p(v)u2 into LIST (left(v)) just
after the vertex u2 pointed at by q2 (and we remove the arc p′(v)u2 of d from this list).
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We now need to prepare the output of the procedure. The list L is the portion u1p(v) of
the “old” L concatenated with the portion p(v)p′(v) just discovered, (u1 and q1 are not
changed). u2 is set to be p′(v), and we update q2 accordingly.

Time analysis for the deletion operation: As is easily seen, at a node v we spend time
O(1 + λ), where λ is the length of L plus the length of of p(v)p′(v). We need an amortized
argument to bound the sum of these quantities over the course of the algorithm.

From its definition, T is a complete binary tree with at most n leaves. Each disk
corresponds to a leaf, and appears only in the ancestors of that leaf. Hence, a disk d0 might
appear in at most O(log n) LIST (·) fields, say LIST (v1), . . . , LIST (vm). However, in all
but at most one of these fields, ∂d0 must contain the corresponding p(vi). For di ∈ S let
level(di) denote the distance from the root of T to a lowest node v for which ∂di contains
a vertex of LIST (v). We say that d0 was promoted due to the deletion of another disk d,
if level(d0) decreased due to this operation. Obviously the level of a disk never increases,
and since each disk can be promoted at most log n times (the height of the tree), the total
number of promotions in the course of the algorithm is O(n log n)

Consider the disks contained in the list L and in p(v)p′(v), excluding the endpoints of
these lists. The travel along p(v)p′(v) and p(v)u2 can be charged to such promotions: Each
disk of UE(right(v)) that we scanned (excluding the endpoints) was in LIST (right(v)), and
will be promoted to LIST (v) or to a higher node. Each disk of UE(left(v)) that we scanned
(excluding the endpoints) was promoted from the LIST (·) field of some proper descendent
of left(v) to LIST (left(v)). Hence the total time dedicated to traversals, over the entire
course of the algorithm, is O(n log n).

Hence we have

Lemma 5.3 Given a set S of n unit disks in the plane, we can construct in time O(n log n)
a linear size data structure, such that finding a disk containing a query point, and deleting
this disk, requires amortized time O(log n) per operation.

This lemma and Theorem 3.2 yield:

Theorem 5.4 Let A and B be sets of points in R

2 , and r > 0. Then the oracle that
determines whether r < Match(A,B) requires time O(n1.5 log n).

Remark 5.5: It is easy to show that Lemma 5.1 holds for any Minkowski Lp metric. Once
this lemma is established, the rest of the analysis carries through, and we thus conclude
that Theorem 5.4 holds for all Lp.

5.2 Finding the matching

In order to minimize the number of times the oracle is called, we need to efficiently solve
the k’th bi-chromatic distance selection problem of Section 4.

Lemma 5.6 (Katz and Sharir [36]) Let A,B ⊆ R

2 be sets of n points, L2 the underlying
norm and 1 ≤ k ≤ n2 an integer. Then dist(k) can be found in time O(n4/3 log2 n).

Theorem 5.4 and this lemma together with the considerations of Section 4 yield the follow-
ing:
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Theorem 5.7 Let A,B be sets of n points in R

2 . Then Match(A,B) can be computed in
time O(n1.5 log2 n).

5.3 Accelerating the algorithm

By combining the oracle phase and the generic part, the running time of the algorithm can
be improved by a log n factor.

Recall that dist(i) is the ith largest distance between a ∈ A and b ∈ B. We maintain a
lower bound, dist(ℓ) (initially ℓ = 1), and an upper bound, dist(u) (initially u = n2), on the

value of r∗. In Section 5.2 we conducted a binary search on the values dist(1), . . . ,dist(n
2),

thus introducing a log factor. The purpose of this subsection is to eliminate this factor.

In the course of the algorithm, we maintain a maximum matching M of G[dist(ℓ)], and
use it as an initial matching for G[dist(i)], (ℓ < i < u). If dist(i) < r∗, we fail to find a perfect
matching, and at some stage we even fail to construct L, i.e., we do not reach any exposed
vertex of B. If our first attempt to construct L fails, then M is a maximum matching of
G[dist(i)]. Otherwise, we update M . Since the size of every matching is bounded by n, M
is updated at most n times, and at all other times only one layered graph is constructed.

If the new matching is perfect then we update dist(u) to r. However, we might have
wasted a lot of time in constructing several layered graphs. Therefore, a first step toward
the desired improvement is to construct L only a constant number of times for dist(i) > r∗.

The key observation is that sometimes we can conclude that G[dist(i)] does not con-
tain a perfect matching, without even finding the maximum matching. For a partial
matching M ⊆ G let ℓ(M,G) denote the length of the shortest augmenting path for M
(ℓ(M,G) is equal to the number of layers of the layered graph constructed by the procedure
ConstructLayerGraph(G,M) of Section 3.1 starting with the matching M).

Lemma 5.8 Let M be a partial matching of G. If |M | < n−√n and ℓ(M,G) >
√

n then
G does not contain a perfect matching.

Proof: Let Mmax be a maximum matching of G. M ⊕Mmax consists of p = |Mmax|− |M |
vertex disjoint augmenting paths P1, . . . , Pp (and some alternating cycles). The length of
each augmenting path Pi satisfies

|Pi| > ℓ(M,G)| > √n .

Since the augmenting paths are vertex disjoint,

n ≥
p
∑

i=1

|Pi| > p · √n .

Hence the number of paths satisfies
p <
√

n .

Therefore, Mmax satisfies

|Mmax| = |M |+ p < (n−√n) +
√

n = n .
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Hence Mmax is not a perfect matching. 2

Let |L| denote the number of layers in the layer-graph L. The following algorithm finds a
maximum matching:

ℓ← 1; u← n2; M1 ← empty matching;
While ℓ + 1 < u Do

step←
⌈

(u− ℓ + 1)/n1/7
⌉

; i← ℓ + step;

While i < u Do

Use the bi-chromatic distance selection algorithm to find dist(i);
M ←M ℓ;

L ← ConstructLayerGraph(M,G[dist(i)] ) ;
While (L contains exposed vertices of B)
and ( |L| ≤ √n or |M | ≥ n−√n ) Do

Update M by the procedure of Section 3.2;

L ← ConstructLayerGraph(M,G[dist(i)] ) ;
End
If |M | = n Then u← i ;
Else ℓ← i; M ℓ ←M ; i← i + step ;

End
End

Lemma 5.9 The outermost loop (While ℓ + 1 < u) is executed at most 14 times.

Proof: Each time the loop is executed then the range, u − ℓ + 1, decreases at least by a
factor of n1/7. Since initially, u− ℓ + 1 = n2, the number of interactions is at most

logn1/7 n2 = 14 .

2

We argue now that each execution of the outermost loop takes time O(n1.5 log n). Note
first that we solve the bi-chromatic distance selection problem n1/7 times. Since by [36]
this problem can be solved in time O(n4/3 log2 n), this sums up to time O(n31/21 log2 n) =
O(n1.5). The number of times the layered graph is constructed is bounded by the number
of times that its construction procedure terminates successfully—(O(

√
n), by Hopcroft and

Karp [32], as described in Section 3.2) plus the number of times that this procedure fails,
which is no more than the number of times we consult the oracle, which is O(n1/7). The
time needed for finding augmenting paths consists of the time spent when the layered graph
is of depth smaller than

√
n, and the time when the layered graph is of larger depth. In the

former case, the time for finding such a path is O(n log n), while in the latter case there are
O(
√

n) paths. Note that there are only 14 phases. This discussion and Remark 5.5 yield
the following theorem:

Theorem 5.10 Let A and B be sets of points in R

2 and Lp the underlying norm for any
1 ≤ p ≤ ∞. Then Match(A,B) can be found in time O(n1.5 log n).
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6 Additional Settings

6.1 Points in 3-space

In a recent paper [22], Efrat et al. obtained results concerning matching points into fat
shapes that contain them in two and three dimensions. These algorithms use the matching
procedure of Section 3.1, but use different data structures Dr(S) than those used here. The
following result will be useful:

Theorem 6.1 (Efrat et al. [22]) Let A be a set of n points in R

3 , and B a set of n balls
in R

3 . Then in time O(n11/6+ε) we can either find a matching between A and B, such that
each point a ∈ A is contained in the object of B matched to a, or determine that no such
matching exists.

An immediate consequence of the theorem above is a result for bottleneck matching for
two point sets in 3-space.

Corollary 6.2 Let A and B be two sets of n points in R3 . Then the oracle r < Match(A,B)
requires time O(n11/6+ε).

Proof: For each point b ∈ B let br be a ball of radius r centered at b. ||a− b|| ≤ r if and
only if a ∈ br. 2

Theorem 6.3 Let A and B be two sets of n points in R

3 . Then Match(A,B) can be found
in time O(n11/6+ε).

Proof: To select the kth distance we use a 3-dimensional bi-chromatic version of the planar
distance selection algorithm of Aronov et al. [1], that selects the k-th bi-chromatic distance.
The selection requires time O(n7/4+ε) = O(Oracle-time), and hence does not affect the
overall running time. 2

6.2 Arbitrary dimension

Here we assume that S ⊆ B is a set of points in R

d , for fixed d, and the underlying norm
is L∞.

6.2.1 The oracle

Our goal is to obtain a data structure Dr(S), supporting the operations
neighborr(Dr(S), q) and deleter(Dr(S), s), defined in Section 3.1. We maintain a set
S of d-dimensional cubes of edge-length 2r, centered at the points of S. Dr(S) consists
of (d − 2)-level segment-trees (on the projection of the cubes on the first d − 2 axes) [8,
pp. 221-225], and the two-dimensional data structure of Section 5.1 built on the projec-
tion of the cubes on the last two axes. It is easy to show how to perform both operations
neighborr and deleter in this data structure in time O(logd−1 n) each. The preprocessing
of the structure is easily shown to be O(n logd−1 n), and does not effect the overall running
of the algorithm. Hence T (n) = O(logd−1 n).
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The space requirements are as follows: A segment tree on n segments requires space
O(n log n), therefore, the d− 2 level segment tree requires space O(n logd−2 n). Since the 2-
dimensional structure requires linear space, the entire space requirements are O(n logd−2 n).
(This data structure is reminiscent of the orthogonal range trees described in Vaidya [46].)
We summarize with the following theorem:

Theorem 6.4 Let A and B be two sets of n points in R

d , for fixed d, and let the underlying
norm be L∞. Then there is an oracle that determines whether Match(A,B) < r in time
O(n1.5 · logd−1 n). The space requirements are O(n logd−2 n).

6.2.2 Finding the matching

As a method to generate critical distances, we use the approach taken by Chew and Kedem
[12]. Note that when L∞ is the underlying norm, r∗ is the distance between the projection
of some a ∈ A and b ∈ B on one of the axes Xm. I.e., let (q)m be the projection of point q
on axis m, then dist(ai, bj) = |(ai)m − (bj)m| for some m ∈ {1, . . . , d}.

While previously we used the oracle to perform a binary search on the distances, here
we conduct the search on a superset of size 2dn2. For dimension m rearrange A so that
(a1)m < (a2)m < · · · < (an)m, and likewise for B. Now consider the matrix Dm defined as
(Dm)i,j = (ai)m − (bj)m. Each row and column of this matrix is monotonically increasing.
However, some of the entries are negative. Let (D̄m)i,j = (bj)m− (ai)m. Thus each distance
dist(ai, bj) = |(ai)m − (bj)m| appears as an entry in D = {D1, . . . ,Dd, D̄1, . . . , D̄d}. We now
use Frederickson and Johnson’s [25] algorithm to select the k’th value of D in time O(dn).

We now discuss the time complexity of the method. The preprocessing consists of
sorting {(ai)m}ni=1 and {(bj)m}nj=1 for each dimension. Thus the preprocessing requires time
O(dn log n). After this we need t = log 2dn2 = O(log d+log n) selections each requiring time
O(dn), and t oracle calls. Since the time for the oracle calls dominates the preprocessing
the selections, we have:

Theorem 6.5 Let A,B be sets of n points in R

d (d ≥ 2 a constant), with L∞ as the under-
lying norm. Then finding Match(A,B) requires time O(n1.5 logd n) and space O(n logd−2 n).

Remark 6.6: Naturally, for d = 2 and the L∞ norm, we can use the shortcut of Section 5.3
on this data structure to get a slightly faster method that runs in time O(n1.5 log n).

6.3 Other Objects in the Plane

We next extend our techniques to find matching between a set A of n points and a set
B ⊆ R

2 of n objects, which may be one of the following:

(i) a set of disjoint segments, where the distance from a point q ∈ R2 to a segment b ∈ B
is defined as the distance from q to its closest point of b.

(ii) a set of points, and each bi ∈ B is associated with a non-negative weight wi, so that
for a point q ∈ R2 , we have dist(q, bi) = wi + ||q − bi||.

Bottleneck-Matching January 21, 2000



Approximating the Matching 18

In both cases the underlying norm may be any Lp-norm. The two cases are handled simi-
larly. To implement the oracle of Section 3 we only need to implement the data structure
Dr(S). For this purpose, we use the dynamic nearest-neighbor scheme of Agarwal et al. [2]
who presented such data structures for both these problems. The data structure can be
constructed in time O(n1+ε). This data structures enable us to find and delete the closest
object of B (either a segment or a point) to the query point q in time O(nε), and hence to
implement neighborr(Dr(B), q), by checking if the distance of the closest object of S to
q is at most r. These data structures support deletions of objects in time O(nε) as well.
Hence T (n) = O(nε), for any ε > 0, leading to the following result.

Theorem 6.7 For A and B as defined above, the oracle for testing whether r <
Match(A,B) requires time O(n1.5+ε) for any ε > 0.

Thus, to find the optimal matching, we need to implement efficiently the k-th bi-chromatic
distance problem. This may be done in time O(n1.5 log3 n) by a straightforward extension
of the k’th distance selection problem of Agarwal et al. [1]. We summarize:

Theorem 6.8 Let A ⊆ R

2 be a set of n points, and B ⊆ R

2 a set of either (i) n dis-
joint segments or (ii), n points, where each point bi ∈ B is associated with a non-negative
weight wi, and the distance from a point q ∈ R2 , to bi is ||q − bi||+ wi. Then in both cases
Match(A,B) can be found in time O(n1.5+ε).

7 Approximating the Matching

In this section we present an approximation scheme for r∗ = Match(A,B) in any dimension.
Heffernan and Schirra [28] and Heffernan [29], gave an approximation technique whose run-
ning time depends on r∗. We describe an improved technique for finding an approximation
to Match(A,B) for A,B point sets in R

d where the underlying norm is any Minkowski norm
Lp.

Definition 7.1 Let A and B be sets of n objects in R

d , and ε > 0 a parameter. A perfect
matching Mε between A and B is an ε-approximating matching if

r∗ ≤ max(Mε(A,B)) ≤ r∗(1 + ε),

where r∗ = Match(A,B).

We use the data structure of Arya et al. [7] who described a data structure for a set
of points S ⊆ R

d , that can report in time O(f(d, ε) log n) (for f(ε, d) = d(1 + 1/ε)d) an
approximated nearest-neighbor of a query point q ∈ R

d . That is, a point s ∈ S for which
||q− s||p ≤ (1+ ε) · ||q− s′||p, where s′ is the closest point of S to q. This data structure can
also be dynamized so that a deletion takes time O(f(d, ε) log n) — see Bespamyatnikh [9].

Let Dr(·) denote this data structure. To implement neighborr(Dr(B), q), we consult
Dr(B) to find b (the approximated nearest neighbor) and if ||b − q||p ≤ r · (1 + ε), we
report that neighborr(Dr(B), q) is b. Otherwise, report that neighborr(Dr(B), q) = ∅.
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Our approximation scheme consists of applying the procedure of Theorem 3.2, with the
approximating data-structure replacing the exact one. Let us refer to this procedure as the
approximating oracle.

Lemma 7.2 If for parameter r the approximating oracle returns a positive answer then
r(1 + ε) ≥ r∗. Otherwise, r < r∗.

Proof: Note that if H ⊇ G then any matching in G is also a matching of H. Moreover, if
M is a matching of G which can be increased by an augmenting path, then for any matching
of size |M | of H there exists an augmenting path in H.

When applying the approximate distance query, we use a graph GA ⊇ G[r] instead of
the graph G[r]. The graph GA contains all the edges of length ≤ r and some of the edges
whose length is between r and (1 + ε)r, but no longer edges, i.e., G[r] ⊆ GA ⊆ G[(1 + ε)r].
Thus if G[r] has a perfect matching, so does GA. Since all the edges of GA have length
≤ (1 + ε)r, if the approximating oracle returns a negative answer, then G[r] does not have
a perfect matching and thus r < r∗. In case of a positive answer, since all the edges of GA

have length ≤ (1 + ε)r, the length of the maximum edge in the matching is bounded by
(1 + ε)r. 2

To find an approximate matching, we have to search among the n2 distances. Even
though we do not know how to efficiently solve the k-th bi-chromatic distance selection
problem for all dimensions and every norm, in Theorem 6.5 we showed an O(n logd n)
solution for L∞ in R

d . We will now use this solution to find an approximation for the
Lp-norm for all p.

Theorem 7.3 Let A and B be sets of n points in R

d , and let ε > 0 be a parameter. Let
r∗p = Match(A,B) where Lp (1 ≤ p ≤ ∞) is the underlying norm. We can find in time
O(f(ε, d) · n1.5 log n) a matching Mε

p between A and B satisfying

r∗p ≤ Mε
p(A,B) ≤ (1 + ε)r∗p ,

where f(ε, d) = d(1 + 1/ε)d.

Proof: We first prove the theorem for the L∞ norm. In this case, we use the techniques of
Theorem 6.5 with Lemma 7.2 instead of the exact oracle of Theorem 6.4 to find a matching
Mε

∞(A,B) that satisfies

r∗∞ ≤Mε
∞(A,B) ≤ (1 + ε)r∗∞ .

Now we use the relationship between Minkowski norms:

d ||x||∞ ≥ ||x||1 ≥ ||x||2 ≥ · · · ≥ ||x||∞ ,

where ||x||p denotes the length of the vector x using the Lp-norm. Thus dr∗∞ is an upper
bound on r∗p = Mε

p(A,B), and d(1 + ε)rε
∞ is an upper bound on rε

p. Likewise, rε
∞/(1 + ε)

is a lower bound on rε
p. Thus rε

p belongs to the interval [rε
∞/(1 + ε), d(1 + ε)rε

∞].

We now conduct a binary search on this interval, using the approximating oracle for Lp

with ε/2. After 2 + log d + log ε−1 iterations, the length of the remaining interval is less
than r∗pε/2. Choosing rε

p as the left boundary of this interval satisfies the requirement of
the theorem. 2
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8 The Translation Problem

8.1 The translation oracle

Let A and B be two sets of n points in R2 and τ ∈ R2 . Let τ +B = {τ +b | b ∈ B} denote the
set B translated by τ . The translation problem is to find τ∗, a translation τ that minimizes
Match(A, τ + B). Let ρ∗ = Match(A, τ∗ + B). The translation oracle receives ρ > 0 as
input and determines, whether there exists a translation τ for which Match(A, τ + B) ≤ ρ.
In other words, the translation oracle determines whether ρ∗ ≤ ρ. Alt et al. [5] presented
an O(n6) time algorithm for the translation oracle. Using our technique we improve the
running time of their algorithm to O(n5 log n). In Section 8.2 we use this oracle to solve
the translation problem.

Let us briefly describe the algorithm of [5], and refer the reader to that paper for further
details: If for a translation τ , Match(A, τ + B) ≤ ρ then there also exists a translation τ ′

and a pair of points a ∈ A, b ∈ B such that Match(A, τ ′ + B) = ρ and the distance from
a to τ + b is exactly ρ. Hence we can limit our attention to translations τ that bring some
point of A to distance ρ (exactly) from some point b ∈ B.

For a ∈ A let aρ denote the disk of radius ρ (in the underlying norm) centered at a,
and let Aρ denote the set {aρ | a ∈ A}. For a ∈ A, b ∈ B, let circ[a, b, ρ] denote the set of
translations that bring a to distance ρ from b; this is a circle of radius ρ centered at b− a.
The algorithm checks for each pair a ∈ A, b ∈ B if Match(A, τ +B) ≤ ρ for some translation
τ ∈ circ[a, b, ρ]. That is, if there exists a perfect matching in the graph Gτ [ρ] determined by
A and τ+B. Let τ0 be a fixed translation in circ[a, b, ρ]. We first construct Match(A, τ0+B).
If its value is less than or equal to ρ then we are done. Otherwise, we translate B rigidly by
all translations of circ[a, b, ρ]. During this process, images of points of B are moved into, or
out of disks of Aρ, implying that edges are inserted into or deleted from the graph Gτ [ρ].
While the image of b revolves around a, each image of a point b′ ∈ B travels along a circle of
radius ρ, and enters and exits each disk (a′)ρ ∈ Aρ) at most once. Hence, each edge is born
(inserted to Gτ [ρ]) and dies (deleted from Gτ [ρ]) at most once. The birth/death events are
called critical events. Therefore, circ[a, b, ρ] contains at most 2n2 such critical events. After
each critical event, we might need to re-compute Match(A, τ +B). Each critical event adds
or deletes a single edge: In the case of a birth, the matching increases by at most one edge.
Therefore, we look for an augmenting path which contains the new edge. If an edge of the
matching dies, we need to search for a single augmenting path. Thus in order to update
the matching, we need to find a single augmenting path in Gτ [ρ], for which we need only
one layered graph.

Alt et al. [5] use standard graph theoretical techniques to find the path, and hence spend
O(n2) time for each critical event. Summed over all pairs a ∈ A, b ∈ B, the total number of
critical events encountered in the course of the algorithm is O(n4), so the total time spent
by the algorithm of Alt et al. is O(n4)×O(n2) = O(n6).

Instead, we use the procedure of Section 3.1 and Section 5.1 to construct the layered
graph. This procedure requires only O(n log n) time for each augmenting path. Taken over
all O(n4) critical events, the total time sums to O(n5 log n). Hence we have proved:

Theorem 8.1 Given A,B and ρ as above, we can decide in time O(n5 log n) whether there
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exists a translation τ for which Match(A, τ + B) ≤ ρ.

8.2 Finding the optimal translation

Alt et al. [5] found the translation itself in time O(n6 log n). For pedagogical reasons, we
first develop an inefficient polynomial algorithm to find an optimal translation. Then we
examine several parallel versions of the algorithm, to which we apply the parametric search
paradigm of Megiddo [41] to improve the time to O(n5 log2 n), i.e., the complexity of our
final algorithm is only a log n factor more than that of the translation

We start by introducing a polynomial sized set of critical radii which contains ρ∗. Given
a ∈ A, b ∈ B, ρ > 0 and 0 ≤ θ < 2π, let Gab[ρ, θ] denote the graph G[ρ] when b is translated
to a+(ρ cos θ, ρ sin θ). As b revolves around a, θ increases from 0 to 2π and Gab[ρ, θ] evolves:
At some angle θ a vertex b′ ∈ B enters (a′)ρ ∈ Aρ and the edge (a′, b′) is born. At some
other angle b′ leaves (a′)ρ and the edge (a′, b′) dies. The optimal translation τ∗ occurs when
some edge (a′, b′) is born in Gab[ρ

∗, θ].

Let us examine more closely the birth angle of an edge e = (a′, b′) as ρ grows. It is easy
to see that the birth occurs when b′ lies on the perpendicular bisector of a′ and β′ = b′−b+a.
Also, the life arc of e′ = (a′, b′)—the circular arc between the birth and death of e′—is less
than half the circle (i.e., less than 180 degrees).

A critical radius of the first type occurs when the life arc degenerates to a point, i.e.,
when the circles of radius ρ centered at a′ and at β′ are tangent to each other, i.e., when b′

is midway between a′ and β′. This occurs when the value of ρ equals dist(a′, β′)/2, which
we will denote by ρab(e

′). Let R1
ab = {ρab(e

′) | e′ ∈ A×B} denote the set of all such critical
radii.

Next we examine another type of critical radii, that might occur for a pair of edges
e′, e′′. At some value ρ(s)

ab(e
′, e′′) the birth angle of e′ coincides with the death angle of e′′.

Given e′, e′′, the values of ρab(e
′, e′′) and of ρ(s)

ab(e
′, e′′), are solutions of a quadratic

equation which has at most two solutions. These solutions can be computed in constant
time. Let R2

ab = {ρ(s)
ab(e

′, e′′)|e′, e′′ ∈ A×B}.
The optimal translation occurs at an angle θ at which the graph Gab[ρ

∗, θ] changes, i.e.,
either some edge is added (in which case ρ∗ ∈ R1

ab), or two edges that did not coexist for
smaller ρ now belong to the same graph (in which case ρ∗ ∈ R2

ab). LetR =
⋃

abR1
ab∪

⋃

abR2
ab

be the set of critical radii. From the above discussion ρ∗ ∈ R. Since
∣

∣R1
ab

∣

∣ < n2 and
∣

∣R2
ab

∣

∣ < n4, |R| = O(n6).

Our first algorithm constructsR, sorts it, and then uses the translation oracle to conduct
a binary search to find ρ∗. Finding R requires time O(n6), sorting it O(n6 log n), and the
binary search requires O(log n) oracle calls, each of which requires O(n5 log n) time. Thus
the entire algorithm requires O(n6 log n) time.

Our second algorithm does not construct R explicitly. Instead, for each a, b we sort the
birth and death angles of edges at ρ∗. For that purpose we need to know which edges exist
at ρ∗, and for all pairs e′, e′′ that exist at ρ∗, check whether the death of e′ precedes the
birth of e′′ or vice versa. The difficulty is that we do not yet know ρ∗. However, we may
use the translation oracle.

To check whether e′ = (a′, b′) exists at ρ∗, we note that if e′ exists at r then it exists for
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all r′ > r. We, therefore, compute ρab(e
′) and ask the translation oracle if ρab(e

′) ≤ ρ∗. If
it is then e′ exists at ρ∗.

To check whether the death of e′ precedes the birth of e′′, we apply the translation
oracle at ρab(e

′, e′′). If it answers that ρ∗ < ρab(e
′, e′′) then at ρ∗ the edge e′ died before e′′

was born. Otherwise, at ρ∗ the edge e′ died after e′′ was born, i.e., their life arcs are not
disjoint. Let us call this test the overlap oracle.

Since for each a, b there are at most 2n2 birth/death events, there could be a total
of about n4 such events, and sorting them might require Θ(n4 log n) comparisons, i.e.,
Ω(n4 log n) oracle calls—far too many.

We use the parametric search paradigm of Megiddo [41] to reduce the number of calls
to the overlap oracle. Again, we assume that the reader is familiar with this technique,
and refer to Efrat et al. [23] for a similar application. To this end, we consider a parallel
algorithm in which for each pair a, b the sorting is performed by a separate processor. We
now describe an efficient sequential simulation. Let us consider each processor’s first call to
the overlap oracle. The parallel algorithm performs all these calls in parallel. The sequential
simulation answers all the comparisons by first sorting the radii ρ(e′1, e

′′
1) . . . , ρ(e′n2 , e′′n2) and

then performing a binary search, to find the smallest ρ(e′i, e
′′
i ) that satisfies the translation

oracle. We need therefore time O(n2 log n) for the sort and O(log n) calls to translation
oracle—a total of O(n5 log2 n) time for each parallel comparison step. However, the entire
algorithm involves n2 log n such steps, i.e., a total of O(n7 log3 n)—again far too much.

To get a good algorithm, we increase the degree of parallelism. Each pair a, b conducts
its sort in parallel using the depth O(log n) parallel AKS sorting network of Ajtai et al. [3]
that sorts O(n2) critical radii with O(n2 log n) comparisons.

In each parallel step each of the n2 networks performs n2 comparisons, thus a total of
O(n4) comparisons are conducted in parallel. The sequential simulation sorts all these n4

radii, then performs a binary search calling the translation oracle O(log n) times. Now we
may deduce in constant time whether a critical radius is smaller than ρ∗—thus answering
all the overlap oracles in time O(n4 log n + n5 log2 n). Since the combined network has
depth log n, the total number of oracle calls is O(log2 n). Thus in time O(n5 log3 n) we have
ordered all the critical events at ρ∗. Since a critical event happens at ρ∗, the value of ρ∗ is
the minimal translation oracle call that returned a positive answer.

Cole [15] studied parallel sorts on sorting networks and showed how to reorder the
comparisons, so as to save a log n factor. His technique is applicable in any setting where
one uses the AKS sorting network as a generic algorithm. Using this technique, the number
of calls to the translation oracle is reduced from log2 n to log n. See [15] for more details.
We summarize these results:

Theorem 8.2 Given A,B as above, the translation problem can be solved in time
O(n5 log2 n).

8.3 Approximating the optimal translation

We next note that while finding a translation τ∗ which minimizes Match(A, τ + B) is a
non-trivial problem for which only high degree polynomial algorithms are known, and only
in the plane, it is easy to find a translation that brings Match(A, τ + B) within a factor
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of 1 + diam(p, d) of the optimum, where diam(p, d) = ||(1, . . . , 1)||p is the diameter of the
d-dimensional unit cube in the underlying norm norm Lp, (1 ≤ p ≤ ∞), i.e., for finite p,
diam(p, d) = p

√
d and diam(∞, d) = 1.

For a point s ∈ R

d let si denote the i-th coordinate of s. For a set of points S ⊆ R

d

let LL(S) denote the point in R

d whose i-th coordinate is equal to the minimum among
the values of the i-th coordinate of all the points of S for each i = 1, . . . d. In the plane,
LL(S) is the lower-left corner of the smallest axis-parallel rectangle that encloses S, and
analogously in higher dimensions. Henceforth, we assume, with no loss of generality, that
LL(A) coincides with the origin. Thereby, for all a ∈ A and i = 1, . . . , d, we have ai ≥ 0.

We can identify a translation τ of B with the image of LL(B). Let τ0 be the translation
that maps LL(B) to the origin and let δ = τ∗ − τ0 .

Lemma 8.3 For i = 1, . . . , d
|δi| ≤ ρ∗ .

Proof: Let M∗ be the optimum matching for (A,B + τ∗).

Case 1 δi < 0: Consider the point b′ ∈ B for which (b′)i is minimal. Since (b′)i =
(LL(B))i we have (b′+ τ0)i = 0. Let a′ be the point matched to b′ in M∗, i.e., (a′, b′) ∈M∗.
Since we chose the origin to be LL(A), (a′)i ≥ 0,

ρ∗ ≥ dist(a′, b′ + τ∗) = dist(a′, b′ + τ0 + δ) ≥
∣

∣

∣(a′)i − (b′ + τ0 + δ)i
∣

∣

∣

=
∣

∣(a′)i − δi

∣

∣ = (a′)i + |δi| ≥ |δi| .

Case 2 δi > 0: Choose a′′ ∈ A to be a point such that (a′′)i = 0 (this is possible since
the origin was chosen to be LL(A)). Now choose b′′ ∈ B such that (a′′, b′′) ∈ M∗. Since
(a′′)i = 0 and (b′′ + τ0)i ≥ 0,

ρ∗ ≥ dist(a′′, b′′ + τ∗) = dist(a′′, b′′ + τ0 + δ) ≥
∣

∣

∣(a′′)i − (b′′ + τ0 + δ)i
∣

∣

∣

≥
∣

∣

∣(b′′ + τ0)i + δi

∣

∣

∣ = (b′′ + τ0)i + δi ≥ δi = |δi| .

2

The following theorem is reminiscent of of a similar result of Alt at al. [4].

Theorem 8.4 Let 1 ≤ p ≤ ∞ and diam(p, d) as above. Then τ0 satisfies

Match(A,B + τ0) ≤ (1 + diam(p, d))Match(A, τ∗ + B) .

Proof: Let (a, b) ∈ M∗ be a pair for which dist(a, b + τ0) is maximum. Consider the
matching M∗ for A and B + τ0. Since Match(A,B + τ0) is the minimum value over all
matchings for A and B + τ0, ρ0 ≤ dist(a, b + τ0). Therefore,

ρ0 ≤ dist(a, b + τ0) = dist(a, b + τ∗ + δ) ≤ ||a− (b + τ∗ + δ)||
≤ ||a− (b + τ∗)||+ ||δ|| = ρ∗ + ||(±ρ∗, . . . ,±ρ∗)|| = (1 + diam(p, d)) ρ∗ .

2
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If we care for a better approximation for ρ∗ = Match(A, τ∗ + B), we use the following
approach, borrowing some ideas from Efrat [24]. Let cube[r] denote the axis-parallel cube
of edge lengths 2r centered at the origin. Lemma 8.3 states that the optimal translation τ∗

brings LL(B) to a point in cube[ρ∗].

Let 0 < ε < 1, let τ0 be the translation of Theorem 8.4 and ρ0 = Match(A, τ0 + B).
Consider a grid Γ centered at the origin with cell size γ = ερ0/ (2diam(p, d)). The distance
of any point of cube[ρ0] to its closest grid point of Γ is at most γdiam(p, d) = ε

2ρ0. Let
T (Γ) be the set of all translations that bring LL(B) to some grid point of Γ in cube[ρ0].
Since this cube properly contains cube[ρ∗], Lemma 8.3 implies that distance of the optimal
translation τ∗ to some grid point of Γ is at most ε

2ρ0.

For each translation τ ∈ T (Γ) we approximately evaluate Match(A, τ + B) using the
procedure of Theorem 7.3, and choose τ ε to be the best one.

Consider any two points a ∈ A, b ∈ B.

dist(a, τ ε + b) ≤ dist(a, τ∗ + b) + dist(τ∗ + b, τ ε + b) = dist(a, τ∗ + b) + dist(τ∗, τ ε)

≤ dist(a, τ∗ + b) +
ε

2
ρ0 .

Thus, if ρ∗ = dist(a∗, τ∗ + b∗), then for any two points a, b matched by the approximated
match at τ ε, we have

dist(a, τ ε + b) ≤ dist(a, τ∗ + b) +
ε

2
ρ0 ≤ dist(a∗, τ∗ + b∗) +

ε

2
2ρ∗ = ρ∗(1 + ε) .

The number of grid points of Γ is

|Γ| =
(

1 +
2ρ0

γ

)d

=

(

1 +
2ρ0

ερ0/(2diam(p, d))

)d

=

(

1 +
4

ε
diam(p, d)

)d

.

By Theorem 7.3, finding the approximate matching for each grid point requires time O(d(1+
1/ε)d · n1.5 log n log ε−1). Hence we have:

Theorem 8.5 Let A and B be sets of n points in R

d and Lp (1 ≤ p ≤ ∞) the underlying
norm. Then there exists an algorithm that for all ε > 0 finds in time

O

(

d

(

1 +
1

ε

)d (

1 +
4

ε
diam(p, d)

)d

· n1.5 log n log ε−1

)

a translation τ ε such that

ρε = Match(A,B + τ ε) ≤ (1 + ε)ρ∗ ,

where ρ∗ is value of the matching at the optimal translation.

For constant d the time is O(ε−2d · n1.5 log n log ε−1).

9 Related problems to the bottleneck matching

Several related problems are easily tackled by our method.
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9.1 Partial matching

Let A and B be sets of objects (not necessarily with the same cardinality), and let 1 ≤ p ≤
min{|A|, |B|} be an integer. The problem is to find rp, the smallest r for which a matching
of cardinality p exists in G[r]. This problem might arise in pattern matching, when we
suspect that some of the points are superfluous, or we seek the appearance of a relatively
small pattern A inside a large picture B.

To find whether r < rp we use the methods of Section 3. There we increased the
matching incrementally, so after matching p pairs, we can answer whether r < rp. The time
spent by this procedure is O(|A|1.5 · T (|B|)), where T (|S|) is the time required to perform
an operation on Dr(S).

To find rp, we need to be able to solve the k-bi-chromatic distance selection problem
efficiently. Here too the methods of Section 4 can be applied.

9.2 Finding a batch of partial matchings

When the number of points is not known in advance, we can further modify the algorithm, so
for every 1 ≤ m ≤ n in time O(n1.5+ε +ηn1+ε) we find a batch of values r∗m, r∗m+1, . . . , r

∗
m+η.

The proposed procedure is faster than separately finding for each i = m, . . . ,m+η the value
of Match∗

i —the best partial match on i points This is achieved as follows: We first find
Match∗

m using the procedure described in Section 9.1 above. Next we find η augmenting
paths, such that each such path augments Match∗

m+i to Match∗
m+i+1, for i = 0, . . . , η − 1.

An augmenting path is found as follows. Let A0 ⊆ A and B0 ⊆ B be the exposed vertices
of A and B in Match∗

m+i. We maintain a forest of augmenting trees containing A0. Let
A1 ⊆ A be all nodes reachable from A0 via an augmenting path of one of the trees in the
forest, and let B̄ ⊆ B be all nodes not in any tree of the forest. At each step of the algorithm
we add to the forest the edge (a, b) such that

dist(a, b) = min{dist(a, b) | a ∈ A1, b ∈ B̄}

If b is an exposed vertex (b ∈ B0) an augmenting path has been found. Otherwise, (b, a′) ∈
Match∗

m+i for some a′ /∈ A1. We add (a, b) and (b, a′) to the forest.

Adding an edge to the forest is done in O(nε) time by inserting the vertex a′ to A1

and deleting b from B̄, using the procedure of Agarwal et al. [2] for maintaining the closest
bi-chromatic pair.

Since each vertex can be added to forest only once, updating Match∗
m+i to Match∗

m+i+1

requires O(n) update operations, i.e., a total of O(n1+ε) time. To update the forest we
need to delete the tree whose root a0 ∈ A0 was matched. This also involves at most
2n update operations per augmenting path. Thus the time required for the entire batch
Match∗

m, . . . ,Match∗
m+η is O(n1.5 log n + ηn1+ε).

9.3 Finding the longest perfect matching

Let us describe briefly another set of problems. Let A and B be two sets of n points, r > 0
and let G[r] denote that graph on A∪B whose edges are pairs of points of distance at least
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r. The problem is to find Match(A,B), the largest r for which a perfect matching exists in
G[r] (in this scenario, this problem is the dual of finding Match(A,B)). Surely, our basic
scheme will do here as well, provided we obtain a data-structure Dr(B) that allows:

(i) finding a point of B whose distance from a query point q is at least r,

(ii) deleting a point from B.

Fortunately, these operations can be done efficiently in the Euclidean planar case by main-
taining the Circular Hull of B — namely the region consisting of the intersection of all disks
of radius r containing B. Hershberger and Suri [31] showed how both these operations can
be handled in (amortized) time O(log n). Hence Match(A,B) can be found in this scenario
in time O(n1.5 log n).

Recall that finding Match(A,B), when A and B are point-sets in R

3 can be done in time
O(n11/6+ε) (Theorem 6.3). It is surprising, in our opinion, that Match(A,B) can be found
in this setting much faster; we describe only the data structure and use the same oracle and
generic algorithms used in the proof of Theorem 6.3.

Let S ⊆ B, and fix a parameter r. Trivially, if some point b ∈ S can be matched in
G[r] to a point a ∈ A, then a /∈ ⋂bi∈S br

i , where br is the three-dimensional ball of radius
r centered at b. Agarwal et al. [2] proposed a data structure Ξ(S) for a set of congruent
three-dimensional balls. This data structure enables us to determine whether a point is in
⋂

s∈S sr, and to delete a ball in time O(nε). The data structure may be constructed in time
O(n1+ε). To use this structure, we build a balanced binary tree T , whose leaves are the
points of S, and each internal node v is associated with Sv, the set of balls whose centers
are associated with the leaves of v’s subtree. We also associate with v the data structure
Ξv = Ξ(Sv). To perform neighborr(Dr(S), q) (that is, to find s ∈ S such that q does not
lie in sr), we use Ξv where v = root(T ), to find if q /∈ ⋂s∈Sv

sr, and if so, we recursively
check each of its two children to find (at least) one v′, such that q /∈ ⋂s∈Sv′

sr. We repeat
this process until v′ is a leaf, and then return the singleton v′. Deletion is carried out in
a trivial fashion. Note that both these operations are done in time O(nε), so, by plugging
this data structure into the oracle of Section 3 we get the following theorem:

Theorem 9.1 Let A and B be two sets of n points in R

3 . Then Match(A,B), the longest
perfect matching, can be found in time O(n1.5+ε) for any ε > 0.

9.4 Computing a most uniform matching

The following problem has applications in pattern matching [20]. Let A and B be two
sets of n points in the plane. We seek Match∗

U , a matching Match that minimizes the
difference max(Match)−min(Match). Let G[r, r′] denote the bipartite graph whose set of
vertices is A ∪ B, and there is an edge between a ∈ A and b ∈ B iff r ≤ ||a − b|| ≤ r′,

where ||a − b|| is the Euclidean distance between a and b. Recall that dist(1), . . . ,dist(n
2)

denote the n2 distances between points of A and points of B, in increasing order. We
refer to them as critical distances, and we assume, for simplicity of exposition, that they
are all distinct. We seek 1 ≤ i < j ≤ n2 such that G[dist(i),dist(j)] contains a perfect
matching Match, and the difference dist(j) − dist(i) is as small as possible; Match is then
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the desired matching. Our algorithm maintains a maximum matching in G[dist(i),dist(j)].
We start with G[dist(i),dist(j)] for i = j = 1, and with the matching consisting of the single
edge whose corresponding distance is dist(1). The top level of the algorithm consists of the
following loop. If there is no perfect matching in G[dist(i),dist(j)] we increase j by one, else
we increase i by one; in either case we compute a maximum matching in the new graph,
and repeat. Increasing j adds a single edge to the graph, and we check whether the size of
the maximum matching increases by one. Increasing i deletes a single edge from the graph,
and, if this edge was in the current maximum matching, we must check whether the size
of the maximum matching remains as before (or decreases by one). Both these checks are
done by trying to compute an augmenting path for the current matching using a slightly
simpler version of the procedure of Section 3.1, as we did in Section 8. (In the latter check,
we do this after deleting the edge corresponding to the distance dist(i) from the current
matching.) If such a path exists then the answer is positive and we update the current
maximum matching; otherwise, the answer is negative. If a perfect matching was found,
then we compare the appropriate difference, i.e., either dist(j+1)−dist(i) or dist(j)−dist(i+1),
with the difference corresponding to the best perfect matching found so far. Clearly, the
most uniform matching will be discovered in this way, and the number of times we need to
compute an augmenting path is O(n2).

As in Section 3.1 we need a data structureDr,r′(P ) over a set of points P ⊆ B, supporting
the following operations, in amortized time O(n1/3 log n).

• neighborr,r′(Dr,r′(P ), q): For a query point q, return a point p ∈ P whose distance
from q is between r and r′. If no such p exists, then neighborr,r′(Dr,r′(P ), q) = ∅.
• deleter,r′(Dr,r′(P ), p): Delete the point p from P .

We show below that such a data structure can be constructed in time O(n4/3 log n), and
that an augmenting path can be computed within the same time bound. Since we repeat
this process O(n2) times, we obtain an O(n10/3 log n)-time algorithm for computing a most
uniform matching. The data structure is based on the following theorem.

Theorem 9.2 (Katz and Sharir [36]) Let M be a set of m congruent annuli and A a set
of n points in the plane. One can compute the set of pairs

Z = { (c, a) | c ∈M, a ∈ A, and a lies in c }
as a collection {Mu × Au}u of complete edge-disjoint bipartite graphs, in time and space
O((m2/3n2/3 +m+n) log m). (That is, for each annulus-point pair (c, a) ∈ Z, there exists a
single graph Mu×Au such that c ∈Mu and a ∈ Au, and for each graph Mu ×Au and for
each c ∈Mu, a ∈ Au, the pair (c, a) is in Z.) The number of graphs is O(m2/3n2/3+m+n),
and

∑

u |Au|,
∑

u |Mu| = O((m2/3n2/3 + m + n) log m).

For each point b ∈ B we draw the annulus of radii r and r′ that is centered at b. Let
M be the set of these annuli. Clearly, r ≤ ||q − b|| ≤ r′ for a point q iff q lies inside
the annulus associated with b. We apply Theorem 9.2 to the sets A and M and obtain
in time O(n4/3 log n) a collection of O(n4/3) bipartite graphs Hu = Mu × Au such that
∑

u |Au|,
∑

u |Mu| = O(n4/3 log n).

The operations are implemented as follows:
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neighborr,r′(Dr,r′(B), a): Find any bipartite graph Hu such that a ∈ Au, and return any
b ∈Mu.

deleter,r′(Dr,r′(B), b): For each graph Hu such that b ∈ Mu, remove b from Mu, and, if
after the removalMu = ∅, remove the entire graph Hu (i.e., remove the points in Au).

Each graph Hu is represented by two lists Au and Mu. In addition, for each a ∈ A we
maintain a list La of the occurrences of a in the lists Au. All lists are doubly linked to enable
deletions, and there is a pointer from the occurrence of a in a list Au back to the entry in La

which points to this occurrence. Similar lists Lb (b ∈ B) are constructed according to the
Mu lists. Once the complete bipartite graphs have been constructed, the implementation
of neighborr,r′ and deleter,r′ is a matter of list processing.

Since each occurrence of a or b in {Hu} is removed only once, the time needed for n
neighborr,r′ and deleter,r′ operations is O(n4/3 log n), as asserted.

Remark 9.3: Note that if the underlying norm is L∞, we can find a most uniform
matching in time O(n3 logd n), for any fixed d ≥ 2.

This is done by constructing a d-level orthogonal range tree for the set B. The points
of B lying at distance between r and r′ of a query point q, lie in a region that is defined
as the difference between two concentric cubes; namely, the cube centered at q with edge
length 2r′ and the cube centered at q with edge length 2r. This region can be partitioned
into 2d disjoint axis-aligned boxes, on each of which a query can be performed. Details are
standard and hence omitted.

Summarizing, we have:

Theorem 9.4 Let A and B be two sets of n points. It is possible to compute a most uniform
matching in time O(n10/3 log n) when the points are in R

2 and the underlying norm is L2,
or in time O(n3 logd n) when the points are in R

d , d ≥ 2, and the underlying norm is L∞.
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