
Separating and Shattering Long Line Segments

?

Alon Efrat

School of Mathematical Sciences, Tel Aviv University, Tel-Aviv 69982, Israel.

Email: alone@cs.tau.ac.il

Otfried Schwarzkopf

Dept of Computer Science, Postech, Hyoja-Dong, Pohang 790-784, South Korea.

Email: otfried@postech.ac.kr

A line l is called a separator for a set S of objects in the plane if

l avoids all the objects and partitions S into two non-empty sub-

sets, lying on both sides of l. A set L of lines is said to shatter S if

each line of L is a separator for S, and every two objects of S are

separated by at least one line of L. We give a simple randomized

algorithm to construct the set of all separators for a given set S of

n line segments in expected time O(n log n), provided the ratio be-

tween the diameter of S and the length of the shortest line segment

is bounded by a constant. We also give a randomized algorithm

to determine a set of lines shattering S, whose expected running

time is O(n logn), improving (for this setting) the (deterministic)

O(n

2

log n) time algorithm of Freimer, Mitchell and Piatko.

Key words: computational geometry, BSP-trees, line-separation.

1 Introduction

Given a set S of n objects in the plane, we say that a line l avoids S if l avoids

every element in S. We call a line l a separator for S if l avoids S and partitions

S into two non-empty subsets. In this paper we consider the problem of �nding

separators for a set of line-segments. Clearly this is su�cient to treat the case

of general polygonal objects as well.

?

Work on this paper by the second author has been supported by the Netherlands'

Organization for Scienti�c Research (NWO), by Pohang University of Science and

Technology Grant 96F004, 1996, and partially by the nondirected research fund of

the Korean Ministry of Education.

Preprint submitted to Elsevier Preprint 16 May 1997

For a set S of line segments, a separator can be found using duality. Under

duality, the segments transform to double wedges, and a separator line trans-

forms to a point lying in the complement of the union of these double wedges,

but not above all or below all of them. In other words, we can construct the

set of all possible separators by computing the union of these double wedges in

dual space. This can be done by constructing the arrangement of the 2n lines

that are dual to the endpoints of the segments in S, and then determining for

every face of the arrangement whether it is inside one of the double wedges.

All this can be done in O(n

2

) time using for example the topological sweep

technique of Edelsbrunner and Guibas [5].

On the other hand, it is easy to see that there are sets of n line segments

for which the union of double wedges|and hence the set of all possible

separators|has complexity
(n

2

). So it seems that the algorithm sketched

above is already the best one can do.

In fact, even if we do not need to compute the set of all possible separators,

but are just interested in �nding some arbitrary separator (if one exists at

all), it is not known whether the problem can be solved in subquadratic time.

In fact, it can be shown that the problem belongs to the class of so-called

three-sum hard problems. The problems in this class are suspected to admit

no solution in subquadratic time [10].

In this paper we investigate the special case in which the segments of S are

long. By this, we mean that the ratio of the diameter of S and the length of

the shortest segment is bounded by a constant. Or, rescaling the problem, we

will assume that the segments are contained in the unit disk and their length

is at least a constant � > 0.

As Efrat, Rote, and Sharir [7] observe, the dual wedge|under a suitable du-

ality transformation|of a line segment whose slope is bounded away from 90

�

is fat, meaning that its interior angle is bounded from below by a constant

� = �(�) > 0. It can be shown [7,12], that the overall complexity of the union

of n fat double wedges is linear in n, with the constant of proportionality

depending on �, and this union can also be computed in close to linear time.

Efrat, Rote, and Sharir used this fact to obtain an algorithm to �nd a sepa-

rator for a set of long segments: They partition the set of segments into two

subsets depending on their slope, use the above observation to conclude that

the dual wedges for both subsets have linear complexity, and �nally overlay the

two unions until they �nd a point corresponding to a separating line, or deter-

mine that no such point exists. The algorithm is randomized, and its expected

running time is O(n logn), or, more precisely, O(n=�

2

log(1=�) log(n=�)).

In this paper we will show that the union of the dual wedges of a set of long

segments actually has only linear complexity. As a consequence, we obtain a

2

randomized algorithm that computes all separators for the set of segments

(instead of just one) in the same expected time, and that is considerably

simpler than the algorithm by Efrat et al. Furthermore, our algorithm can

be extended to �nd a separator that partitions the segments as equally as

possible, or even to �nd a line that stabs only a small number of segments.

This is, for instance, attractive for the construction of binary space partition

trees (BSP-trees).

We say that a set of segments S is shatterable if there exists a set of lines L

avoiding S and such that every pair of segments is separated by at least one

line in L. If such a set L exists, we say that L shatters S. Freimer, Mitchell

and Piatko [8] gave an O(n

2

logn) time algorithm to �nd a linear-cardinality

set L that shatters S, or to determine that no such L exists. We show that for

a set of long segments this can be done in expected time O(n logn). We also

show that
(n) lines are always needed to shatter a set of n long segments

(in contrast to the case of arbitrary segments), and hence not much can be

gained by looking for smaller shattering sets.

2 The combinatorial bound

Let S be a set of n line segments in the plane. We assume that they are

all contained in the unit disk centered at the origin, and that their length is

bounded from below by a constant � > 0. We also assume (without loss of

generality) that no segment in s has slope 30

�

+ i � 60

�

, for i = 0; 1; 2.

We dualize every segment s to a double wedge s

�

that is the union of all lines

p

�

, where p is a point on e. (We use the duality transformation that maps a

point (a; b) to a line y = ax � b, and a line y = cx � d to the point (c; d).) A

non-vertical line l meets s if and only if its dual point l

�

lies inside the double

wedge s

�

. It is not di�cult to see that a non-vertical line l is a separator for

S if and only if l

�

lies in the complement of the union of the double wedges

for the elements of S, but not above or below all the double wedges.

We will denote the union of a set S

�

of double wedges by U(S

�

), and prove

the following simple lemma.

Lemma 1 For a set S of line segments, let S

�

denote S rotated by an angle �

around the origin. Then the complexity of U(S

�

) is the same as the complexity

of U(S

�

�

).

PROOF. Note that vertex v of U(S

�

) corresponds to a line in the primal

plane that avoids S and is tangent to two of the segments of S. There is

3

a line partitioning S

�

in the same manner, and hence there is a one-to-one

correspondence between the vertices of U(S

�

) and those of U(S

�

�

). �

We can now prove the main theorem.

Theorem 2 Let S be a set of n long line segments. Then the complexity of

the union of the double wedges s

�

, for s 2 S, is O(n).

PROOF. We partition the set S of segments into three subsets, depending

on the angle that the segments make with the x-axis: segments in S

1

make

an angle between 0

�

and 60

�

, segments in S

2

make an angle between 60

�

and

120

�

, and segments in S

3

make an angle between 120

�

and 180

�

; see Figure 1.

S

1

S

3

S

2

Fig. 1. Dividing S into S

1

; S

2

and S

3

, based on the angles the segments create with

the x-axis

A vertex of U(S

�

) is either the center of a double wedge, or is the intersection

between the boundaries of two double wedges. There is only a linear number

of vertices of the �rst kind, so it is su�cient to count only the second kind of

vertices.

Consider a vertex v of U(S

�

) that is formed by the boundary of the double

wedges s

�

and t

�

. Let i; j 2 f1; 2; 3g be such that s 2 S

i

, t 2 S

j

. Clearly, v is

also a vertex of U(S

�

i

[S

�

j

). It therefore su�ces to show that the complexity

of U(S

�

i

[S

�

j

) is O(n) for all choices of i and j.

By rotating by 60

�

in either direction, we can reduce all cases to the case of

S

1

[S

3

. By Lemma 1, it therefore su�ces to prove that the complexity of

U(S

�

1

[S

�

3

) is O(n).

The segments of S

1

[S

3

have slope between �60

�

and +60

�

. As observed

before, their dual wedges therefore have an interior angle larger than some

constant � = �(�) > 0. Using the result on the union of fat wedges [7,12], it

follows that the complexity of U(S

�

1

[S

�

3

) is O(n), completing the proof. �

4

3 Computing all separators and other applications

The set of all separators is the complement of the union of the double wedges

S

�

(minus the two regions above and below all the double wedges). By Theo-

rem 2, the complexity of this set is linear. We can compute it quite easily using

a randomized incremental algorithm, inspired by the algorithm by Miller and

Sharir [12,13] for the computation of the union of fat-triangles.

1

Our algorithm treats the wedges in random order, maintaining the trapezoi-

dation (vertical decomposition) of the complement of the union of the wedges

so far. We also maintain, in what is by now a quite standard fashion, a history

graph of the trapezoidation as de�ned by Boissonnat et al. [2]. The nodes of

this directed acyclic graph are the trapezoids created during the course of the

computation, and its leaves are the trapezoids of the current trapezoidation.

A child trapezoid in the graph intersects the parent trapezoid, and all children

of a trapezoid together cover its parent completely. Any node has at most a

constant number of children (at most six, to be precise).

In every step, we have to identify the trapezoids intersected by or contained

in the new double wedge. This can be done in a standard way by a traversal

of the history graph until we reach the leaf nodes (which correspond to the

trapezoids in question). We then update those trapezoids to create the new

trapezoidation. This updating can be done in time linear in the number of

trapezoids deleted and created in this step as in the case of the trapezoidation

of a set of segments considered by Boissonnat et al. [2].

The analysis of the algorithm is quite standard: The expected number of

trapezoids created in stage r of the algorithm is proportional to the average

number of trapezoids incident to a double wedge in a set of r double wedges.

By Theorem 2 this number is constant. It follows that the expected number

of trapezoids created by the algorithm, and therefore the expected size of the

history graph, is O(n). The remaining running time of the algorithm is dom-

inated by the time necessary for the graph traversals. The standard analysis

for randomized incremental construction [2,4] for �rst-order moments can be

applied to show that the expected time for this step is O(n logn).

Theorem 3 Given a set S of n long segments, the set of all lines separating

S can be computed in expected time O(n logn).

It is easy to extend the algorithm to compute a separator that splits S as

equally as possible. This is useful for the computation of binary space partition

trees (BSP-trees) in the plane.

1

A triangle is called �-fat if all its angles are at least �.

5

We will not go into details about the construction of BSP-trees. We just remark

that it is based on repeatedly �nding lines that partition a set of segments

while intersecting only a few of them. If a set of segments admits no separator,

or if all its separators split o� only a small number of segments, it is therefore

useful to �nd a line that splits it as equally as possible while intersecting not

more than k of the segments, where k is a parameter.

Our argument can be extended to deal with this situation. A line l intersects

at most k segments when it lies in the 6k-level of the set of double wedges

dual to the segments of S. Using Clarkson and Shor's analysis [3,4], it can be

shown that under our conditions on the set S, the complexity of the 6k-level

is O(kn). The algorithm can be extended to compute it in time O(nk logn),

and we can �nd the line that splits S as equally as possible while intersecting

only k segments in the same time.

Fig. 2. The set of 12 segments S (plotted by solid lines) is shatterable, but no

separator has more than 3 segments on one of its sides.

A somewhat surprising fact, observed by Sariel Har-Peled [9], is that a set

of segment S can be shatterable, and still have no separator l that divides S

in a balanced way, that is, at least a constant fraction of S lies at each side

of l. This is demonstrated in Figure 2. We do not know yet whether such an

example can be found for long segments.

4 The shattering problem

A related problem is the problem of shattering a set S of line segments. We

consider two problems:

(i) Given a set S of n line segments, �nd a set L of O(n) lines shattering S.

6

(ii) Given a set S of n line segments and a set L of O(n) lines, determine

whether L shatters S.

A general algorithm (that is, not assuming that the line segments are long) for

the �rst problem was given by Freimer, Mitchell and Piatko [8]; its running

time is O(n

2

logn). The �rst step in this algorithm is to create a set of lines

that are suspected to be separators for S. These lines are the lines containing

the visibility edges of the visibility graph of S. Their number is �(n

2

) in the

worst case.

For the case that the segments are long, we can limit our interest to a much

smaller set: As we have seen above, there are only O(n) combinatorially dis-

tinct separators for the set of line segments. Clearly, if the set S can be shat-

tered at all, then the set of these separators must do the job. Hence, we can

reduce the �rst problem to the second one in expected time O(n logn).

In the rest of this section we will therefore concentrate on the second problem.

It can be solved as follows: We select a representative endpoint for every line

segment in S, resulting in a point set P . We then compute all the faces in the

arrangement A(L) of the lines L that contain at least one point of P . After

that, we perform point location queries with the points of P to determine

whether there are two points in P lying in the same face.

In the general case, the faces of the arrangement A(L) containing the points

P can be computed in time O(n

4=3

logn) time using the algorithm of Edels-

brunner, Guibas and Sharir [6].

To improve on that, we �rst prove that, if the segments in S are long, the

total complexity of all faces in the arrangement containing at least one long

segment is only linear.

Lemma 4 Given a set S of long line segments, and a set L of m lines. Then

the total complexity of all faces of the arrangement A(L) containing at least

one segment of S is O(m).

PROOF. We cover the unit circle with a grid of O(1=�) horizontal and ver-

tical lines H such that every cell of the arrangement of H inside the unit circle

has diameter less than �. That implies that every segment in S must intersect

a line of H. Consequently, every face of A(L) that contains a segment of S lies

in the zone of one of the lines H. By the zone theorem, the total complexity

of all these faces is O(m=�). �

7

The idea of the proof immediately leads to an algorithm for our problem: We

create a set H of O(1=�) lines as in the proof of the lemma, and compute all

faces ofA(L) that intersect at least one line ofH. That can be done in expected

time O(n logn) using a lazy randomized incremental algorithm [1]. We then

compute a point location structure for the subdivision we have obtained so

far, and perform 2n point location queries with the endpoints of the segments

S. This takes time O(n logn) in total. If the two endpoints of a segment in S

do not lie in the zone of H, or do not lie in the same face of the zone, then

the set L contains lines that do not separate S. If there are two endpoints

of di�erent line segments that lie in the same face of the subdivision, then

the two line segments are not separated by L. Otherwise, L shatters S. To

summarize, we have shown the following theorem.

Theorem 5 Given a set S of n long segments, and a set L of �(n) lines, we

can determine in expected time O(n logn) if L shatters S.

Corollary 6 Given a set S of n long segments, we can determine in expected

time O(n logn) a set L of O(n) lines shattering S, or determine that no such

set exists.

5 The number of lines needed to shatter a set

The algorithm described above does not try to minimize the number of shat-

tering lines. The following theorem proves that such a minimization cannot

decrease the size of the shattering set by more than a constant factor.

Theorem 7 Let S be a set of long line segments, and assume that a set L of

lines shatters S. Then jLj =
(n).

PROOF. By our assumption, each element s 2 S is contained inside the

unit disk D. Let A(L) denote the arrangement formed by L. The perimeter

of the cell r

s

of A(L) containing s is either in�nity, or at least 2�. Therefore,

as is easily shown using the triangle inequality, the length of the region of the

boundary of r

s

, contained inside D, is at least �; see Figure 3. Summing these

lengths over all segments s 2 S, we see that the total length of the segments

fl

i

\D j l

i

2 Lg is at least (�=2)jSj, since both sides of such a segment l

i

\D

can contribute to the boundaries of two cells r

s

and r

s

0

, for some s; s

0

2 S.

On the other hand, for each l

i

2 L the length of the segment l

i

\D is at most

2. Hence

2jLj >

�

2

jSj

8

l

1

l

2

l

3

l

4

l

5

s

1

s

2

s

3

s

4

D

l

6

Fig. 3. The set of lines L � fl

1

; : : : l

6

g shatters S � fs

1

; : : : ; s

4

g

yielding jLj =
(jSj) =
(n) �

Acknowledgment. Discussion with Alon Itai contributed signi�cantly to

this paper, and we are grateful to him.

References

[1] M. de Berg, K. Dobrindt, and O. Schwarzkopf. On Lazy Randomized Incremental

Construction. Proceedings 26 Annual ACM Symposium on Theory of Computing,

1994, pages 105{114.

[2] J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec.

Applications of random sampling to on-line algorithms in computational

geometry. Discrete and Computational Geometry 8 (1992), 51{71.

[3] K. L. Clarkson. New applications of random sampling in computational

geometry. Discrete and Computational Geometry 2 (1987), 195{222.

[4] K. L. Clarkson and P. W. Shor. Applications of random sampling in

computational geometry, II. Discrete and Computational Geometry 4 (1989),

387{421.

[5] H. Edelsbrunner and L.J. Guibas. Topologically sweeping an arrangement. J.

Comput. Syst. Sci. 38 (1989), 165{194.

[6] H. Edelsbrunner, L. Guibas, and M. Sharir. The complexity and construction of

many faces in arrangements of lines and of segments. Discrete and Computational

Geometry 5 (1990), 161{196.

9

[7] A. Efrat, M. Sharir, and G. Rote. On the union of fat wedges and separating

a collection of segments by a line. Computational Geometry: Theory and

Applications 3 (1994), 277{288.

[8] R. Freimer, J. S. B. Mitchell, and C. D. Piatko. On the complexity of shattering

using arrangements. Proceedings 2 Canadian Conf. Computational Geometry,

1990, pages 218{222.

[9] Sariel Har-Peled. Private communication.

[10] A. Gajentaan and M. H. Overmars. On a class of O(n

2

) problems in

computational geometry. Computational Geometry: Theory and Applications, 5

(1995), 165{185.

[11] J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull

algorithm. Proceedings 2 Scan. Workshop on Algorithms Theory, Lecture Notes

in Computer Science, 1990, vol. 447, Springer-Verlag, New York, pages 380{392.

[12] J. Matou�sek, N. Miller, J. Pach , M. Sharir, S. Sifrony, and E. Welzl. Fat

triangles determine linearly many holes. Proceedings 32 Annual ACM Symposium

on Theory of Computing, 1991, pages 49{58.

[13] N. Miller and M. Sharir. E�cient randomized algorithms for constructing the

union of fat triangles and of pseudodiscs. Manuscript, 1991.

10

