Touring a Sequence of Polygons

Moshe Dror Alon Efrat
The University of Arizona The University of Arizona
Tucson AZ 85721 Tucson AZ 85721
mdror@eller.arizona.edu alon@cs.arizona.edu
Anna Lubiw Joseph S. B. Mitchell
University of Waterloo Stony Brook University
Waterloo, Ontario, Canada N2L 3G1 Stony Brook, NY 11794-3600
alubiw@uwaterloo.ca jsbm@ams . sunysb.edu

January 6, 2004

Abstract

Given a sequence of k polygons in the plane, a start point s, and a target point, ¢, we seek a
shortest path that starts at s, visits in order each of the polygons, and ends at ¢. If the polygons
are disjoint and convex, we give an algorithm running in time O(knlog(n/k)), where n is the
total number of vertices specifying the polygons. We also extend our results to a case in which
the convex polygons are arbitrarily intersecting and the subpath between any two consecutive
polygons is constrained to lie within a simply connected region; the algorithm uses O(nk? logn)
time. Our methods are simple and allow shortest path queries from s to a query point ¢ to be
answered in time O(klogn 4+ m), where m is the combinatorial path length. We show that for
nonconvex polygons this “touring polygons” problem is NP-hard.

The touring polygons problem is a strict generalization of some classic problems in computa-
tional geometry, including the safari problem (find a shortest tour visiting a set of convex cages
attached to the inside wall of a simple polygon), the zoo-keeper problem, and the watchman
route problem in a simple polygon (find a shortest tour that sees all points of the polygon).
Our new results give an order of magnitude improvement in the running times of the safari
problem and the watchman route problem: We solve the safari problem in O(n?logn) time and
the watchman route problem (through a fixed point s) in time O(n®logn), compared with the
previous time bounds of O(n3) and O(n*), respectively. Additionally, our work is motivated by
a cutting stock problem in which one must find an optimal cutting path for cutting polygonal
parts from a sheet of material, while satisfying certain constraints.

1 Introduction

A number of problems in computational geometry—including the zookeeper problem, the safari
problem, and the watchman route problem—involve finding a shortest path, within some con-
strained region, that visits a set of convex polygons in an order that is given, or can be deduced.
See below for definitions of the three problems mentioned above, and see Figure 2 for examples.
When region constraints permit it, a locally shortest path may travel straight through a poly-
gon; otherwise, it “reflects” off edges or vertices of the polygons. The three problems mentioned
above have in common that a path is globally shortest if it is locally shortest—i.e., it “reflects”
appropriately whenever it changes direction.

In this paper we give the first polynomial-time algorithm for the general touring polygons prob-
lem: to find a shortest path, between two specified points, that visits in order a sequence of k
possibly intersecting convex polygons while lying in some constrained regions. We crucially use
the property that local optimality of a path implies global optimality. One consequence is that
we never need to compute distances; we only need to compute reflections of points with respect
to lines. If the given polygons are not convex, this property fails, and we prove that the touring
polygons problem is NP-hard.

filne)

)

(a) ()
Figure 1: The TPP problem: (a) unconstrained; (b) with a fence Fy; (c) with intersecting polgyons.

Many geometric shortest path problems, e.g., shortest paths among obstacles, are solved using
the general technique of computing a shortest path map with respect to a fixed starting point s,
which is a subdivision of the plane into regions such that the shortest paths from s to all points
t in one region are combinatorially equivalent. (In particular, the most efficient algorithm for
the zookeeper problem works this way.) One cannot directly apply this technique to our problem
since the number of combinatorially distinct shortest paths in the touring polygons problem can be
exponential in the input size, as we show in Theorem 3. We use instead a new technique based on
subdividing the plane only according to the combinatorial type of the last step of the path. We call
this a last step shortest path map. Our algorithms are based on computing the last step shortest
path maps iteratively, one for each of the k polygons that must be visited, in the order they are
given. Given the sequence of such maps, a query for the shortest path from s to any query point ¢
can be answered in time O(klog(n/k)): a query for ¢ in the final last step shortest path map tells
us whether the path to ¢t goes through, or reflects from Py, thus determining a query point for the
previous last step shortest path map.

The general touring polygons problem (TPP) is as follows. We are given a start point s = I, a
target point ¢ = Pi41, and a sequence of polygons, Py, ..., Py, possibly intersecting, each considered
to be a closed region in the plane (i.e., each includes interior plus boundary). For each i = 0,.. ., k,
we are given a simply connected polygonal region F;, called a “fence”, with F; containing P; and
P;11. We say that a path 7 wisits polygon P; if # N P; # (). We say that 7 visits the sequence
Py, ..., Py if there exist points ¢; € Py, ¢3 € Py, ..., qr € P such that ¢,..., ¢ appear in order
along 7. We let pg = s and let p; denote the first point of 7 (i.e., the point closest to s along the
path) that lies within P; and comes after, or equal to, p;,_; along 7; such points exist if 7 visits the
sequence Py, ..., P,. Our goal is to compute a shortest path that begins at s, visits Py, P, ..., Pk,
in that order, and arrives at ¢, with each subpath of 7 from p;_; to p; lying within the fence F;_;.
In the wnconstrained TPP, each of the fences F; is the entire plane, R?.

An ¢-path is a path that starts at s and visits the sequence of polygons Py, ..., P;. A fenced -
path to a point ¢ € F; is an ¢-path satisfying the relevant fence constraints, i.e., having the subpath
from p;_; to p; lying within F;_;, for j = 1,...,7 and the subpath from p; to ¢ in F;. Using

this notation, the TPP asks for a shortest fenced k-path to t. For a point z, let m;(z) denote a
shortest fenced i-path that ends at . We let n denote the total number of vertices in the polygons
Py, ..., P, and the fences Fy,..., F}.

The formulation of the TPP allows for both the cycle and the path versions of the problem:
If the destination point t is the same as the starting point s, we are computing a shortest cycle
(“tour”) through s visiting the P;’s.

If the order in which the polygons P; must be visited is not specified, then the touring polygons
problem becomes the Traveling Salesperson Problem with Neighborhoods, which is NP-hard, since
the case of point polygons is the Traveling Salesperson Problem. See [20].

The touring polygons problem can be modeled as a special kind of 3-dimensional shortest path
problem among polyhedral obstacles. Imagine k very large sheets of paper stacked up in closely
spaced parallel planes orthogonal to the z-axis. The ¢-th sheet has a hole, F;, cut out of it; each
sheet of paper is a polyhedral obstacle. The point s is placed at a z-coordinate just below the
first sheet and the point ¢ at a z-coordinate just above the kth sheet. Projecting this configuration
to the (z,y) plane yields the original touring polygons input. A solution to the touring polygons
problem is the projection of a shortest path in 3-dimensions that starts from s, threads its way
through the polygonal holes, and arrives at ¢.

Summary of Results:

(1) We give an O(knlog(n/k)) time (O(n) space) algorithm for the unconstrained TPP with
disjoint convex polygons F;. No polynomial-time algorithm was previously known for this
problem. For fixed s, the data structure supports O(klog(n/k))-time shortest path queries
to .

(2) We give an O(nk?logn) time (O(nk) space) algorithm for the general TPP with possibly
intersecting convex polygons F; and arbitrary fences F;. Actually, we only require convexity
of the part of P;’s boundary from which fenced rays may bounce.

(8) We show that the full combinatorial shortest path map for the TPP has worst-case size ©((n —
k)2*%). It can be computed in output-sensitive time and supports O(k + log n)-time shortest
path queries.

(4) We show that the unconstrained TPP is NP-hard in general, for intersecting non-convex poly-
gons F;. A fully polynomial time approximation scheme follows from results for shortest paths
among obstacles in R3,

(5) We give substantial improvements in the running time for two classical problems in compu-
tational geometry, namely (a) the safari problem, for which our results imply an O(n?logn)
algorithm (improving upon O(n?)); and (b) the (fixed-source) watchman route problem, for
which our results imply an O(n3logn) algorithm (improving upon O(n?)). (By the results
of Tan [26], our improved bound for the fixed-source watchman route problem also implies an
improved bound—O (n*log n) instead of O(n’)—for the “floating” watchman route problem.)

One of the main significances of our new method is not just that it yields a substantially
faster algorithm for the watchman route problem, but also that it avoids using dynamic
programming and complicated path “adjustments” arguments (which were the source of the
original erroneous claims of the problem’s polynomial-time solvability).

(6) Our results apply also to give the first polynomial-time solution to the parts cutting problem
(below). Our algorithm solves this problem in time O(knlog(n/k)).

Our paper is organized as follows: Section 2 describes in detail the applications of our problem,
including the watchman route problem, the zookeeper and safari problems, and the “parts cutting
problem”. In Section 3 we describe the solution to the TPP with disjoint convex polygons and
in Section 4 we generalize to the case of intersecting polygons and fence restrictions. Section 5
analyzes the size of the full combinatorial shortest path map for the TPP, and Section 6 proves
NP-hardness for non-convex polygons.

2 Applications and Related Work

2.1 The Parts Cutting Problem

Suppose we have a sheet of some material such as wood or sheet metal, and a collection Py, ..., Py
of disjoint polygons on the sheet that must be cut out with a laser or saw as efficiently as possible.
We limit the options by requiring that the edges of each polygon F; be cut in one continuous cycle,
starting at some point p; € dP;. The cutter starts at point s and the objective is to determine the
points p; that minimize the length of the polygonal chain (s, p1, ps, ..., Pk), since the total length of
the cutter path is the length of this chain plus a constant equal to the sum of the perimeters of the
parts P;. We thus want a minimum length path that visits the boundaries of all the polygons. We
suppose, furthermore, that we are given the order in which the polygons must be visited. (Certain
applications specify the order in which parts must be cut; without a given order, the problem is
obviously NP-hard.) This problem is known as the parts cutting problem. See Figure 2(a). The
parts cutting problem is exactly the unconstrained TPP with disjoint P;’s and F; = R? for all 1.
This formulation assumes that the cutting tool is like a laser in that it can be turned off as it crosses
a polygon.

Our algorithm solves the parts cutting problem in time O(knlog(n/k)); see Section 3.

In Dror [16] the convex polygon cutting problem is considered in the L., metric (which mod-
els the case in which the cutting tool consumes time proportional to the longer of the z- or y-
movements); linear programming is used to obtain a polynomial-time solution.

2.2 The Safari and Zookeeper Problems

For the safari and zookeeper problems, we are given a simple polygon P, and disjoint convex
polygons (“cages”) Pi,..., P inside P, each sharing exactly one edge with P. In the zookeeper
problem we seek a shortest tour inside P that visits each of the P;’s but never enters any of them.
In the safari problem we seek a shortest tour inside P that visits each of the P;’s, and is allowed
to enter them. (We are safe inside our jeep.) See Figure 2(b), (c). In this paper we consider only
the “fixed-source” versions of these problems in which the tour must go through a given point, s,
on the boundary of P. (See Tan [27] and Tan and Hirata [24] for results on the “floating” version
of the zookeeper and safari problems.)

The zookeeper problem, introduced by Chin and Ntafos [8], has a recent O(nlogn) time al-
gorithm due to Bespamyatnikh [3] utilizing the full shortest path map. The safari problem was
introduced by Ntafos [21], who claimed an O(n?) time algorithm, which was then improved to
O(n?) [24]. However, Tan and Hirata [28] found an error in the earlier analysis and presented the
current best algorithm with running time O(n?®). In contrast with the zookeeper problem, the full
shortest path map for the safari problem has exponential size, as we show in Theorem 3.

Our algorithm solves a much more general problem than the safari and zookeeper problems,
and improves the running time for the safari problem to O(knlogn). Although these problems
seem different from the TPP in that no ordering of the P;’s has been specified, it is easy to argue

Figure 2: Examples of application problems: (a) parts cutting problem; (b) zookeeper problem; (c) safari
problem; (d) watchman route problem.

that a shortest tour must visit the P;’s in the same order as they meet the boundary of P ([8, 21]).
(Note that this is not true for the path version of the problem, but only for the cycle version; see
the thesis of H. Jonsson.) [We need a reference here.] Thus, in order to model the safari and
zookeeper problems as special cases of the TPP it only remains to specify the fence constraints.
For the safari problem, the tour must lie inside the polygon P. For the zookeeper problem, the tour
must lie inside the smaller polygon P’ = P — U; P;. We could set each F; to be the whole polygon
P (for the safari problem) or the polygon P’ (for the zookeeper problem), but our improved time
bound is achieved using smaller fences, as described in Section 4.

2.3 The Watchman Route Problem

In the watchman route problem (WRP) we are given a simple polygon P, and the goal is to find a
shortest tour inside P so that every point in P is seen from some point of the tour. See Figure 2(d).
We consider the “fixed-source” case of the WRP, in which a point s on the boundary of P is
specified as the starting point of the tour; the “floating” WRP, with no point s specified, can be
solved in time O(n) times that of the fixed WRP, as shown recently by Tan [26].

The WRP was introduced by Chin and Ntafos [9, 7], who claimed in [7] an O(n*) time algorithm
for the fixed WRP in a simple polygon. However, years later, there was a flaw discovered in their
algorithm, and several attempts were made to correct it (some of which were themselves flawed).
The best current algorithm for the fixed WRP, based on a relatively complex dynamic programming
algorithm, is due to Tan, Hirata, and Inagaki [25] and runs in time O(n?).

Our results imply a new, simpler algorithm for the fixed WRP that runs in time O(n>logn).
In order to see that the WRP is a special case of the TPP, we recall the notion (e.g., from [7]) of
essential cuts and the essential pockets they define: A cut, ¢;, with respect to s is a chord defined
by extending the edge e incident on a reflex vertex, v;, where e is chosen to be that edge incident
on v whose extension creates a strictly convex vertex at v in the piece containing s. The portion of
P on the side of ¢; not containing s is the pocket, P;, induced by the cut ¢;. A pocket is essential if
no other pocket is fully contained within it. A tour sees all of P if and only if it visits all essential
pockets. Let Py,..., P. denote the sequence of essential pockets, clockwise around QP starting
from s. The P;’s are not necessarily convex but our algorithm for the general TPP only requires
convexity of the portion of P; from which paths can bounce, which in this case is a straight line
segment. It is known that the shortest watchman tour visits this sequence of essential pockets in
order. [I think we should justify this in the journal version! Anna.] We then get an instance of the
TPP by defining each fence F; to be the bounding polygon P, and, as we will show in Section 4,
our algorithm runs in time O(n>logn), improving the previous O(n*) bound.

3 The Unconstrained TPP for Disjoint Convex Polygons

In this section we give an efficient algorithm for the convex parts cutting problem, which is the
special case of the TPP in which the polygons P; are disjoint and convex and there are no fence
constraints. Given points s and ¢, and a sequence of disjoint convex polygons P, ..., P, our goal
is to find 7 (), a shortest path that starts at s, visits the polygons in order, and arrives at t—i.e.,
find a shortest k-path from s = P, to t.

First, in Section 3.1, we show that it suffices to find a locally shortest path—one that bounces
correctly. Then, in Section 3.2 we show that locally shortest paths can be captured by last step
shortest path maps; and in Section 3.3, we present an algorithm to build shortest path maps, and,
from them, compute locally shortest paths.

3.1 Local Optimality

Clearly we only need to consider k-paths that are polygonal chains. Such a path is locally shortest
if bends occur only at points on the boundaries of the P;’s, and for each such bend point & € 0P,
moving b slightly in either direction on the boundary of P; while keeping other bends fixed makes
the path longer. This implies that for a bend point & on the interior of an edge e of F;, the angle
between the incoming segment ab and e must be equal to the angle between the outgoing segment
bc and e—i.e., the path must reflect on e, so that b € ac’, where ¢ is the reflection of ¢ with respect
to the line through e. See Figure 3.

Figure 3: Locally shortest paths reflecting from an edge and a vertex.

For a bend point at a vertex v = ey N ey the condition of being locally shortest is that the
outgoing path segment from v must leave v in the cone, 7, bounded by the rays r| and rf, formed
by reflecting the segment ST in the edges e; and ej, respectively.

The following is a special case of Lemma 7.

Lemma 1. For any p € R? and any i € {0,...,k}, there is a unique locally shortest i-path, m;(p),
to p. Thus, local optimality is equivalent to global optimality.

Let T; be the first contact set of P;, i.e., the points where a shortest (¢ — 1)-path first reaches
a point of P; after visiting P;,..., P,_1. See Figure 4. As discussed in Section 1, any i-path m,
contains points pg = s, and p;, defined to be the first point of 7 that lies in P; and does not come
before p;_1 along m. Using this notation, 7; is the locus of possible points p; taken over i-paths to
all possible target points in the plane. Since the P;’s are disjoint, 7} is contained in the boundary
of P;. The more general Corollary 1 then implies:

Lemma 2. Fach first contact set T; is a (connected) chain on the boundary of P;.

3.2 The Last Step Shortest Path Map

Locally shortest i-paths may leave points of T; only in certain directions, either continuing in a
straight line, or properly reflecting. For p in T; let r?(p) be the set of rays of locally shortest
i-paths going straight through p, and let r?(p) be the set of rays of locally shortest i-paths properly
reflecting at p. (The mnemonic is for straight, “b” for bounce.) Lemma 1 implies that for p in
an edge of T;, r#(p) and r%(p) each contain a single ray, and for p a vertex of T}, r?(p) contains a

]
S

single ray and r?(p) consists of a cone.

Let r;(p) = r#(p) Urt(p) and R; = Uper,ri(p). The set R, is an infinite family of rays with the
property that each point in the plane is reached by exactly one ray; we say that R; is a starburst
with source T;. (See the more general Lemma 6.) Associated with R; is a subdivision, §;, of the
plane that groups together points reached by rays of R; that leave from the same vertex of T;, or

-1

leave from the same side of the same edge of T;. We call the polygonal subdivision §; the last step
shortest path map (with respect to s) associated with P;, since it encodes the information about
the last segment in a shortest i-path from s to any point p. See Figure 4 for an example. In more
detail, §; decomposes the plane into cells o of two types: (1) cones with an apex at a vertex v of
T;, whose bounding rays are those of r?(v); and (2) unbounded three-sided regions associated with
an edge e of T;. Cells of type (2) can be further classified as being reflection cells or pass-through
cells, depending on whether the rays reflect off e or enter the interior of P; at e. For cells of type
(1), v is the source of the cell; for cells of type (2), e is the source. The union of all pass-through
cells defines the pass-through region.

pass-through region

& \\\\\\\\\\“ V3
i
sll&/
V2 ez

Figure 4: Example of the last step shortest path map: (a) for polygon P;: Ty (drawn heavy) and the rays of
R bounding the regions of S1; (b) regions of Sy labelled as “pass-through” or with their vertex or edge source;
(c) for polygon P: Ty (drawn heavy) and the rays of Ry bounding the regions of S;—the pass-through region
is shaded.

3.3 The Algorithm

Using the last step shortest path maps, 81, ...,8;, we can readily compute a shortest i-path to any
query point ¢ € R? as follows: See Figure 5 for an example. Locate ¢ in S;. If the source of the

cell o containing ¢ is a vertex, v, of T;, then the last segment of 7;(¢) is Ug, and we recursively
compute the shortest (i —1)-path to v (locating v in S§;_4, etc.). If the source of ¢ is an edge e of T},
then there are two subcases: (a) cell o is a pass-through cell, in which case 7;(¢) = 7;_1(¢) and we
recursively compute the shortest (7 — 1)-path to ¢; or (b) cell ¢ is a reflection cell, in which case we
let ¢’ be the reflection of ¢ in the line through e, and recursively compute the shortest (¢ — 1)-path
to ¢'; replacing the portion of this path from e to ¢’ by the segment from e to ¢ yields the shortest
i-path to gq.

Figure 5: Example query for a shortest 2-path to ¢: (a) ¢ located in a reflection cell of Sy with source (v, v2),
and the reflection, ¢’, of ¢ in the line through this edge; (b) ¢’ located in Sy and a shortest 1-path to it; (c) the
final path from s to q.

Lemma 3. Given Sy, ...,8;, the path m;(q) can be determined in time O(klog(n/k)) for any query
point q € R2,

Proof. The complexity of each §; is clearly O(|P;|) (for i = 1...k), and can be stored in a point
location data structure supporting O(log|P;|)-time queries for ¢ in §;. The time to find m;(q) is
then O(X-¥log(|P;|)), which attains its maximum when each |P;| = n/k. O

We construct each of the subdivisions 81, 8y, . . ., Sk iteratively, using the data structures Sy, ..., 8;-1
in the construction of §;. We store the subdivisions in a point location data structure.

The algorithm is very simple: For each vertex v of P;, we compute m;_1(v). If this path arrives
at v from the inside of P; then v is not a vertex of T;. Otherwise it is, and the last segment of
mi_1(v) determines the rays r?(v) and r{(v) that define the subdivision S;. Thus, combining with
Lemma 3 we have:

Theorem 1. For the unconstrained TPP for disjoint conver polygons with input size n, a data
structure of size O(n) can be built in time O(knlog(n/k)) that enables shortest i-path queries to
any query point q to be answered in time O(ilog(n/k)).

4 The General TPP

We turn our attention now to the general touring polygons problem with intersecting polygons and
fence constraints. See Figure 1(b), (c). As stated in the introduction, we assume that fence F;
contains P; and Pj11, and we require that the subpath from p; to p;;+1 lie inside F;. (Recall that p;
is the first point of 7 that lies within P; and comes after or equal to p,_; along 7.) We solve a more
general case than that of convex P,’s. Define the facade of P11 in F; to be P41 N cl(F; — Pitq).
We assume that the facade of P;41 in F; is a (single) convex chain respecting the inside of Pji1;
i.e., adding the segment to close the chain yields a convex polygon (possibly degenerating to a line
segment) whose inside corresponds to the inside of P;;;. The facade represents the points on the
boundary of P4y from which rays in F; can bounce. For example, in Figure 1(b) polygon P, is not
convex but its facade—a single line segment—is.

4.1 Local Optimality

In the presence of fences, a locally shortest path may bend at a fence vertex, with the usual
condition for shortest paths inside a polygon—namely that the angle interior to the polygon be
reflex. See Figure 1(b). Intersecting polygons also complicate things: a path is locally shortest at
an intersection point p of 0FP;_; and 0P, if it is shorter than paths that visit P,_; and then P; close
to p. See Figure 1(c).

We again use last step shortest path maps. As before, we let T; be the first contact set of P,
i.e., the locus of points where a locally shortest fenced (7 — 1)-path first reaches a point of P; after
visiting Py, ..., P;_1, and then travelling though F;_; to P;. Because polygons may intersect, first
contact may occur when a locally shortest fenced (7 — 1)-path ends at a point that is already inside
P;; thus T; need not be part of P;’s boundary. For example, if s is contained in P;, then T} is just
the point s. In general, T; will consist of the portions of T;_; that lie inside P; together with parts
of the boundary of P,. As before, we define R; to be the set of rays leaving points of T; (either
straight through or bouncing) to begin locally shortest fenced i-paths. [Make some figures.]

The goal of this subsection is to prove that a locally shortest path is globally shortest. In order
to do that we need to prove some results on T; and R;. We begin by describing 7; in terms of T;_1
and the fence F;_{. T; can be described as the set of points p € P; such that there is a shortest
path inside F;_; starting along a ray of R;_; from some point of T;_;, and intersecting P; for the
first time at p. Let A;_; be the last rays of such paths. We include in A;_; the rays of R,;_; leaving
points p € T;_1 N P;. Sources for the rays of A;_; are vertices of T;_;, points on edges of T;_1, and
vertices of F;_1. In the absence of fences, A;_; was a subset of R;_q, but now F;_; intervenes.

Recall that a set of rays is a starburst if the rays cover the plane, and are disjoint except that
they may share source points. We will assume by induction that T;_; is a tree and R;_; is a
starburst. We will prove that any two distinct rays of A;_; do not intersect; that R; is a starburst;

10

and that 7; is a tree. [We need a reflecting starburst where two rays off an edge are reflections of
each other.]

We begin with a basic result to handle fences, generalizing the uniqueness of locally shortest
s-t paths in a polygon to the case where the source is a starburst.

Lemma 4. Suppose F is a simple polygon, and we have rays R emanating in a starburst from a
connected source T inside F. Then any point p interior to F is reached by a unique locally shortest
path starting from a ray of R.

Proof. This is true by definition of a starburst if all points in F are reached directly by rays of the
starburst, i.e., every point p € F is reached by a ray r € R, emanating from some ¢t € T, with the
line segment fp contained in F. Otherwise there must be a ray r of the starburst that travels in F
to a reflex vertex v of F' and then cuts off a hidden pocket P in F. By induction on the number
of pockets, we can assume that locally shortest paths from the starburst are unique in F — P. In
particular, r itself provides a unique locally shortest path. Thus locally shortest paths from the
starburst to points inside P go through v. To complete the proof, observe that locally shortest
paths inside P from v are unique—this is the single source case. O

Lemma 5. If R, 1 is a starburst from a tree T;_1, then the first contact set, T;, is connected, and
no two distinct rays of A,y intersect (except that rays may begin at a common point).

Proof. Note that disjointness of the rays of A;_; is more general than the lemma above since the
intersection point of the rays may potentially lie outside F;_;, and in fact we crucially need the
assumption that the facade of P; in F;_; is connected and convex. See Figure.

The proof is by induction on the complexity of the fence. Without a fence, disjointness of the
rays of A;_; is trivial, but connectedness of T; requires proof, particularly for intersecting polygons.
In the general induction step, connectedness of T; comes for free, but disjointness of A;_; requires
some work.

In more detail, we apply induction on the number of reflex vertices v of the fence F;_; such that
the shortest path to v starting from a ray of R,_; extends to a ray that cuts off a hidden pocket at
v.

The basis for the induction is when there are no such hidden pockets. Then A;_; C R;_1, so
the rays are disjoint. We must prove that T} is connected.

T; consists of the parts of the tree T;_; inside F; together with some portions of the boundary
of P;. If T;_q lies entirely inside P;, then T; is T;_; and we are done. Otherwise, every point of T;
interior to P; connects to a point of T; on the boundary of F;, so it suffices to prove that points of
T; on the boundary of P; are connected in T;. Consider two points ¢ and b of T; on the boundary
of P;. If they are both points of T;_1, consider the path joining them in T;_;. If this path lies
inside P; we are done. Otherwise, by chopping up the path wherever it crosses the boundary of
P;, it suffices to consider the case where the path lies entirely outside P;. A polygon is formed by
the path, together with one chain, 3, of 0P; between @ and b. [Say this better.] We will show that
[is contained in Tj; thus a and b are connected in T;. Consider any point ¢ along 5. Consider a
shortest path to ¢ starting with a ray of R;. The last ray of this path cannot reach ¢ from inside
P;, otherwise the extension of the ray would hit T;. Thus c is is a first contact point, and is in T;.

We must still consider the case where one point, say a, is not in T;_;. Since a is in Tj, there
must be a shortest path to @ starting from a ray of R;, and entering F; for the first time at a.

[To be filled in.]

This completes the proof that T; is connected in the basis case of our induction proof.

For the induction step, consider a ray

11

We now discuss what it means for rays to “bounce” at a vertex of T;.

Claim 1. Let v be a vertez of T;, with edges ' and e? incident to v and consecutive in clockwise
order around v. Let R' [R?] be the set of rays leaving points on €' [e?], and entering the region
between e' and e? in clockwise order. Let r' and r? be the limiting rays of these sets as the source
approaches v along the edge. Then the rays that “bounce” (i.e., form locally shortest paths) at v
consist of all rays between r' and r?.

Lemma 6. If R;_y is a starburst from a tree T;_y, then R; is a starburst. [We use more than
the hypothesis that R,_q is a starburst—in particular we use the fact that the two rays leaving an
interior point of an edge of T;_1 are reficetions of each other in that edge.]

Proof. We already have that no two distinct rays of A;_; intersect. All of these become rays of R;,
though their sources move from points on 7;_; and F; to points on 7;. It remains to show that the
various rays that are formed when rays of A;_; “bounce” off points of 0 P; remain non-intersecting,
and that they fill in the “gaps” to reach the whole plane. We address the issue of intersections first,
dealing with rays that bounce from interior points of edges of T;, and then with rays that bounce
from vertices of T;.

Two rays that bounce off edges of P; cannot intersect each other because P; has a convex facade.

We next consider the case of one ray bouncing off an edge e of P; intersecting one ray of A;_;.
Suppose that a ray r from a source point ¢; of T;_; bounces at edge e of F; to form ray b. Suppose,
for ease of description, that b bounces to the left of r. Suppose by contradiction that b is intersected
by a ray s coming from a point ¢3 of T;_; inside P;. This intersection must occur after s exits P;.
Because s and r do not intersect, t9 must lie on the left of r. Now ¢; and ¢5 are connected by a path,
say v, in T;_;. The path v must cross into P;. Let p be the first point of v (traversed from #; to
t2) on OP;. Because v cannot cross r or s, point p must lie between the points where r and s cross
OP;. Let € be the edge of T;_; containing p. Consider the two rays v and v of R;_; that emanate
from point p in R; ;. We will argue that one of these rays must intersect r or s, contradicting the
fact that R;_; was a starburst. We crucially use the fact that « and v are reflections of each other
in the edge €’. Let v’ and b’ be rays emanating from p parallel to r and b respectively. The wedge
in which u can live extends from r’ counterclockwise to the part of €’ inside P; (which comes before
e). The reflecting wedge in which v can live extends from €’ to a ray that comes before »’. Any
possible ray v in this wedge will intersect either the path v or the ray s. This is a contradiction.

The only rays left to consider for possible intersections are those that “bounce” at vertices of
T; on OP;. These cannot produce an intersection, since, by Claim 1, they simply fill in the gaps
between the rays emanating from interior points of edges.

Finally, we must argue that the rays of R; reach every point in the plane. This follows from
Claim 1, together with the fact that T} is connected (Corollary 77). O

Corollary 1. If R;_1 is a starburst from a tree T;_1, then T; is a tree.

Proof. This follows from Corollary 7?7 plus the fact that the source of a starburst cannot contain a
cycle (otherwise the ray of the starburst to a point inside the cycle would hit the cycle). O

As an immediate consequence, we obtain
Lemma 7. For any i € {0,...,k} and any p € F; there is a unique locally shortest fenced i-path
to p. Thus, local optimality is equivalent to global optimality.

12

4.2 The Last Step Shortest Path Map

As before, we use a last step shortest path map. Actually, we use several such maps—with and
without fences. We associate with the starburst R; a subdivision of the plane, SlR, that groups
together points reached by rays of R; that leave from the same vertex of T;, or leave from the same
side of the same edge of T;. A pass-through cell is one in which the rays leaving the source are
inside P in a very small neighbourhood of the source. In particular, any cell of S whose source
is a vertex or edge of some T}, j < 1, is a pass-through cell. For purposes of space efficiency, we
group together all of the pass-through cells of S/ into one (possibly disconnected) “pass-through”
region. Other cells of S? have as their source either a vertex or an edge of Tj.

The structure S tells us how shortest paths leave P; ignoring the fence F;. To take the fence
into consideration, we define a subdivision SiF of F; that groups together points reached by shortest
paths in F; that start from rays of R;, and whose last edges leave from the same vertex of Fj, or
leave from the same vertex of T; or leave from the same side of the same edge of T;. Again, we
group together all pass-through cells. (To add some intuition, for Py = s, St has a single region
containing all rays leaving s, but Sf is a standard shortest path map inside the fence F.)

Finally, we define the subdivision of the plane, SiA, based on the rays A; that arrive at P;4q.
Here we group together points of the plane reached by rays of A; that emanate from the same
vertex of T;, or the same vertex of F;, or from the same side of the same edge of T;. Again, we
group together all pass-through cells.

4.3 The Algorithm

We describe below how to compute the last step shortst path maps, but first we show how to use
them to answer queries.

Answering Shortest Path Queries. Given a point ¢ € F;, we can find a shortest fenced i-path
to ¢ by calling Query(q,SiF). We answer such a query by locating ¢ in SiF, and, based on the
results, passing ¢, or an appropriate reflection of ¢, to appropriate level-(: — 1) data structures.
As we recurse, we will need to query SiA_l rather than SiF_l, since our query point will not be
guaranteed to lie inside F;_;, but will be guaranteed to be hit by a ray of A4, ;. We say that a
path respects F; if it lies in F; except that the last edge may possibly exit F; after entering P;y4.
Our algorithm to construct the shortest path maps will also need to query SlR. We thus describe
a generic query in any of these structures.
For X = F or A or R, Query(q, SZX) locates ¢ in Sl»X, and then follows these cases:
Case 1. ¢ is in a cell whose root is a vertex v € F; or a vertex v € T;. In this case, the
last edge of the desired path is the line segment (v, ¢q), and we can find the actual path by
using stored information at v (which we will have queried previously).

Case 2. ¢ is in the “pass-through” region. In this case, a shortest fenced (¢ — 1)-path to ¢
automatically visits P;, and the portion of the path from the entry point of P; to ¢ respects
F;. Thus, we desire a shortest fenced (¢ — 1)-path to ¢. Note that ¢ need not be inside
F;_,. However, it is reached by a ray of A;_ 1, and so we obtain the correct answer by calling

Query(q,S2,).

Case 3. ¢ is in a cell whose root is an edge e of T;. Then the desired path to ¢ bounces off
edge e. In this case, let ¢’ be the reflection of ¢ with respect to the line through edge e. A
shortest fenced (i — 1)-path to ¢’ automatically visits P;, and the final portion of it respects

13

F;. Thus, we desire a shortest fenced (7 — 1)-path to ¢’. The last segment of such a path
will cross edge e at a point p, say, and adding the line segment from p to ¢ gives us the final
path. Note that ¢’ need not be inside F,_;. However, it is reached by a ray of A4;_;, and so
we obtain the correct answer by calling Query(¢’, S ;).

Provided we have the required planar subdivisions on hand, and their sizes are polynomial in
n, the above algorithm proves:

Lemma 8. For any point q in F; we can find the last ray of a shortest fenced i-path to q in time

O(ilogn).
To compute the actual path we need to take into account the length of the path:

Lemma 9. For any point q in F; we can find the shortest fenced i-path to q in time O(ilogn+m) =
O(ilogn + f), where m is the combinatorial length of the path, and f = > j<i i 1s the total size of
all the relevant fences. -

Constructing the Last Step Shortest Path Maps. Assuming we have S | and S]F,S]A for

j < i, we show how to construct S, and T; and S, and then, from those, how to construct S

Constructing S#,, T;, S®. We compute all potential vertices of T; that are not vertices of
previous T;’s as follows: throw in all vertices of the facade of P; plus all intersection points of the
facade of P; and the facade of P; for j < i. For each such potential vertex v, we find the last edge
of a locally shortest fenced (i — 1)-path to v by calling Query (v, S ,).

On the basis of how the last edge of the path arrives at v, we determine whether v is indeed
a vertex of T;. If it is, the arriving ray becomes part of SiA_l, and we compute the rays r?(v) and
r?(v) to become part of Sf*. We preprocess S, and S¥ for point location queries.

Constructing S. We preprocess F; for ray shooting queries; this takes O(|F;|) time, and allows
queries in O(logn) time [17]. We call Query(v, SF), for each reflex vertex v of Fj, to find the last
edge [of a shortest fenced ¢-path to v ignoring the fence F;. Using a ray shooting query in F;, we
determine if [is contained in F;. If not, then we ignore v. Otherwise we have found the shortest
fenced i-path to v. Let r be the continuation of I beyond v until its first intersection point with
OF;. As in the proof of Lemma 4, we can identify the hidden pocket beyond r. We can compute
a standard shortest path map for source point v inside this pocket in linear time [17]. Putting
together this information for all reflex vertices v of F;, and combining with the relevant portions of
R;, yields the subdivision SZF of F;, which we then process for point location queries.

Running time for the algorithm. Let f; be the size of F;, and p; be the size of the facade of P;
in F;. Let f=3", fi, and p =3, p;. In our general case f and p are O(n).
Let t; be the number of vertices of T; that are not vertices of a previous T;, and let ¢t =3, ¢,.

Lemma 10. t is O(pk).

Proof. Each vertex of T; that is not a vertex of some previous T}, j < ¢, is an intersection point of
an edge of the convex facade of P, with an edge of the convex facade of P; for some j < ¢. Since the
facades are convex, the number of intersection points is at most }_, ; O(p; + p;), which attains its
maximum value when p; = [p/k] for each i. Hence, the total number of these vertices is O(pk). O

The complexity of SF is O(t;), the complexities of 8/ and 87, are O(t; + ti31 + f;). In the
general case these are both O(nk) and, by Lemma 8 a query to find the last edge of a shortest
fenced i-path (i < k) to a point ¢ takes O(klogn) time.

14

We perform such a query for each vertex of each Fj;, and each vertex of each 7; that is not
already a vertex of a previous T;. Thus we do p 4+ f 4 ¢ queries, and the total time required is

O((p+ f+t)klogn). In our general case, this is O(nk®logn).

Theorem 2. The TPP for arbitrary convex polygons P; and fences F; can be solved in time
O(nk%logn), using O(nk) space.

The Watchman Route Problem. For the watchman route problem in polygon P, the polygons
P; are defined by the £ = O(n) essential cuts of P. Each P, may have O(n) vertices, but p;, the
size of the facade of P, is just 2. Thus p is O(n). Each fence, F;, is all of P, so f is O(n?).
Applying Lemma 10 we have that ¢ is O(nk). From our analysis above, our algorithm takes time

O((p+ f +t)klogn). Plugging in, we get O(n>logn).

Corollary 2. The (fized-source) watchman route in a simple polygon can be solved in time O (n>log n).

The Safari Problem: For the safari problem, p is O(n). Because the P;’s are disjoint, #; is just
pi, and t is O(n) as well. Finally, fences can be defined such that f is O(n) ([3]). [Give more detail.]
Plugging into the running time of O((p+ f + t)klogn) yields O(nklogn).

Corollary 3. The safari problem can be solved in time O(nklogn).

5 The Full Combinatorial Shortest Path Map

In this section we study the full combinatorial shortest path map, SPM;(s), which is the decomposi-
tion of the plane into regions (cells) according to the combinatorial type of the shortest i-path from
s. The combinatorial type of an i-path, 7, from s to ¢ is a listing of the edges and vertices of the
polygons P; and F; that are intersected by =, together with an indication for each edge whether 7
crosses it or reflects from it.

Associated with each cell o of SPM,(s) is a vertex or line segment, (o), on the boundary of
P; (in fact, on that part of OPF; in the set T;), which is the locus of all first entrance points, p;,
associated with shortest i-paths from s to points ¢ € o; we refer to r(o) as the source for cell o.
If (o) is a line segment, then it is either a pass-through source for o (if m;(t) passes through r(o),
fort € o), or it is a reflection source for o (if m;(t) reflects off the edge of P; containing r (o), for
t € o). If r(o) is a line segment, then it serves as the pass-through source for one cell (say, o) and
a reflection source for another “partner” cell (say, o).

Theorem 3. Given a sequence Py, ..., P, of k disjoint convex polygons, the worst-case complezity

of SPMy.(s) is Q((n — k)2F).

Proof. We first consider the case in which each polygon P; is a single line segment (so k = n). As
shown in Figure 6, the number of distinct combinatorial classes of shortest ¢-paths grows exponen-
tially with i (2'); thus, SPMy(s) has Q(2*) complexity. (Here we are using the property that local
optimality implies global optimality.)

In the case that n > k, we use the same kind of construction, but we replace the first line segment
with a chain, Py, of n —k+1 colinear segments, while P, ..., P; remain single line segments. Then,
the number of distinct path classes is Q((n — k)2F). O

15

T3

Figure 6: lllustration of the lower bound of Theorem 3: Each of the four paths 7y, 7, 73, 74 is locally optimal.
Path 7, goes through e; and ey, 72 reflects on e; and goes through ey, path 73 reflects on €7 and on e2, and
path m4 goes through e; and reflects on e3. By orienting e; and ey so that they are almost horizontal, all four
classes of paths are arbitrarily close to being horizontal. Thus, the construction can be continued, with these four
path classes meeting an edge es3, where each can go through or reflect on e3, resulting in eight classes of paths,
etc.

Remark 1. Note that we can add a bounding polygon, P, surrounding all of the segments of
Figure 6 and touching an endpoint of each segment, while not interfering with the path classes.
Thus, a similar lower bound applies to the case of the shortest path map associated with the safari
problem.

Theorem 4. Given a sequence Py, ..., P, of k arbitrary disjoint simple polygons, the complezity

of SPM(s) is O((n — k)2F).

Proof. Walk along the boundary of P;, keeping track of our location in the subdivision SPM;_4(s).
Consider that connected portion, C, of F; that lies within a cell o of SPM,_;(s). We can assume
that C' separates the interior of P; from the source, r = r(o); i.e., we can assume that C C T;. If
C' is a single line segment (on an edge of F;), then in the decomposition SPM;(s) C will serve as
the source for two cells — one pass-through cell and one reflection cell. If C is a chain having one
or more vertices on it, then each segment of C' serves as a source for two cells of SPM,(s) and each
vertex of C' within o serves as the source for one cell of SPM;(s).

Thus, in total we get that the number, m;, of cells of SPM;,(s) is related to the number, m;_1,
of cells of SPM;_;(s) by the relationship

m; < 2m;_y + | Py,

where |P;| denotes the number of vertices of polygon P;. This recursion gives the claimed bound.

O

In fact, by an incremental method suggested in the proof above, we obtain an output-sensitive
algorithm; we defer the proof to the full paper.

Theorem 5. For any sequence Py, ..., P, of k simple polygons having a total of n vertices, one
can compute SPMy(s) in time O(k - |SPMy(s)|), after which a shortest k-path from s to a query
point t can be computed in time O(k + logn).

6 TPP on Nonconvex Polygons

We begin by observing that, just as shortest paths in the L; metric among orthohedral obstacles
are readily solved in polynomial time by searching the grid induced by the input vertices, so is this
special case of our problem:

16

Proposition 1. The TPP in the Ly metric is polynomially solvable (in O(n?) time and space) for
arbitrary rectilinear polygons P; and arbitrary fences F;. The result lifts to any fixed dimension d
if the regions P; and the constraining regions F; are orthohedral.

Proof. One can readily argue that there exists an optimal path that lies on the grid induced by the
coordinates of the vertices of the P,’s and the Fj’s. Then, a simple search for shortest paths on the
grid solves the problem. Slightly more efficient methods are known for the corresponding shortest
path problem in three or more dimensions; see [14, 15, 13]. U

Next, we state our main lower bound result, which shows that even in the case of the L metric,
if the obstacles have edges of three orientations (axis-parallel, plus edges of angle +45 degrees)
instead of just the two axis-parallel orientations, the problem becomes hard. The proof is based on
a careful adaptation of the Canny-Reif [4] proof of NP-hardness of the three-dimensional shortest
path problem, using some new gadgets.

Theorem 6. The touring polygons problem is NP-hard, for any L, metric (p > 1), in the case of
nonconvez polygons P;, even in the unconstrained (F; = R?) case with obstacles bounded by edges
having angles 0, 45, or 90 degrees with respect to the x-azis.

Proof. (Sketch) Our proof is by reduction from 3-SAT. We show only the case of the L; metric.
We construct five kinds of gadgets: 2-way path splitters (that double the number of shortest path
classes), 3-way path splitters (that triple the number of shortest path classes, without changing
their ordering), path shufflers (that perform a perfect shuffle of the input path classes), literal filters
(which “select” paths that have a particular bit equal to 0 or 1), and clause filters (that ensure that
each clause is true in a satisfying truth assignment).

Given an instance of 3-SAT, having n variables by, ..., b, and m clauses C; = (I;1 V12 Vl;3), we
construct a sequence of polygons, (P, .. .,Po(n+m)), along with points s and ¢, such that solving
the TPP on this instance permits us to determine if the 3-SAT formula A;C; has a satisfying truth
assignment. (Our polygons P; take the form of line segments and unions of line segments whose
angle with the z-axis is in {0, +45,90}.)

We use n 2-way splitters to create 2" distinct path classes that form a “bundle” of parallel paths.
Each path class encodes a truth assignment for the n variables. We use a sequence of clause filters,
each consisting of three literal filters sandwiched between two 3-way splitters, to filter out those
path classes whose corresponding variable assignments fail to satisfy each clause. The property of
the literal filter is that only those path classes that have a particular bit set to 0 or 1 are able to
pass through the filter without having a detour (a requirement to go through a horizontal segment)
force the path to be longer than the others.

While our proof attempts to follow that of [4], there are important new aspects to our proof.
First, we must be careful to make the layout in the plane, so we must modify the clause filter of
[4], which exploited the third dimension to have the path classes pass through three literal filters
in parallel. This modification utilizes the new 3-way splitter.

Also, we must “link” the n stages of the literal filters that make up a clause filter, since all path
classes must pass through the same sequence of polygons. This means that we construct polygons
with bridging segments between individual shuffle gadgets, so that one polygon may consist of up
to three shuffle gadgets; see Figure 9. (There are also linkages between the “blocker” segments that
select the most significant bit in a literal filter and the other shuffle gadgets or blockers at the same
stage of a clause filter. See the dashed segments representing such linkages in Figure 10(right).)

The final step collects all the path classes back into a single path class that terminates at ¢. For
this we use n inverted (2-way) splitters.

17

Figure 7: Left: 2-way splitter gadget. Right: 3-way splitter gadget.

=
F

Figure 9: “Ganging” three shuffle gadgets in parallel.

2" shortest path classes AARAANAR
012345567

Py

] \ 3-way splitter \
RN L L L L A

1
i—1 shufflers

bI = most significant bif

TRARARER TRRARRAT TEARRART

|—| \ 3—-way splitter

TRRARRAT

(n=i+1) shufflers

Figure 10: Left: Literal filter. Right: Clause filter.

18

We note that our construction utilizes polygons that do intersect; it is open whether or not the
TPP remains NP-hard in the case that the polygons P; are pairwise disjoint. O

The hardness shows that the general TPP is just as hard as the three-dimensional shortest
path problem among obstacles. It is also “just as easy”, in that known techniques to obtain an
approximately shortest path among obstacles in three dimensions (e.g., [1, 10, 11, 12, 22]) apply to
the TPP if we model it using “sheets of paper” that are sufficiently large and close together:

Proposition 2. There is a fully polynomial time approzimation scheme (O(n*/€?)) for the general
version of the TPP, even if the constraining fences are allowed to be multiply connected.

Proof. As described in the introduction, any instance of the unconstrained TPP can be modeled
as a shortest path problem among “sheets of paper” with polygonal holes to represent the regions
P;. (The sheets of paper have a tiny separation of € between any pair of consecutive sheets.)
We can model the constraints imposed by fences similarly by constructing walls in the shape
of the fence F;, linking the ¢th sheet to the ¢ 4+ 1st sheet. Then, we can simply apply known
methods [1, 10, 11, 12, 22] for approximating shortest paths among obstacles in three dimensions
to get the claimed theorem. O

7 Open Problems

Many of the directions in which it would be desirable to extend this work run into the barrier
that local optimality no longer guarantees global optimality. Thus one really needs to compute
distances, something that we avoided entirely in our algorithms for the TPP on convex polygons.
One of the most intriguing open problems suggested by our results is to determine the complexity
of the TPP for disjoint nonconvex simple polygons.

We conclude with some open problems of current interest to us:

1. Can our solution of the watchman route problem be improved and can one give any nontrivial
lower bounds for the problem?

2. Our construction for the NP-hardness of the TPP (Theorem 6) utilizes polygons that intersect;
it is open whether or not the TPP remains NP-hard in the case that the (non-convex) polygons
P; are pairwise disjoint.

3. What can be said about the case in which the fence regions F; are multiply connected?

8 Acknowledgments

A. Efrat and J. Mitchell are partially supported by Honda Research Labs. J. Mitchell acknowledges
support also from NASA Ames Research (NAG2-1325), NSF (CCR-0098172), and the U.S.-Israel

Binational Science Foundation. A. Lubiw’s research is supported by the Natural Sciences and
Engineering Research Council of Canada.

References

[1] T. Asano, D. Kirkpatrick and C. Yap. Pseudo approximation algorithms, with applications to
optimal motion planning. In Proc. 18th Annu. ACM Sympos. Comput. Geom., 2002, 170-178.

19

[2] H. Baumgarten, H. Jung and K. Mehlhorn. Dynamic point location in general subdivisions.
J. Algorithms, 17:342-380, 1994.

[3] S. Bespamyatnikh. An O(nlogn) algorithm for the zoo-keeper’s problem. Computational
Geometry: Theory and Applications, 24:63-74, 2002.

[4] J. Canny and J. H. Reif. New lower bound techniques for robot motion planning problems. In
Proc. 28th Annu. IEEE Sympos. Found. Comput. Sci., 1987, 49-60.

[5] B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, J. Hershberger, M. Sharir, and
J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica, 12:54—
68, 1994.

[6] B. Chazelle and L. J. Guibas. Visibility and intersection problems in plane geometry. Discrete
Comput. Geom., 4:551-581, 1989.

[7] W.-P. Chin and S. Ntafos. Shortest watchman routes in simple polygons. Discrete Comput.
Geom., 6:9-31, 1991.

[8] W.-P. Chin and S. Ntafos. The zookeeper route problem. Information Sciences, 63:245-259,
1992.

[9] W. Chin and S. Ntafos. Optimum watchman routes. Information Processing Letters, 28:39-44,
1998.

[10] J. Choi, J. Sellen, and C. K. Yap. Approximate Euclidean shortest paths in 3-space. Internat.
J. Comput. Geom. Appl. , 7:271-295, 1997.

[11] J. Choi, J. Sellen, and C. K. Yap. Precision-sensitive Euclidean shortest path in 3-space. In
Proc. 11th Annu. ACM Sympos. Comput. Geom., 1995, 350-359.

[12] K. L. Clarkson. Approximation algorithms for shortest path motion planning. In Proc. 19th
Annu. ACM Sympos. Theory Comput., 1987, 56—65.

[13] K. L. Clarkson, S. Kapoor, and P. M. Vaidya. Rectilinear shortest paths through polygonal
obstacles in O(n(logn)?) time. In Proc. 8rd Annu. ACM Sympos. Comput. Geom., 1987,
251-257.

[14] M. de Berg, M. van Kreveld, and B. J. Nilsson. Shortest path queries in rectilinear worlds of
higher dimension. In Proc. 7th Annu. ACM Sympos. Comput. Geom., 1991, 51-60.

[15] M. de Berg, M. van Kreveld, B. J. Nilsson, and M. H. Overmars. Shortest path queries in
rectilinear worlds. Internat. J. Comput. Geom. Appl. , 2:287-309, 1992.

[16] M. Dror. Polygon plate-cutting with a given order. IIE Transactions, 31:271-274, 1999.

[17] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms
for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,
2:209-233, 1987.

[18] J. Hershberger and J. Snoeyink. An efficient solution to the zookeeper’s problem. In Proc. 6th
Canadian Conf. on Comp. Geometry, 1994, 104-1009.

20

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

J. Hershberger and S. Suri. A pedestrian approach to ray shooting: shoot a ray, take a walk.
J. Algorithms, 18:403-431, 1995.

J. S. B. Mitchell, Geometric shortest paths and network optimization, In Handbook of Com-
putational Geometry (J.-R. Sack and J. Urrutia, eds.), pages 633-701, Elsevier Science, 2000.

S. Ntafos. Watchman routes under limited visibility. Comput. Geom. Theory Appl., 1:149-170,
1992.

C. H. Papadimitriou. An algorithm for shortest-path motion in three dimensions. Inform.
Process. Lett., 20:259-263, 1985.

F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, New York, NY, 1985.

X. Tan and T. Hirata. Shortest safari routes in simple polygons. Lecture Notes in Computer
Science, Vol. 834, 1994, 523-531.

X. Tan, T. Hirata, and Y. Inagaki. Corrigendum to “An Incremental Algorithm for Construct-
ing Shortest Watchman Routes”. International J. of Comp. Geom. and App. , 9:319-323, 1999.

X. Tan. Fast computation of shortest watchman routes in simple polygons. Information
Processing Letters, 77:27-33, 2001.

X. Tan. Shortest zookeeper’s routes in simple polygons. Information Processing Letters, 77:23—
26, 2001.

X. Tan and T. Hirata. Finding shortest safari routes in simple polygons. Manuscript (submit-
ted), Tokai University, 2001.

21

