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Abstract

We call a line ` a separator for a set S of objects in the plane if ` avoids all the

objects and partitions S into two nonempty subsets, one consisting of objects lying

above ` and the other of objects lying below `. In this paper we present an O(n logn)-

time algorithm for �nding a separator line for a set of n segments, provided the ratio

between the diameter of the set of segments and the length of the smallest segment is

bounded. No subquadratic algorithms are known for the general case. Our algorithm

is based on the recent results of [13], concerning the union of `fat' triangles, but we also

include an analysis which improves the bounds obtained in [13].

1 Introduction

Given a set S of n objects in the plane, we call a line ` a separator of S if ` does not meet

any object of S, and partitions S into two non-empty subsets, one consisting of all objects

lying fully above ` and the other consisting of all objects lying fully below `.

This and some related problems have been studied in several recent papers. For instance,

Freimer et al. [8] present an algorithm for shattering a set of objects, i.e. �nding a set of

separator lines that form an arrangement such that none of its cells contains more than a

single object.

Let us assume that the objects in S are all line segments. If ` is a separator of S, then

by tilting and moving ` about, we can make it pass through two endpoints of segments in S

while still avoiding the (interiors of the) other segments. In this extreme position, ` de�nes

an edge of the visibility graph E of S (see [10, 17]). We can thus compute the visibility

graph and select those edges whose extensions in both directions do not meet S. Using

the algorithm of Ghosh and Mount [10], we can compute the visibility graph and select

these special edges in time O(n logn + jEj). Since in the worst case jEj can be �(n

2

), the

resulting algorithm is worst-case quadratic.

A simpler solution, that also requires quadratic time, is obtained by dualizing the prob-

lem. Using a standard duality transform [5], the segments of S become n double wedges,

and a separator line becomes a point lying in the complement of the union of these double
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wedges, strictly between the upper and lower envelopes of the double wedges. Hence, to

determine the existence of a separator, or actually to �nd the set of all separators, we can

simply compute the union of these dual double wedges and collect all components of its

complement that lie between the envelopes. This can be done by computing the arrange-

ment induced by the 2n lines that are dual to the endpoints of the segments in S, and then

by determining for each face of the arrangement whether it lies in some double wedge. All

this can be done in time O(n

2

); with topological sweeping [6], O(n) space is su�cient.

In this dual setting, the problem of �nding a separator for a set of segments is more or

less equivalent to the problem of determining whether the union of n double wedges has

(bounded) holes or whether it is simply connected. This is closely related to problems raised

by Overmars, Guibas and Sharir, and others, which ask to test whether the union of n given

triangles fully contains another given triangle. Quadratic-time solutions to these problems

are easy, following the technique just outlined, and the goal is to obtain subquadratic

solutions. No such solution is known in general as yet. As a matter of fact, Seidel [18]

recently showed that, under a fairly reasonable computational model, all these problems

require time 
(n

2

).

There is, however, a special case that admits much faster solutions. This is when all

wedges are fat, meaning that their angles are all at least �, for some �xed parameter � > 0.

In this case, it was shown in [1, 13] that the overall complexity of the union of n fat double

wedges (i. e., the total number of straight-line pieces of the boundary) is linear in n, with the

constant of proportionality depending on �, and that the union can be computed in close-

to-linear time. (A slightly improved algorithm is given in [14].) The paper [13] actually

generalizes these results to the case of fat triangles, but we will be concerned here only with

double wedges. The latest progress is due to van Kreveld [9], who improves the dependence

of the constant of proportionality on � to O(1=�) (but only for fat triangles and polygons,

not for double wedges)

In this paper we study the problem of determining whether there exists at least one

separator line for certain special collections of segments. Speci�cally, we assume that the

given segments all lie in some bounded disk, say the unit disk, and their lengths are all

bounded from below by some constant c > 0. In other words, we assume a bounded ratio

� between the diameter of the union of the segments in S and the length of the smallest

segment in S. The segments are allowed to intersect. We present a solution to this restricted

problem, whose running time is O(n logn), with the constant of proportionality depending

on the ratio �. To be more precise, our algorithm runs in time

O(

�

minfn�

2

log� log�n; n� log

2

n log logng

�

; (1)

thus, even if � is not �xed but is only o(n=(log

2

n log logn)), we still obtain a subquadratic

solution.

The key idea for obtaining such an e�cient solution is to partition S into a subset S

1

of

\
at" segments and a subset S

2

of \steep" segments. For each subset, the space of all lines

avoiding all segments in the subset can be computed in close to linear time, because the

segments in each subset can be dualized to `fat' double wedges (see below for more details).

Then we test whether the intersection of the duals of the two resulting sets of avoiding lines

contains any point between the upper and lower envelopes of the wedges; this can also be

easily accomplished in subquadratic time by a line-sweeping technique in the dual plane.
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Thus our paper can be regarded as an application of the analysis of the union of fat

wedges, as given in [1, 13, 14, 9]. The interesting feature of our application is that its time

complexity depends on the behavior of the constants of proportionality in the bounds given

in these papers. We �rst derive improved bounds on those constants, which are better

than those implicitly given in [13]. Speci�cally, we show that the union of n wedges, each

having an angle at least �, has boundary complexity O(minfn�

�2

log(1=�); n log logn=�g),

improving the bound O(n�

�3

) which is implied in [13]. The second term in this bound

follows from the recent result of van Kreveld [9] mentioned above. However, van Kreveld's

bound does not seem to apply to wedges, so it becomes slightly super-linear in n: Thus, for

constant � and large n, the �rst term, which is a result of the analysis given in this paper,

is the best bound known so far.

2 Geometric Preliminaries

We begin with a few notations. Let S = fs

1

; : : : ; s

n

g be the given collection of segments.

The segments in S can intersect, but for simplicity of exposition we will assume that no

two segments have a common endpoint.

We split S into two subsets S

1

, S

2

, so that the segments of S

1

(resp. of S

2

) have slopes

with absolute value � 1 (resp. > 1). We use two duality transforms, �

1

, �

2

, applying �

i

to

the segments of S

i

, for i = 1; 2.

The �rst duality transform �

1

maps a point (a; b) to the line y = ax + b, and a line

y = cx + d to the point (�c; d). It is well known that this duality preserves incidence

between points and lines, and maps a point lying above (resp. below) a line ` to a line

lying above (resp. below) the dual point of `. Under this transform, a segment s = pq is

mapped to a double wedge s

?

consisting of points that lie between the lines p

?

, q

?

, dual to

p, q, respectively. A (non-vertical) line ` meets s if and only if its dual point `

?

lies inside

the double wedge s

?

. Thus a line ` avoids all segments in S if `

?

lies outside the union of

their dual double wedges. It is also easy to show that ` is a separator of S if and only if

`

?

also lies between the upper and lower envelopes of the dual double wedges (and in the

complement of their union).

We call a wedge or a double wedge �-fat if its angle is at least �.

Lemma 2.1 Suppose that a segment s = pq of length at least c is contained in the unit disk

and that the angle formed between s and the y-axis is at least �=4. Then the double wedge

dual (by the transform �

1

) to s is (c

p

2=6)-fat.

Proof: Note �rst that we must have c � 2. The assumptions on s imply that the slopes

k

p

, k

q

of the lines dual to p and q respectively (these are the x-coordinates of p and q) are

between �1 and 1 and di�er by at least

c

p

2

2

. The angle � between them satis�es

tan � =

jk

q

� k

p

j

1 + k

q

k

p

�

c

p

2

4

� tan �

0

:

Hence

� � �

0

�

1

2

sin 2�

0

=

tan �

0

1 + tan

2

�

0

=

c

p

2

4

1 +

c

2

8

�

c

p

2

6

;
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using, in the last inequality, the fact that c � 2. 2

This lemma implies that all double wedges obtained by applying �

1

to the segments of

S

1

are (c

p

2=6)-fat.

Consider next the segments of S

2

. We apply to them another duality transform, �

2

,

that maps a point (a; b) to the line y = bx+ a and a line y = cx+ d to the point (�

1

c

;�

d

c

).

Note that �

2

= �

1

��, where � is the transformation (x; y) 7! (y; x). It is easily veri�ed that

Lemma 2.1 implies that the double wedges obtained by applying �

2

to the segments of S

2

are (c

p

2=6)-fat.

In the algorithm, we will need to merge the unions of the double wedges of �

1

(S

1

) and

those of �

2

(S

2

). To do so, we will need to place these two unions in a common dual plane.

This is achieved by applying the transformation ~� = �

1

��

�1

2

= �

1

����

�1

1

to the union of the

double wedges in �

2

(S

2

). As is easily checked, ~� is a projective transformation which maps a

point (a; b) to the point (

1

a

;

b

a

), and a line y = cx+d to the line y = dx+c. Note that points

on the y-axis are mapped to points at in�nity, that the right half-plane is mapped onto

itself and the left half-plane is also mapped onto itself. Moreover, within each half-plane, ~�

consistently preserves sidedness of points and lines. That is, in the right half-plane a point

p lies above a line ` if and only if ~�(p) lies above ~�(`); in the left half-plane p lies above ` if

and only if ~�(p) lies below ~�(`).

3 On the Union of Fat Wedges

The problem of computing the union of fat wedges (or, more generally, of fat triangles)

has been recently studied in [1, 13, 14]. We recall the results of these papers, and look

somewhat closer at the dependence of the bounds that they provide on the `fatness' �.

Theorem 3.1 Let F be a set of m �-fat wedges in the plane. The boundary of the union of

F consists of O(m�

�2

log(1=�)) straight segments and rays, and the union can be computed

in time O(m�

�2

log(1=�) +m logm).

the proof appears in the appendix

4 The Algorithm and its Analysis

Having all this technical machinery, we can now present the algorithm for computing a

separator of S.

The Algorithm

1. Translate and scale the set S of segments so that it �ts into the unit disk. This could

for example be done very easily by computing the smallest enclosing axis-parallel

rectangle and placing the corners of this rectangle on the unit disk. This ensures that

the smallest segment has length at least c = 
(1=�), if the ratio between the diameter

of S and the length of the shortest segment of S is �. For simplicity we again call the

resulting set S.
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2. Partition the set S of segments into two subsets S

1

, S

2

, such that all segments in

S

1

(resp. in S

2

) have slopes with absolute value � 1 (resp. > 1). Let n

1

= jS

1

j,

n

2

= jS

2

j.

3. Apply the �rst duality transform �

1

to the segments in S

1

, obtaining a collection of n

1

(c

p

2=6)-fat double wedges (see Lemma 2.1). Similarly, apply the second transform

�

2

to the segments in S

2

, obtaining a collection of n

2

(c

p

2=6)-fat double wedges.

4. Compute the complement W

1

of the union of the double wedges of �

1

(S

1

), and the

complement W

2

of the union of the double wedges of �

2

(S

2

), applying the algorithm

in Theorem 3.1.

5. Compute the image

f

W

2

of W

2

under the transformation ~� = �

1

� �

�1

2

= �

1

� � � �

�1

1

discussed in Section 2.

6. Compute the upper and lower envelopes of all the double wedges in �

1

(S).

7. Apply a standard line-sweeping algorithm to compute the intersection of W

1

and

f

W

2

.

Run the sweeping algorithm and stop it as soon as it �nds an intersection point x

between the boundaries of W

1

and

f

W

2

or a vertex x of one of these sets which is

contained in the other set, such that x does not lie on either envelope. Such a point

x is the dual (under �

1

) of an extreme separator for S. If no such point is found, S

does not admit a separator.

The Analysis

The correctness of the algorithm follows from the discussion in the introduction and in the

preceding section. Indeed, if a separator of S exists, then there exists an extreme separator

` such that (i) its dual point x = �

1

(`) lies strictly between the upper and lower envelopes of

the dual double wedges of S, (ii) ` avoids all the segments in S

1

, (iii) ` avoids all segments

in S

2

, and (iv) ` passes through the endpoints of two segments in S. It follows easily that

x must lie in W

1

and in

f

W

2

. If the two segments through whose endpoints the separator

passes are both in S

1

or both in S

2

then x must be a vertex of the boundary of W

1

or

f

W

2

,

respectively, that also lies in the other region. If one of these segments belongs to S

1

and

one to S

2

, then x must be an intersection point of the boundaries of W

1

and

f

W

2

. In any

case, such a point x will be identi�ed in Step 7, and therefore the algorithm is correct.

Next consider the running time of the algorithm.

Steps 1{3 take linear time. Step 4 can be performed, By use to be Lemma 2.1 and

Theorem 3.1, in time

O(n(

p

2

6

c)

�2

log(1=(

p

2

6

c)) + n logn)

and hence, combined with van Kreveld's result, in time

O(minfn�

2

log�n; n� log

2

n log logng);

where � is the ratio between the diameter of S and the length of the shortest segment of S.

Step 5 can be done in time linear in the complexity of W

2

, that is, in time

O(minfn�

2

log�n; n� log

2

n log logn). The calculation of the upper and lower envelopes
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in Step 6 can be done in time O(n logn) [2, 12]. Note that there are only O(n) vertices on

both envelopes.

Finally, the line-sweeping algorithm of Step 7 takes time O((N + k) logN), where N is

the total number of segments forming the boundaries of W

1

and of

f

W

2

, and k is the number

of `events' that the algorithm processes. The number of events initially put on the priority

queue is proportional to N , each event that is being processed generates only a constant

number of new events, and the number k of events being processed, until the �rst extreme

separator (if any) is detected, is O(N + n) | the algorithm will process only new events

that correspond to vertices of the envelopes; any other intersection point must correspond

to an extreme separator, as argued above, which will then terminate the algorithm. Thus

the total cost of Step 7 is

O ((N + n) log(N + n)) = O

�

minfn�

2

log � log�n; n� logn log logn

�

:

The space requirement is dominated by the need to store the boundaries of W

1

and

f

W

2

and

is thus O(minfn�

2

log�; n� logn log logng). In summary, we have shown:

Theorem 4.1 Given a set S of n line segments in the plane, such that the ratio between the

diameter of S and the length of the smallest segment in S is �, one can determine whether

S admits a separator line (and �nd such a line if it exists) in O(n�

2

log� log�n) time and

O(n�

2

log�) space.

Remark. As mentioned, that � can be more than a constant. In particular, if � is

o(n=(log

2

n log logn)) the algorithm still runs in subquadratic time.

5 Open Problems

Of course, the most challenging open problem is to �nd less restrictive conditions in which

a subquadratic algorithm for solving the separation problem can be found. Another inter-

esting open problem is to improve the shattering algorithm of [8] to run in subquadratic

time, for the restricted case studied in this paper.
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Proof of theorem 3.1: We re-examine the proofs given in [13], and refer the reader

to that paper for more details. In the bounds that we state below, the constants of propor-

tionality are assumed to be independent of both m and �. We �rst choose d
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�=3

e = O(1=�)
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equally spaced orientations �

i

from the full circle of possible orientations, and we partition

F into d

2�

�=3

e subfamilies F

1

; F

2

; : : : with the property that each wedge in F

i

contains the

ray at orientation �

i

emanating from its apex, and the angles between that ray and each of

the sides of the wedge are at least �=3. Let us denote the cardinalities of the subfamilies by

m

i

= jF

i

j. Since the boundary of the union K

i

of F

i

can be regarded as the upper envelope

of the 2m

i

rays bounding the wedges of F

i

(after rotating the coordinate system so that �

i

points in the negative y direction), this boundary has complexity O(m

i

). (This is a special

case of a result proved in [2]; it can also be easily shown using standard Davenport-Schinzel

theory (cf. [11]).)

We now take each pair, F

i

, F

j

, of subfamilies, and bound the boundary complexity of the

union K

i

[K

j

. The analysis given in [13] implies that this complexity is O((m

i

+m

j

)=�

2

).

We will improve this bound to O((m

i

+ m

j

)=� � log(1=�)) as follows: We will �rst bound

the number of holes in the union K

i

[K

j

; by the combination lemma of [7], our bound will

carry over from the number of holes to the boundary complexity.

Let us shrink each wedge in F

i

by rotating its sides inwards until they form angles �=3

with �

i

, and similarly for F

j

. If we imagine this shrinking as a continuous process, we see

that the number of holes decreases only when an apex of some wedge becomes uncovered

and two holes grow together (see [13]). It follows that the shrinking process may eliminate

at most m

i

+ m

j

holes. Denote by K

�

i

(resp. K

�

j

) the union of F

i

(resp. F

j

) after the

shrinking process.

Following the analysis of [13], the only holes that we need to consider now are quadran-

gular holes bounded by two wedges W;W

0

of F

i

and two wedges V; V

0

of F

j

, so that each

of W;W

0

fully penetrates through both V; V

0

, and vice versa (see Figure 1). The number of

holes of all other types, as argued in [13], is only O(m

i

+m

j

), because they can be associated

with (`charged' to) the vertices of K

�

i

and K

�

j

. Let us rotate the coordinate system so that

the orientation �

i

becomes 0 < � <

�

2

and �

j

becomes ���, and suppose thatW

0

lies lower

than W (i.e. to the south-east of W ) and V

0

lies lower than V (i.e. to the south-west of V ).

We charge each such hole either to the pair (W;W

0

) or to the pair (V; V

0

); the pair (W;W

0

)

is charged if the apex of W

0

has a higher y coordinate than the apex of V

0

; otherwise the

pair (V; V

0

) is charged; see Figure 1.

Consider now the collection of holes (of the above special structure) that have been

charged to a pair (W;W

0

) of wedges of F

i

. To each such hole there corresponds an interval

along the lower ray of W , which is its intersection with the corresponding wedge V

0

; this

interval is marked in Figure 1. By the fact that the holes are charged to (W;W

0

), these

intervals must be disjoint. Figure 2 shows the densest possible packing of such intervals

along the lower boundary ofW , yielding the maximum number of holes that can be charged

to (W;W

0

). Now, referring to the notations in Figure 2, since the triangles A

i

M

i

M

i+1

are

all similar to the triangle BM

0

A

0

, with the angle 2�=3 at A

i

and at B, respectively, we have

M

i

M

i+1

A

i

M

i

=

M

0

A

0

M

0

B

� p � sin

2�

3

:

The lengths of the intervals on the lower edge of W form a geometric progression:

AM

i+1

AM

i

=

AM

1

AM

0

=

AM

0

+M

0

M

1

AM

0

= 1 +

M

0

M

1

A

0

M

0

= 1 + p;

since AM

0

= A

0

M

0

by construction; hence, if k holes are charged to the pair (W;W

0

), we
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Figure 1: A quadrangular hole q charged to (W;W

0

)

have

AM

k

AM

0

= (1 + p)

k

:

On the other hand,

AM

k

AM

0

<

AB

AM

0

=

AM

0

+M

0

B

AM

0

= 1+ 1=p ;

and thus

(1 + p)

k

< 1 +

1

p

:

Using the inequality ln(1 + p) � p=(p+ 1), we obtain

k �

�

1 +

1

p

�

� ln

�

1 +

1

p

�

= O

�

1

p

log

1

p

�

= O

�

1

sin(2�=3)

log

1

sin(2�=3)

�

= O

�

1

�

log

1

�

�

:

It has been shown in [13], by a simple visibility argument, that the number of pairs

(W;W

0

) that can yield holes of this type in the union K

�

i

[K

�

j

is O(m

i

). Hence the total

number of holes inK

�

i

[K

�

j

, and thus also inK

i

[K

j

, is O((m

i

+m

j

)�

�1

log(1=�)). Returning

now to the union K

i

[K

j

of the original families F

i

, F

j

(before the shrinking process), we

have seen above that they form at most O(m

i

+m

j

) more holes than K

�

i

[ K

�

j

; thus, the

same asymptotic bound holds for them.

To bound the boundary complexity of K

i

[K

j

, we apply the combination lemma of [7],

as in [13]:

Lemma A.1 Let c

1

and c

2

denote the boundary complexity of K

1

and K

2

, respectively. If

K

1

[K

2

has q holes, the boundary complexity of K

1

[K

2

is at most O(c

1

+ c

2

+ q).
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Figure 2: The maximum possible number of holes charged to the pair (W;W

0

)

This lemma implies that the bound O((m

i

+ m

j

)�

�1

log(1=�)) is also valid for the overall

complexity of the union K

i

[K

j

.

Since each boundary vertex of the union of all double wedges must appear as a vertex in

the union of two families F

i

and F

j

, we may just sum this bound over all pairs of families.

Noting that

P

i;j

(m

i

+m

j

) = O(m � (1=�)), we obtain that the overall boundary complexity

of the union of F is O(m�

�2

log(1=�)), as asserted.

To compute the union, we adapt an idea from [14]. We �rst compute the unionK

i

of each

F

i

, using known algorithms for computing upper envelopes [2, 12], in time O(m

i

logm

i

),

for i = 1; : : : ; t. Next we apply one of the recent optimal algorithms for line segment

intersections [3, 4, 15], to compute the union of all the K

i

's. The algorithm runs in time

O(N logN+k), where N is the total size of all the K

i

's, and k is the number of intersections

between their boundaries. By what has just been observed, we have N = O(m) and

k = O(m�

�2

log(1=�)). Thus the algorithm takes time O(m�

�2

log(1=�) +m logm). 2
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