
Vertical Decomposition of Shallow Levels in 3-Dimensional

Arrangements and Its Applications

�

Pankaj K. Agarwal

y

Alon Efrat

z

Micha Sharir

x

June 17, 1996

Abstract

Let F be a collection of n bivariate algebraic functions of constant maximumdegree.

We show that the combinatorial complexity of the vertical decomposition of the �k-level

of the arrangement A(F) is O(k

3+"

 (n=k)), for any " > 0, where (r) is the maximum

complexity of the lower envelope of a subset of at most r functions of F . This bound

is nearly optimal in the worst case, and implies the existence of shallow cuttings, in

the sense of [51], of small size in arrangements of bivariate algebraic functions. We also

present numerous applications of these results, including: (i) data structures for several

generalized three-dimensional range searching problems; (ii) dynamic data structures

for planar nearest and farthest neighbor searching under various fairly general distance

functions; (iii) an improved (near-quadratic) algorithm for minimum-weight bipartite

Euclidean matching in the plane; and (iv) e�cient algorithms for certain geometric

optimization problems in static and dynamic settings.

�

Work on this paper by the �rst author has been supported by National Science Foundation Grant CCR-

93{01259, an NYI award, and by matching funds from Xerox Corp. Work on this paper by the third author

has been supported by NSF Grants CCR-91-22103 and CCR-93-11127, by a Max-Planck Research Award,

and by grants from the U.S.-Israeli Binational Science Foundation, the Israel Science Fund administered by

the Israeli Academy of Sciences, and the G.I.F., the German-Israeli Foundation for Scienti�c Research and

Development.

y

Department of Computer Science, Box 1029, Duke University, Durham, NC 27708-0129, USA

z

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

x

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute of

Mathematical Sciences, New York University, New York, NY 10012, USA

0

Introduction 1

1 Introduction

In this paper we extend the recent range-searching techniques of Matou�sek [51] and of

Agarwal and Matou�sek [6] to arrangements of bivariate algebraic functions, and derive

many applications of the new techniques. As one motivation, consider the following dynamic

nearest-neighbor-searching problem: We dynamically maintain a set S of points in the plane,

under some metric �. At any time, we wish to answer nearest-neighbor queries, in which

we specify a point q and ask for the point of S nearest to q under the metric �. If �

is the Euclidean metric, a standard lifting transformation to 3-space (as in [30]) reduces

the problem to that of dynamically maintaining the lower envelope of planes in R

3

, so

that, at any time during the maintenance, we can answer e�ciently queries in which we

specify a point q 2 R

2

and ask for the plane attaining the lower envelope at q. Using

the parametric searching technique of [4], this problem can be solved by a dynamic range-

searching mechanism in which the queries are points in 3-space, and we wish to determine

whether the query point lies below all the planes in the current set. The techniques of [6, 51]

are based on the notion of shallow cuttings: Given an arrangement A of n planes in R

3

and

parameters k; r � n, there exists a (1=r)-cutting of the �rst k levels of A of size O(r(1 +

kr=n)

2

), i.e., there exists a decomposition of the (union of the) cells constituting these levels

into O(r(1 + kr=n)

2

) simplices, such that the interior of each simplex is intersected by at

most n=r planes. Using the existence of such shallow cuttings, Matou�sek [51] constructs an

e�cient static data structure for halfspace-emptiness queries in R

3

: It requires O(n log logn)

storage and O(n logn) preprocessing time, and answers a halfspace emptiness query in

O(log

2

n) time. This structure was later dynamized in [6]. These techniques also apply to

arrangements of hyperplanes in higher dimensions.

Although these techniques can be extended to arrangements of curves in the plane, they

fail for arrangements of general surfaces in three and higher dimensions. Such an arrange-

ment does arise, for example, in the nearest-neighbor searching problem if the underlying

distance function � is not Euclidean. A speci�c case of this kind, which we will face in one

of our applications, is where each point s 2 S has an additive weight w(s), and the distance

from a query point q to s is de�ned as jqsj+w(s), where jqsj is the Euclidean distance be-

tween these points. To tackle such cases e�ciently, we need to extend the results of [6, 51]

to the case of arrangements of more general functions, and this is one of the main goals of

this paper.

The main technical result that we establish is the existence of shallow cuttings of small

size in arrangements of (the graphs of) low-degree algebraic bivariate functions. To ob-

tain such cuttings, we use the technique of vertical decomposition of cells in arrangements.

This technique, described in detail in [18], is the only known general-purpose technique

for decomposing cells in such arrangements into a small number of subcells of `constant

description complexity' (that is, semialgebraic subcells, each de�ned by a constant number

of polynomial equalities and inequalities, each of constant maximum degree). It is well

known that the complexity of the vertical decomposition of a cell (2-face) C in a planar

Shallow cuttings June 17, 1996

Introduction 2

arrangement of low-degree algebraic curves is proportional to the number of vertices of C.

However, this property does not hold in higher dimensions (even for an arrangement of

planes in R

3

): One can construct a cell in an arrangement of n planes in R

3

that has O(n)

vertices and whose vertical decomposition consists of
(n

2

) subcells. In three dimensions,

the complexity (number of subcells) of the vertical decomposition of the entire arrangement

of n low-degree algebraic bivariate functions is shown in [18] to be close to O(n

3

), and is

thus almost optimal (in higher dimensions, though, the bounds are considerably weaker,

see [18, 38] for some partial results). No similarly-sharp bounds were known for the vertical

decomposition of the cells that lie only in the �rst k levels of the arrangement (even for

arrangements of planes). Using a standard probabilistic analysis technique due to Clarkson

and Shor ([25]; see also [63]), one can easily show that the combinatorial complexity of these

(undecomposed) cells is O(k

3

 (n=k)), where (r) is the maximum combinatorial complex-

ity of the lower envelope of any subset of at most r of the given surfaces. For low-degree

algebraic bivariate functions, the results of [39, 62] imply that (n) = O(n

2+"

), for any

" > 0,

1

but in certain favorable cases, such as the case of planes, this complexity is smaller.

The �rst main result of the paper, derived in Section 2, is that the combinatorial com-

plexity of the vertical decomposition of the cells in the �rst k levels of the arrangement

is O(k

3+"

 (n=k)). This bound is close to optimal in the worst case. We then apply this

bound to obtain a sharp bound on the size of shallow cuttings in arrangements of bivariate

functions. Speci�cally, we show, in Theorem 3.1, that there exists a (1=r)-cutting of the

�rst k levels in an arrangement of n low-degree, algebraic, bivariate functions in R

3

, as

above, whose size is O(q

3+"

 (r=q)), where q = k(r=n) + 1. This bound is almost tight in

the worst case, and almost coincides with the bound given in [51] for the case of planes.

The proof adapts the analysis technique of [51]. If r = O(1), a (1=r)-cutting of this size can

be computed in O(n) time.

An immediate consequence of Theorem 3.1 is an e�cient algorithm for the following

problem: Preprocess a set F of n bivariate functions into a data structure, so that, for a

query point w, all functions whose graphs lie below w can be reported e�ciently. We present

a data structure of size O((n)n

"

), which can be constructed in O((n)n

"

) time, so that a

query can be answered in O(logn+ �) time, where � is the output size. If we are interested

only in determining whether w lies below the graphs of all functions of F , the query time

is O(logn). (Here we are assuming a model of computation in which various operations

involving a constant number of �xed-degree algebraic functions can be performed in O(1)

time; see below for details.) We can also modify this structure, so as to obtain an e�cient

data structure for dynamically maintaining a set of bivariate algebraic functions, as above,

so that we can e�ciently determine whether a query point lies below all the function graphs

in the current set. The modi�ed data structure also requires O((n)n

"

) storage, the cost of

1

Throughout this paper, " denotes an arbitrarily small positive constant, and g(n) = O(f(n) �n

"

) means

that, for any given " > 0, we can choose a constant c

"

so that g(n) � c

"

f(n) � n

"

. A complexity bound of

the form O(f(n) � n

"

) for an algorithm means that, for any prespeci�ed " > 0, we can tune the algorithm so

that its complexity is bounded by c

"

f(n) � n

"

, for an appropriate constant c

"

.

Shallow cuttings June 17, 1996

Introduction 3

an update is O((n)=n

1�"

), and a query can be answered in O(logn) time.

2

The technique

for constructing these data structures adapts ideas from [6, 51].

We also obtain an e�cient algorithm for constructing and searching in the �rst k levels

of an arrangement of n bivariate functions, as above. These levels can be constructed in

O(k

3+"

n

"

 (n=k)) time, in an appropriate model of computation, and can be stored into a

data structure of similar size, so that, for any query point p, we can determine, in O(logn)

time, whether the level of p in the arrangement is at most k, and, if so, return the level of

p.

We next apply the new mechanisms to a variety of geometric problems. First, in Sec-

tion 6, we derive an e�cient technique for dynamically maintaining a set S of points (or

more general objects) in the plane, so that we can e�ciently compute the nearest neighbor

(or the farthest neighbor) of a query point in the current set of points, under any `rea-

sonable' distance function � (de�ned more precisely later), which can be fairly arbitrary,

and does not have to satisfy any metric-like properties. Assume that the complexity of the

lower (or upper) envelope of the functions f

i

(x) = �(p

i

;x), over all objects p

i

in the current

set S, is at most g(jSj) (this is the same as the complexity of the nearest (or farthest)

neighbor Voronoi diagram of S, if � is a metric or a convex distance function). Then our

solution requires O(g(n)n

"

) storage, O(g(n)=n

1�"

) time for each update, and O(logn) time

for each nearest- (or farthest-)neighbor query. We give applications of this technique to

dynamic maintenance of a bichromatic closest pair between two planar point sets, under

any `reasonable' metric, and of a minimum spanning tree of a planar point set under any

L

p

metric.

Another interesting application of our technique is an improved algorithm for computing

minimum-weight bipartite Euclidean matching for point sets in the plane (see Section 7).

That is, we are given a set of n blue points and a set of n red points in the plane, and we

wish to �nd a matching between the blue points and the red points, which minimizes the

sum of the distances between the pairs of matched points. Our solution is based on the algo-

rithm of Vaidya [67], which requires a data structure for answering nearest-neighbor queries

in a dynamic setting, where the distance to each of the maintained sites is the Euclidean

distance plus some additive weight associated with the site. Using our dynamic nearest-

neighbor searching technique, we can improve the running time of Vaidya's algorithm from

O(n

2:5

logn) to O(n

2+"

). We also obtain an O(n

7=3+"

) algorithm for an arbitrary `reason-

able' metric. We still do not know how to obtain similar improvements in the nonbipartite

case, for which the above nearest-neighbor searching mechanism is not su�cient.

Another application of our results is to dynamic maintenance of the intersection of

congruent balls in 3-space, in the strong sense that we wish to determine, after each update,

whether the current intersection is empty. For this, we combine our technique with the

2

Throughout this paper, the update-time bounds are amortized. We believe that the same bounds can

be achieved in the worst case, using the known (albeit complicated) techniques of [58]. Nevertheless, for the

sake of simplicity, we will stick to amortized bounds, which will not a�ect the applications that we study

here.

Shallow cuttings June 17, 1996

Vertical Decomposition of Levels in 3-Dimensional Arrangements 4

variant of parametric searching recently proposed in [66]. We obtain a data structure of size

O(n

1+"

), which can be updated in O(n

"

) time per insertion/deletion, and which supports

`intersection-emptiness' queries in O(log

4

n) time.

We next apply our technique, in Section 9, to another problem in geometric optimization,

namely the dynamic smallest stabbing-disk problem: We maintain dynamically a set C of

(possibly intersecting) simply-shaped, compact, convex sets in the plane, and we wish to

compute, after each insertion or deletion of such a set, the smallest disk, or the smallest

homothetic copy of any compact convex set of simple shape, that intersects all the sets in

the current C. The case where we have points instead of general convex sets was recently

studied in [6]. Our solution requires O(n

1+"

) storage and preprocessing, and recomputes

the smallest stabbing disk after each update in O(n

"

) time. A byproduct of our analysis,

which we believe to be of independent interest, is a near-linear bound on the complexity of

the farthest-neighbor Voronoi diagram of (possibly intersecting) simply-shaped, compact,

convex sets in the plane, under any simply-shaped, convex distance function. The bound is

linear for (possibly intersecting) line segments under the Euclidean distance.

We �nally present, in Section 10, a few more applications, where most of the details

are omitted. The paper concludes in Section 11, with a discussion of our results and

with some open problems. The collection of applications described in this paper is by no

means exhaustive, and the new techniques obtained in this paper have many additional

applications. The main message of this paper, in our opinion, is that there is a real need

to adapt and extend range-searching and related techniques, that were originally developed

for arrangements of planes or hyperplanes, to arrangements of algebraic surfaces. This

adaptation is by no means easy, and the present study achieves it only for 3-dimensional

arrangements, but it enlarges signi�cantly the scope of range-searching applications.

2 Vertical Decomposition of Levels in 3-Dimensional Ar-

rangements

Let F be a collection of n bivariate functions satisfying the following conditions:

3

(F1) Each f 2 F is a continuous, totally-de�ned, algebraic function of constant maximum

degree b.

(F2) The functions in F are in general position. This excludes degenerate con�gurations

where four function graphs meet at a point, a pair of graphs are tangent to each other,

etc.

With some modi�cations of the analysis, we can also handle the case where the functions in

F are only partially de�ned, and the boundary of the domain of each function is de�ned by a

3

Abusing the notation slightly, we will not distinguish between a function and its graph. We will use F

to denote a collection of functions as well as the family of surfaces representing their graphs.

Shallow cuttings June 17, 1996

Vertical Decomposition of Levels in 3-Dimensional Arrangements 5

constant number of polynomial equalities and inequalities of constant maximum degree, say,

b too. The simplest way of doing this is to extend each f 2 F to a totally-de�ned function, by

forming the Minkowski sum of the graph of f with a su�ciently narrow vertical cone, whose

equation is z = c

p

x

2

+ y

2

, for a su�ciently large c, and by taking the lower boundary of

this sum as the graph of the extended function. The resulting extended functions are easily

seen to be totally-de�ned continuous functions, each of whose graphs is a semialgebraic set

of constant description complexity. One can then check that the analysis given below also

applies to collections of such functions. Concerning the general position assumption, we

refer the reader to the papers [39, 62] for more details about the de�nition and properties

of this concept. Following arguments given in these papers, it will follow that no real loss

of generality is made by assuming general position.

The arrangement of F , denoted as A(F), is the subdivision of R

3

induced by the graphs

of the functions in F (see [63] for more details). We will refer to the three-dimensional

cells of A(F) simply as the cells of A(F). The complexity of a cell C, denoted as jCj, is

the number of faces of all dimensions on the boundary of C. The level in A(F) of a point

p = (x

p

; y

p

; z

p

) 2 R

3

, denoted as �(p) = �

F

(p), is de�ned as the number of functions f 2 F

such that z

p

> f(x

p

; y

p

). The level of all points lying on a face � (of any dimension) of

A(F) is the same, which we denote by �(�). The k-level of A(F), for any 0 � k � n � 1,

is the closure of the union of all two-dimensional faces of A(F) whose level is k; the 0-level

(resp. (n � 1)-level) is the graph of the lower (resp. upper) envelope of F . The (�k)-level

of A(F), denoted as A

�k

(F), is the collection of all cells of A(F) whose level is at most k.

Let

 (F ; k) =

X

C2A

�k

(F)

jCj

denote the combinatorial complexity of A

�k

(F). Let F denote a (possibly in�nite) family

of bivariate functions that satis�es (F1), and let

 (n; k) =

F

(n; k)

be any upper bound on the quantity max

F

 (F ; k), where the maximum is taken over all

collections F � F of at most n functions (that satisfy (F1) and (F2)). To simplify the

presentation, we will also use (n) to denote (n; 0), and will allow n in this notation to

be any real nonnegative number.

A straightforward application of the probabilistic analysis technique of Clarkson and

Shor [25] (see also [63]) implies that

 (n; k) = O(k

3

 (n=k)): (2:1)

We also note that, by the results of [39, 62], we always have (n) = O(n

2+"

), where the

constant of proportionality depends on " and on the maximum degree of the given surfaces.

Hence, in the worst case, we have (n; k) = O(k

1�"

n

2+"

). However, these bounds can be

much smaller for certain favorable underlying families F.

Because of technical reasons, we make the following assumption on F.

Shallow cuttings June 17, 1996

Vertical Decomposition of Levels in 3-Dimensional Arrangements 6

(F3) The upper bound (n) on the complexity of the lower envelope (and also of the upper

envelope) of any collection F � F of n functions is of the form (n) = n

�

�(n), where

� � 2 is a constant, and �(n) is a function such that, we have lim sup

n!1

�(n)=n

�

= 0.

This assumption involves no real loss of generality. In fact, all known bounds for (n) have

this form with either � = 1 or � = 2.

The vertical decomposition of a (3-dimensional) cell C 2 A(F), denoted as C

?

, is de�ned

in the following standard manner (see [18, 28, 63] for more details):

I. For each edge e of @C, we erect a z-vertical wall from e, which is the union of all

maximal z-vertical segments passing through points of e and lying within (the closure

of) C. The collection of these walls partitions C into subcells, each of which has

a unique top facet (2-dimensional face) and a unique bottom facet, each contained

in some facet of C. Every z-vertical line cuts such a subcell in a (possibly empty)

interval; see Figure 1.

Figure 1: Vertical decomposition: A subcell created in Step I.

II. We take each of the cells � generated in the �rst step, project it onto the xy-plane,

and construct the two-dimensional vertical decomposition of the projection �

2

of �,

by erecting, from each vertex of �

2

and from each locally x-extreme point of @�

2

, a

maximal y-vertical segment contained in the closure of �

2

. These segments partition

�

2

into trapezoidal-like subcells; each subcell �

2

� �

2

induces a subcell � of �,

obtained by intersecting � with the vertical cylinder �

2

� R (see Figure 2).

The cells obtained in this 2-step decomposition form the vertical decomposition of C.

We de�ne A

?

�k

(F) (resp. A

?

(F)), the vertical decomposition of A

�k

(F) (resp. of A(F)),

as the union of the vertical decompositions of all cells in A

�k

(F) (resp. in A(F)). The

complexity of such a vertical decomposition is the total number of its cells. Notice that for

each cell � 2 A

?

(F), there is a subset D = D(�) of at most six functions of F , such that

� 2 A

?

(D). Since all the functions in F have constant maximum degree, it follows that

each cell of A

?

(F) has constant description complexity [18], a property that is crucial for

Shallow cuttings June 17, 1996

Vertical Decomposition of Levels in 3-Dimensional Arrangements 7

Figure 2: Vertical decomposition: Step II.

the construction of cuttings, which will be studied in the next section. We refer to the set

D(�) as the set of functions de�ning the cell � . The main result of this section is:

Theorem 2.1 Let F be a collection of n bivariate functions satisfying conditions (F1){

(F3). For any integer k � n, the combinatorial complexity of A

?

�k

(F) is O(k

3+"

 (n=k)),

for any " > 0, where the constant of proportionality depends on " and on the maximum

degree of the functions in F .

Proof: Let C be a cell of A

�k

(F), and let � be a subcell of C created in Step I of the

vertical decomposition. If j�j is the number of vertical edges in � plus the number of

locally x-extremal points of edges of A

�k

(F) on @�, then, in Step II, � is partitioned into

O(j�j + 1) subcells, because each vertical edge of � (resp. each locally x-extremal point

as above) corresponds to a vertex of �

2

(resp. to a locally x-extremal point on an edge

of @�

2

), and the number of subcells in the two-dimensional vertical decomposition of �

2

is easily seen to be proportional to 1 plus the number of vertices of �

2

plus the number

of locally x-extremal points on the edges of @�

2

. Summing over all cells of A

�k

(F), the

number of subcells in A

?

�k

(F) is proportional to the sum of the number of vertical edges in

the subcells created in Step I, the number of edges of A

�k

(F), and the number of subcells

created in Step I that do not contain any vertical edge or any locally x-extremal point on

an edge of A

�k

(F). The third quantity is bounded by O(k

3

 (n=k)), because each such

subcell contains at least one edge or face of A

�k

(F), and each such feature of A

�k

(F) can

be incident to O(1) subcells.

Hence, it su�ces to bound the number of vertical edges in the subcells created in Step I.

There are two types of vertical edges of �:

(V1) a z-vertical segment erected from a vertex of C, or

(V2) the intersection segment of two z-vertical walls erected from two edges e; e

0

of C, where

e lies on the top portion of @C and e

0

lies on the bottom portion of @C.

Since the number of vertical edges of type (V1) is bounded by the number of vertices in

C, the total number of such edges, over all cells of A

�k

(F), is, as argued above, at most

O(k

3

 (n=k)). Hence, it su�ces to bound the number of vertical edges of type (V2).

Shallow cuttings June 17, 1996

Vertical Decomposition of Levels in 3-Dimensional Arrangements 8

If two edges e; e

0

of C generate a vertical edge of type (V2), then their xy-projections

must intersect. Furthermore, every intersection point between the xy-projections of the

edges of @C, one on the upper portion and one on the bottom portion of @C, generates

exactly one vertical edge of type (V2) (this follows from the fact that the cell C is xy-

monotone). We obtain an upper bound on the number of these intersection points over all

cells in A

�k

(F), which in turn yields an upper bound on the number of cells in A

?

�k

(F).

�

`

�

e

e

0

Figure 3: An edge-crossing (e; e

0

; �)

For a �xed pair of edges e; e

0

2 A(F) such that �(e

0

) < �(e), we de�ne (e; e

0

; �) to be an

edge-crossing if � is an intersection point of the xy-projections of the (relative interiors of

the) edges e and e

0

; see Figure 3. Let `

�

denote the z-vertical line passing through �. We

de�ne the crossing number of (e; e

0

; �) to be �(e)��(e

0

)� 2, which, by our general position

assumption, is equal to the number of functions whose graphs intersect `

�

strictly between

e and e

0

. For an integer � � �(e)� 2, let C

�

(e) = C

�

(e;F) denote the set of edge-crossings

of the form (e; e

0

; �) whose crossing number is �; we put C

�

(e;F) = ; for � > �(e)� 2. Set

!

�

(e;F) = jC

�

(e;F)j and !

��

(e;F) =

�

X

i=0

!

i

(e;F) :

De�ne

'

�

(F ; k) =

X

e2A

�k

(F)

!

�

(e;F)

to be the number of edge-crossings in A

�k

(F) whose crossing number is �. Set

'

�

(n; k) = max '

�

(F ; k);

Shallow cuttings June 17, 1996

Vertical Decomposition of Levels in 3-Dimensional Arrangements 9

where the maximum is taken over all subsets F � F of size at most n. The corresponding

quantities '

��

(F ; k) and '

��

(n; k) are de�ned in an obvious and analogous manner.

As follows from the above considerations, our goal is to show that

'

0

(n; k) � ck

3+"

 (n=k) ; (2:2)

for some appropriate constant c (depending on " and on the maximum degree of the func-

tions in F). This will be achieved by deriving a recurrence relationship for '

0

(n; k), whose

solution will yield the desired bound. The recurrence is obtained using the following count-

ing argument, which borrows ideas from [8].

Let e be an edge of A

�k

(F), and let C be the cell of A(F) lying immediately below e.

Let V

e

be the vertical 2-manifold obtained as the union of all z-vertical rays emanating from

the points of e in the negative z-direction. The intersection of the graph of each function

f 2 F with V

e

is an algebraic arc f

(e)

of constant maximum degree, so each pair of these

arcs intersect in at most a constant number of points, say, s, which depends only on the

maximum degree b of the functions of F . Let A

(e)

(F) denote the cross-section of A(F)

with V

e

. See Figure 4 for an illustration. A simple but crucial observation is:

V

e

e

(e; e

0

; �)

e

0

Figure 4: The arrangement A

(e)

(F); the shaded region consists of points whose levels are

between 3 and 6.

Lemma 2.2 Let e

0

be an edge of A

�k

(F) such that �(e

0

) < �(e). Then (e; e

0

; �) is an

edge-crossing with crossing number � if and only if the intersection point e

0

\ `

�

is a vertex

at level �(e)� � � 2 in A

(e)

(F).

The lemma implies that each edge-crossing of the form (e; e

0

; �) with zero crossing num-

ber corresponds to a vertex of the cross-section C

(e)

of C with V

e

(which lies on the lower

portion of @C). Let F

(e)

� F be the set of functions that appear on the lower portion of

@C

(e)

, and let t

e

= jF

(e)

j. For each function f 2 F

(e)

, we consider the cross-section f

(e)

of

f within V

e

, as de�ned above. It is easily seen that the lower portion of @C

(e)

is the upper

Shallow cuttings June 17, 1996

Vertical Decomposition of Levels in 3-Dimensional Arrangements 10

envelope of the functions in

~

F

(e)

� ff

(e)

j f 2 F

(e)

g. By the standard Davenport{Schinzel

theory [9, 40, 63], !

0

(e;F)� �

s

(t

e

), where s is as above and where �

s

(t) is the (near-linear)

maximum length of a (t; s)-Davenport{Schinzel sequence.

Since the endpoints of all arcs in

~

F

(e)

lie on the vertical boundary of V

e

and �(e) � k, it

is easily seen that t

e

� k, and thus !

0

(e;F)� �

s

(k). Summing these bounds over all edges

of A

�k

(F), we get

'

0

(F ; k) =

X

e2A

�k

(F)

!

0

(e;F) � �

s

(k) (F ; k):

This yields the following weaker bound on '

0

(n; k):

'

0

(n; k) � �

s

(k) � (n; k) � c

1

�

s

(k)k

3

 (n=k) ; (2:3)

for some constant c

1

. The bound in (2.3) is asymptotically what we want for k = O(1), and

it is at most k times the desired bound for larger values of k.

We proceed now to prove the sharper bound that we are after. We �x (a su�ciently

small) " > 0, and choose some threshold constant k

0

(depending on ") so that

4

"

k < c�

s

(k) < k

1+"

2

=2

; (2:4)

for all k > k

0

and for some absolute constant c whose value will be determined later (the

upper and lower bounds on �

s

(k) in [9] imply that such a k

0

exists). If k � k

0

, then

the bound asserted in Theorem 2.1 follows from (2.3), with an appropriate choice of the

constant of proportionality. Henceforth, we assume that k > k

0

. Put q =

l

(c�

s

(k)=k)

1="

m

.

Assuming that k

0

is su�ciently large, the following inequalities, for every k > 0, are easy

consequences of (2.4):

q > 4; k > 4(q + 1)

2

; and k > 21(q + 1) lnk: (2:5)

As above, �x an edge e of A

�k

(F), and continue to use the notations introduced above.

If t

e

� q then, by Lemma 2.2, !

0

(e;F), which is the same as the number of vertices of

C

(e)

, is at most �

s

(q). Since the number of edges in A

�k

(F) is at most (n; k), the overall

number of edge-crossings with crossing number 0 and involving such edges e is at most

�

s

(q) (n; k).

Next, assume that t

e

> q. Let f , f

0

be a pair of distinct functions in F

(e)

. By continuity,

f and f

0

must intersect within V

e

at least once. Thus each function f 2 F

(e)

must cross at

least t

e

� 1 other functions of F within V

e

, that is, each function f 2 F

(e)

is incident to at

least t

e

� 1 vertices of A

(e)

(F). Since the graph of f contains points at level �(e)� 2 in this

cross section, it follows that f is incident to at least q vertices of A

(e)

(F) whose levels are

between �(e)� q � 2 and �(e) � 2. The number of vertices of A

(e)

(F) whose levels fall in

this range is therefore
(t

e

q), which, by the preceding analysis, implies that

Shallow cuttings June 17, 1996

Vertical Decomposition of Levels in 3-Dimensional Arrangements 11

!

�q

(e;F) =
(t

e

q) =

�

qt

e

�

!

0

(e;F)

�

s

(t

e

)

�

�

q

�(k)

� !

0

(e;F) ; (2.6)

where �(k) = �(�

s

(k)=k) is an extremely slowly growing function of k [9, 40].

Summing (2.6) over all edges e of A

�k

(F) for which t

e

> q, adding the bound for the

other edges of A

�k

(F), and observing that each edge-crossing between any two edges of

A

�k

(F) with crossing number at most q is counted in this manner exactly once, we obtain:

'

0

(F ; k) =

X

e2A

�k

(F)

!

0

(e;F) �

�(k)

q

'

�q

(F ; k) + �

s

(q) (n; k) ;

which implies

'

0

(n; k) �

�(k)

q

'

�q

(n; k) + �

s

(q) (n; k) : (2:7)

In Lemma 2.3 below, we obtain the following upper bound on '

�q

(n; k):

'

�q

(n; k) � A(q + 1)

4

'

0

��

2n

q + 1

�

;

�

2k

q + 1

��

(2:8)

for a constant A > 0. Substituting (2.1) and (2.8) in (2.7) and using the fact that q > 4,

we obtain that

'

0

(n; k) � B

�

(q + 1)

3

�(k)'

0

��

2n

q + 1

�

;

�

2k

q + 1

��

+ �

s

(q)k

3

�

n

k

��

; (2.9)

where B > 0 is another constant. The solution of (2.9) is

'

0

(n; k) � Dk

3+"

�

n

k

�

;

where D = D(") is a su�ciently large constant depending on ". The proof is by double

induction on k and n. First, as already noted, the bound holds for k � k

0

, with an

appropriate choice of D. For k > k

0

and for n = k, we have

'

0

(n; k) = O(n

3

�(n)) = O(k

3

�(k)) � Dk

3+"

 (n=k);

provided D is chosen su�ciently large.

For k > k

0

and n > k, we have, by the induction hypothesis,

'

0

(n; k) � B

"

(q + 1)

3

�(k)D

�

2k

q + 1

�

3+"

��

2n

q + 1

�

.

�

2q

q + 1

��

+ �

s

(q)k

3

�

n

k

�

#

:

Since

�

2n

q + 1

�

.

�

2k

q + 1

�

�

2n

k

(2:10)

Shallow cuttings June 17, 1996

Vertical Decomposition of Levels in 3-Dimensional Arrangements 12

and, by condition (F3), (2n=k) = O((n=k)), we obtain

'

0

(n; k) � Dk

3+"

 (n=k)

�

Bc

0

�(k)

(q + 1)

"

+

B

D

�

s

(q)

k

"

�

;

for an appropriate constant c

0

. Since q =

&

�

c�

s

(k)

k

�

1="

'

and k

1+"

2

=2

> c�

s

(k) (see (2.4)),

we have

(q + 1)

"

> c

�

s

(k)

k

=
(�(k)) and q �

l

k

"=2

m

:

Hence, �

s

(q) = o(k

"

), and we thus obtain

Bc

0

�(k)

(q + 1)

"

+

B

D

�

s

(q)

k

"

< 1;

provided that c and k

0

are chosen su�ciently large. Hence,

'

0

(n; k) � Dk

3+"

 (n=k) :

This establishes Theorem 2.1. 2

To complete the above proof, we establish the promised lemma:

Lemma 2.3 Let n; k; q be as de�ned above. There exists a constant A > 0 such that

'

�q

(n; k) � A(q + 1)

4

'

0

��

2n

q + 1

�

;

�

2k

q + 1

��

:

Proof: We prove the lemma using a probabilistic argument that is similar to, though

slightly di�erent from, the one used by Clarkson and Shor [25]; see also [61].

Set p = 1=(q + 1). We choose a subset R � F by selecting each function of F indepen-

dently with probability p, so the expected size of R is np. Set k

0

= d2kpe, and let us bound

from below the expected value of '

0

(R; k

0

). For an edge-crossing (e; e

0

; �), let I(e; e

0

; �)

denote the indicator function whose value is 1 if the level of e \ `

�

in A(R) is at most k

0

and (e; e

0

; �) 2 C

0

(e; R). Otherwise, I(e; e

0

; �) = 0. Then

E['

0

(R; k

0

)] =

X

e2A(F)

�(e)�2

X

j=0

X

(e;e

0

;�)2C

j

(e;F)

Pr[I(e; e

0

; �) = 1]

�

X

e2A

�k

(F)

q

X

j=0

X

(e;e

0

;�)2C

j

(e;F)

Pr[I(e; e

0

; �) = 1] : (2.11)

Fix an edge-crossing (e; e

0

; �) 2 C

j

(e;F), with e 2 A

�k

(F), and j � q. Let f

1

; f

2

(resp.

f

3

; f

4

) be the functions of F whose intersection curve contains e (resp. e

0

). Notice that

f

1

; : : : ; f

4

are distinct. It is easily seen that I(e; e

0

; �) = 1 if and only if the following three

events occur simultaneously:

Shallow cuttings June 17, 1996

Vertical Decomposition of Levels in 3-Dimensional Arrangements 13

(E

1

) ff

1

; f

2

; f

3

; f

4

g � R.

(E

2

) None of the j functions of F whose graphs intersect `

�

between e and e

0

is chosen in

R.

(E

3

) Among the �(e)� j � 2 functions whose graphs intersect `

�

below e

0

, at most k

0

� 2

are chosen in R. That is, �

R

(e

0

\ `

�

) � k

0

� 2.

Since the subevents E

1

, E

2

, E

3

are independent, we have

Pr[I(e; e

0

; �) = 1] = Pr[E

1

] � Pr[E

2

] � Pr[E

3

] :

We have Pr[E

1

] = p

4

and Pr[E

2

] = (1� p)

j

� (1� p)

q

. Therefore, it su�ces to obtain

a lower bound on Pr[E

3

]. First, observe that Pr[E

3

] = 1 for �(e) � k

0

, so we may assume

that �(e) > k

0

. We use the following form of Cherno�'s bound to estimate Pr[E

3

] (see e.g.

[56, p. 425]): Let m be some integer and, for 1 � i � m, let X

i

be a random variable which

is 1 with probability p and 0 with probability 1 � p. Assume the X

i

's to be independent,

and put X = X

1

+ � � �+X

m

. Then, for any 0 < a < 2mp, we have

Pr[X �mp > a] � exp

�

a

2

4mp

+

a

3

2m

3

p

3

!

: (2:12)

If we let f

1

; : : : ; f

m

be the functions whose graphs intersect `

�

below e

0

, and let X

i

be a

random variable which is 1 if f

i

2 R and 0 otherwise, then �

R

(e

0

\ `

�

) =

P

m

i=1

X

i

. In our

case, m = �(e)� j � 2, p = 1=(q + 1), k

0

< �(e) � k, and 0 � j � q. We have

k

0

� 2 = d2kpe � 2 � 2�(e)p� 2 � 2mp� 2 :

Hence,

Pr[�

R

(e

0

\ `

�

) > k

0

� 2] � Pr[�

R

(e

0

\ `

�

) > 2mp� 2]

= Pr[�

R

(e

0

\ `

�

)�mp > mp� 2]

� exp

�

(mp� 2)

2

4mp

+

(mp� 2)

3

2m

3

p

3

!

:

Putting x = mp, we have

�

(x� 2)

2

4x

+

(x� 2)

3

2x

3

= �

x

4

+

3

2

�

2

x

3

(2x

2

� 3x+ 2) � �

x

4

+

3

2

:

Hence,

Pr[�

R

(e

0

\ `

�

) > k

0

� 2] � exp

�

�

mp

4

+

3

2

�

� exp

�

�

�(e) � j � 2

4(q + 1)

+

3

2

�

Shallow cuttings June 17, 1996

Vertical Decomposition of Levels in 3-Dimensional Arrangements 14

� exp

�

�

k

0

� q � 2

4(q + 1)

+

3

2

�

� exp

�

�

k

2(q + 1)

2

+

7

4

+

1

4(q + 1)

�

� e

�1=5

;

where the last inequality follows from the facts that k > 4(q + 1)

2

and q > 4. This implies

that Pr[E

3

] � 1� e

�1=5

, and therefore

Pr[I(e; e

0

; �) = 1] � p

4

(1� p)

q

�

1� e

�1=5

�

:

Since p =

1

q + 1

and

�

1�

1

q + 1

�

q

�

1

e

, we have

Pr[I(e; e

0

; �) = 1] �

1

(q + 1)

4

1� e

�1=5

e

!

: (2:13)

Substituting (2.13) in (2.11),

E['

0

(R; k

0

)] �

X

e2A

�k

(F)

q

X

j=0

1

(q + 1)

4

1� e

�1=5

e

!

� '

j

(e;F)

=

1

(q + 1)

4

1� e

�1=5

e

!

'

�q

(F ; k) : (2.14)

On the other hand,

E['

0

(R; k

0

)] � Pr[jRj � 2pn] � '

0

(d2pne; k

0

) + Pr[jRj > 2pn] � '

0

(n; k

0

)

� '

0

��

2n

q + 1

�

;

�

2k

q + 1

��

+ Pr[jRj > 2pn] � '

0

(n; k

0

) :

By (2.3), '

0

(n; k

0

) � c

0

n

5

, for some constant c

0

, as k

0

� n and (n; k

0

) is trivially bounded

by O(n

3

). Since the expected size of R is pn, we obtain, using (2.12) once again,

Pr[jRj > 2pn] � '

0

(n; k

0

) � exp

�

�

pn

4

+

1

2

�

� c

0

n

5

= exp

�

�

n

4(q + 1)

+

1

2

+ 5 lnn+ ln c

0

�

= o(1) ;

because k � 21(q + 1) lnk, by (2.5), and n � k, which implies that n � 21(q + 1) lnn.

Hence,

E['

0

(R; k

0

)] � '

0

��

2n

q + 1

�

;

�

2k

q + 1

��

+ o(1) : (2:15)

Shallow cuttings June 17, 1996

Shallow Cuttings 15

Combining (2.14) and (2.15), we obtain

'

�q

(n; k) �

e

1� e

�1=5

(q + 1)

4

�

�

'

0

��

2n

q + 1

�

;

�

2k

q + 1

��

+ o(1)

�

� A(q + 1)

4

'

0

��

2n

q + 1

�

;

�

2k

q + 1

��

; (2.16)

for an appropriate constant A. This completes the proof of the lemma, and thus also of

Theorem 2.1. 2

3 Shallow Cuttings

In this section we �rst de�ne (1=r)-cuttings of A

�k

(F), and then prove the existence of

such cuttings with small size.

Let F be a collection of bivariate functions satisfying conditions (F1) and (F3). We call

a region (or cell) � � R

3

primitive if there exists a set D = D(�) of at most 6 functions

in F such that � 2 A

?

(D), and weakly-primitive if it is the intersection of two primitive

cells. For a primitive or a weakly-primitive cell �, let F

�

� F be the set of functions

whose graphs intersect the interior of �, and put n

�

= jF

�

j. A set � of pairwise-disjoint

weakly-primitive cells is called a (1=r)-cutting of A

�k

(F) if the union of � contains A

�k

(F)

and if n

�

� n=r for every � 2 �. We also refer to such a cutting as a shallow cutting in

the arrangement A(F).

By the "-net theory [41] and the result of [18], there exists a (1=r)-cutting of the entire

A(F) that consists of O(r

3

�(r) log

3

r) primitive cells, where �(r) is the extremely slowly

growing function de�ned in the previous section. Moreover, if r is a constant, such a cutting

can be constructed in O(n) deterministic time, using the technique of [49]. We now prove

the existence of small-size (1=r)-cuttings of A

�k

(F).

Theorem 3.1 Let F be a collection of n bivariate functions, as above, and let k; r < n be

integers. Set q = k(r=n)+1. Then there exists a (1=r)-cutting � of A

�k

(F) whose size is at

most C

1

q

3+"

 (r=q), where C

1

= C

1

(") is an appropriate constant. Moreover, if r = O(1),

a (1=r)-cutting of this size can be computed in O(n) time.

Matou�sek [51] proved a similar result for the case of linear functions. We follow his

proof, but we need to enhance it with additional machinery.

Proof: For a subset G � F and an integer j < n, let T

j

(G) be the set of primitive cells �

in A

?

(G) that lie completely in A

�j

(F) (i.e., the level of all points in � with respect to F

is at most j). In other words,

T

j

(G) = f� 2 A

?

(G) j �

F

(p) � j for all p 2 �g :

Shallow cuttings June 17, 1996

Shallow Cuttings 16

Let T

j

=

S

G�F

T

j

(G).

Fix p = r=n. Choose a subset R � F by selecting each function of F independently,

with probability p. For each cell � 2 A

?

(R) that has a point whose level with respect to F

is at most k, we do the following. If jn

�

j � n=r, we add � to �. Otherwise, suppose that

(t� 1)n=r < n

�

� tn=r, for some integer t > 1 (we then say that the excess of such a � is

t). We compute a (1=t)-cutting �

�

of A(F

�

), which consists of O(t

3

�(t) log

3

t) primitive

cells, clip each cell of �

�

within � and add the resulting (weakly-primitive) cells to �. This

yields a (1=r)-cutting � of A

�k

(F). We now show that the expected size of � is as asserted

in the theorem.

Let �(p; t; j) denote the expected number of those cells � in T

j

(R) whose excess is at

least t. If any cell � 2 A

?

(R) with excess t intersects A

�k

(F), then the level of all points

of � with respect to F is at most k + tn=r. This is easily seen to imply

E[j�j] � �(p; 0; k)+

X

t�1

O(t

3

�(t) log

3

t) � �

�

p; t; k+

�

tn

r

��

:

A primitive cell � 2 T

j

appears in T

j

(R) if and only if D(�) � R and F

�

\R = ;. Using

the same argument as in [51] (see also [7, 20]), one can show that for t � 1,

�(p; t; j)� c2

�t

� �

�

p

t

; 0; j

�

(3:1)

for a constant c > 0. We prove in Lemma 3.2 below that for any 0 < p < 1 and for any

integer l < n,

� (p; 0; l) = O

�

(1 + lp)

3+"

 (n=l)

�

:

Hence,

E[j�j] = O

�

(1 + kp)

3+"

 (n=k)

�

+

X

t�1

O(t

3

2

�t

�(t) log

3

t) �

�

1 +

p(k+ btn=rc)

t

�

3+"

�

n

k + btn=rc

�

= O

�

(1 + kp)

3+"

 (n=k)

�

+O

�

q

3+"

 (r=q)

�

X

t�1

t

3

�(t) log

3

t

2

t

:

Condition (F3) allows us to write

(1 + kp)

3+"

�

n

k

�

=

�

1 +

kr

n

�

3+"

�

n

k

�

= O

�

q

3+"

�

n

k + n=r

��

= O

�

q

3+"

�

r

q

��

:

Shallow cuttings June 17, 1996

Shallow Cuttings 17

Hence,

E[j�j] = O

�

q

3+"

�

r

q

��

:

Finally, observe that the proof of this theorem is constructive, so we immediately obtain a

randomized algorithm for computing �. If r = O(1), then the expected running time is O(n).

The algorithm can be made deterministic using the method of conditional probabilities, as

described in [16, 49]. 2

To complete the analysis, we establish the promised lemma:

Lemma 3.2 For any real number 0 < p < 1 and for any integer k < n,

�(p; 0; k) = O

�

(1 + kp)

3+"

�

n

k

��

:

Proof: Let R be, as above, a random subset of F obtained by choosing each element of

F independently, with probability p. It su�ces to bound the expected number of those

primitive cells � in A

?

(R) that belong to T

k

(R), i.e., the level of all points in � with

respect to F is at most k. Each cell � 2 A

?

(R) is of one of the following three types (these

types are not mutually exclusive):

(C1) � contains a vertex v of A(R); if � 2 T

k

(R) then �

F

(v) � k.

(C2) � has a vertical face parallel to the yz-plane and tangent to an edge e of A(R) at

some point w; if � 2 T

k

(R) then �

F

(w) � k.

(C3) � has a vertical edge induced by an edge-crossing (e; e

0

; �) 2 C

0

(e; R) for some e 2

A(R). If � 2 T

k

(R) then �

F

(e \ `

�

) � k.

A vertex v 2 A

�k

(F) appears as a vertex of A(R) if and only if the three functions

whose graphs contain v are chosen in R. Moreover, under the general position assumption,

each vertex of A(R) appears in O(1) cells of A

?

(R). Therefore, the expected number of

cells in T

k

(R) of type (C1) is at most

O

�

X

v2A

�k

(F)

Pr [v is a vertex of A(R)]

�

= O(p

3

 (n; k)) = O((kp)

3

)

�

n

k

�

:

Similarly, the number of cells in T

k

(R) of type (C2) can be bounded by

O

�

X

w

Pr [w appears in A(R)]

�

;

where the sum is taken over all locally x-extremal points on the edges of A

�k

(F). The

probability of such a point appearing in A

�k

(F) is p

2

. Another application of the Clarkson-

Shor technique [25] implies that the number of points w in the above sum is O(k

2

0

(n=k)),

Shallow cuttings June 17, 1996

Shallow Cuttings 18

where

0

(n=k) is the number of such points on the lower envelope of at most n=k functions

of F . Since

0

(n=k) � (n=k), we can bound the above sum by

O

�

(kp)

2

�

n

k

��

= O

�

(1 + kp)

3

�

n

k

��

:

Next, consider the cells of type (C3). Let

�(R; k) =

[

e2A(R)

�

(e; e

0

; �) 2 C

0

(e; R) j �

F

(e \ `

�

) � k

	

:

In order to bound the expected number of cells of type (C3), it su�ces to obtain an upper

bound on the expected value of j�(R; k)j.

We proceed as in the proof of Lemma 2.3. Let e be an edge of A

�k

(F), and let (e; e

0

; �) 2

C

j

(e;F) for some 0 � j � k� 2. The edge-crossing (e; e

0

; �) contributes (exactly) one edge-

crossing to �(R; k) if and only if the four functions of F de�ning e and e

0

are chosen in R

and none of the j functions whose graphs intersect the line `

�

between e and e

0

is chosen in

R. The probability that (e; e

0

; �) gives rise to one edge-crossing in �(R; k) is thus p

4

(1�p)

j

.

Since every edge-crossing of �(R; k) is of this form, we obtain

E[j�(R; k)j] =

k�2

X

j=0

X

e2A

�k

(F)

X

(e;e

0

;�)2C

j

(e;F)

p

4

(1� p)

j

=

k�2

X

j=0

p

4

(1� p)

j

'

j

(F ; k)

= p

4

'

0

(F ; k) +

k�2

X

j=1

p

4

(1� p)

j

('

�j

(F ; k)� '

�j�1

(F ; k))

� p

4

(1� p)

k�2

'

�k�2

(n; k) +

k�3

X

j=0

p

5

(1� p)

j

'

�j

(n; k)

� p

4

(1� p)

k�2

�A(k � 1)

4

'

0

��

2n

k � 1

�

;

�

2k

k � 1

��

+

k�3

X

j=0

p

5

(1� p)

j

�A(j + 1)

4

'

0

��

2n

j + 1

�

;

�

2k

j + 1

��

(Applying eq. (2.8))

� Ap

4

(1� p)

k�2

(k� 1)

4

�D

�

2k

k � 1

�

3+"

�

2n

k

�

+

k�3

X

j=0

Ap

5

(1� p)

j

(j + 1)

4

�D

�

2k

j + 1

�

3+"

�

2n

k

�

(Applying eqs. (2.9) and (2.10))

Shallow cuttings June 17, 1996

Range Searching 19

= O

�

(1 + kp)

3+"

�

n

k

��

2

4

p(k � 1)(1� p)

k�2

+

k�3

X

j=0

p

2

(j + 1)(1� p)

j

3

5

= O

�

(1 + kp)

3+"

�

n

k

��

:

The last inequality follows from the fact that the sum in the square brackets is 1�(1�p)

k�1

�

1. This completes the proof of the lemma, and thus of Theorem 3.1. 2

Remark 3.3 We note that if F is a collection of n univariate functions, then A

?

(F) has

only O(n

2

) cells, every cell in A

?

(F) is of type (C1) or (the appropriate variant of type) (C2),

and (n; k) = O(k

2

�

s

(n=k)), where s is the maximum number of intersections between the

graphs of any pair of functions in F . Following the preceding analysis, one can show that

there exists a (1=r)-cutting of A

�k

(F) of size O(q

2

�

s

(r=q)), where q = k(r=n) + 1.

4 Range Searching

An immediate consequence of Theorem 3.1 is an e�cient solution of the following prob-

lem: Given a set F � F of n bivariate functions satisfying the conditions (F1) and (F3),

preprocess it into a data structure so that, for a query point p = (x

p

; y

p

; z

p

), the subset

ff 2 F j f(x

p

; y

p

) < z

p

g can be reported e�ciently. We also want to update F dynamically

by inserting and deleting functions of F into/from F .

Chazelle et al. [18] have shown that F can be preprocessed in time O(n

3+"

) into a data

structure of size O(n

3+"

) so that a query can be answered in O(logn+�) time, where � is the

output size. In this section we present a data structure that uses O((n) � n

"

) storage and

preprocessing time, answers a query in O(logn+ �) time, and can be updated dynamically

at a small (amortized) cost. We �rst present a static data structure, and then explain how

to dynamize it.

4.1 A static data structure

We construct a tree data structure T to answer queries of the above form. Each node v

of T is associated with a subset F

v

� F and a weakly-primitive cell �

v

� R

3

. The root

is associated with F and with the entire R

3

. Fix a su�ciently large constant r and set

k = b2n=rc. If jFj is less than some pre-speci�ed constant n

0

, then T consists of just the

root. Otherwise, we compute a (1=r)-cutting � of A

�k

(F), whose size, by Theorem 3.1 and

(F3), is O((r)) (where the constant of proportionality is independent of r). For each cell

� 2 �, let F

�

�

� F be the set of functions whose graphs either intersect � or lie below

�. If jF

�

�

j > 3n=r, we discard �, because � lies completely above A

�k

(F). Otherwise,

we create a child v = v

�

of the root, corresponding to �, put �

v

= � and F

v

= F

�

�

, and

recursively preprocess F

v

(in this recursive processing, we use the same parameter r, and

Shallow cuttings June 17, 1996

Range Searching 20

set k = b2jF

v

j=rc). The recursion stops when we reach nodes v with jF

v

j � n

0

. If S(n)

denotes the maximum space used by the data structure, on any set F of n functions of F,

then we obtain the recurrence

S(n) �

(

c

0

n � n

0

;

c

1

 (r) � S(3n=r) + c

2

n n > n

0

;

where c

0

; c

1

; c

2

are appropriate constants (independent of r). Recall that, by (F3), the

bound (n) can be written as n

�

�(n), where 1 � � � 2 is some constant and where

lim sup

n!1

�(n)=n

�

= 0 for any � > 0. The solution of the recurrence is

S(n) � B (n) � n

"

;

for any " > 0, where B depends on ". The proof is by induction on n. The claim holds

for all n � n

0

, provided that B is chosen su�ciently large. For larger values of n, by the

induction hypothesis,

S(n) � c

1

 (r) �B (3n=r) � (3n=r)

"

+ c

2

n

� c

1

Br

�

�(r)(3n=r)

�

�(3n=r) � (3n=r)

"

+ c

2

n

� B � n

�

�(n) � n

"

"

3

�+"

c

1

�(r)

r

"

+

c

2

n

1���"

B�(n)

#

� B (n)n

"

;

provided that r and B are chosen su�ciently large (as functions of "). The preprocessing

time of the data structure is also easily seen to be O((n) � n

"

).

Let p be a query point. To answer the query for p, we trace a path in T , starting from

the root. Suppose we are at a node v. If v is a leaf or if there is no child w of v for which

p 2 �

w

, we explicitly check for each f 2 F

v

(the set of functions associated with v) whether

p lies above the graph of f , and we report those functions which satisfy this condition. The

time spent at v is then O(jF

v

j), but then either jF

v

j � n

0

or p lies above the b2jF

v

j=rc-level

in A(F

v

), so we report at least b2jF

v

j=rc functions. If there is a child w of v such that

p 2 �

w

, we recursively visit that child. The overall query time is therefore O(logn + �),

where � is the output size of the query. This procedure can be modi�ed so that it only

determines whether p lies below the graphs of all the functions of F . In particular, if v is

a leaf, we explicitly check whether p lies above the graph of any of the functions in F

v

. If

v is an interior node and there is a child w of v such that p 2 �

w

, we recursively visit w.

Otherwise, we conclude that p does not lie below the graphs of all functions in F . This

modi�ed procedure takes O(logn) time. Hence, we obtain:

Theorem 4.1 Given a family F of bivariate functions satisfying (F1) and (F3), and a set

F � F of size n, we can preprocess F (in an appropriate model of computation), in time

O((n) � n

"

), into a data structure �(F) of size O((n) � n

"

) so that for a query point p,

all � functions whose graphs lie below p can be reported in time O(logn + �). The same

data structure can be used to determine in O(logn) time whether a query point lies below

the graphs of all functions in the current set F .

Shallow cuttings June 17, 1996

Range Searching 21

4.2 A dynamic data structure

We can dynamize the above data structure, using the technique of Agarwal and Matou�sek

[6]. Since the basic idea is the same, we only give a brief description of the structure. For

the sake of simplicity, we describe a data structure that handles only deletions; insertions

can then be handled using standard decomposition techniques [6, 15].

We need the following lemma, which is an easy consequence of a result by Chazelle et

al. [18], but we give a somewhat simpler proof.

Lemma 4.2 Let � be a cutting in R

3

consisting of t cells. � can be preprocessed in time

O(t

3

) into a data structure of size O(t

3

), so that, for a query point p, we can determine in

O(log t) time the cell of � containing p, or can conclude that there is no such cell.

Proof: Assume that the faces of � are xy-monotone, which will hold in our applications

(however, the proof also holds when this is not the case, by appropriately decomposing each

face of the cutting cells (each of which is assumed to have constant description complexity)

into a constant number of xy-monotone subfaces). Project each face onto the xy-plane. Let

�

�

be the set of the resulting planar patches. For a point p 2 R

2

, let �(p) be the list of faces

of �, sorted in the +z-direction, that intersect the z-vertical line passing through p. We

compute the arrangement A(�

�

). Since the interiors of all cells of � are pairwise disjoint,

�(p) is same for all points within a face of A(�

�

). For each face � 2 A(�

�

), we store this

sorted list, denoted by �(�). This requires a total of O(t

3

) space and can be computed

in time O(t

3

). (In fact, the storage and preprocessing time can be improved to O(t

2

) and

O(t

2

log t), respectively, using persistent data structures, but the weaker bounds su�ce for

our purpose.) To locate a point w 2 R

3

in �, we �rst �nd the face of A(�

�

) that contains

the xy-projection of w, and then search with w in the appropriate list �(�) to determine

the cell of � containing w. If � does not cover the entire R

3

, the search in �(�) can also

determine whether w lies outside �. For example, in the case of shallow cuttings, if w lies

above all faces in �(�), we can conclude that w does not lie in any cell of �. 2

We are now in position to describe the data structure. The overall data structure,

denoted as 	(F), is a tree of constant depth. Each node v of 	(F) is associated with a

subset F

v

� F . The subtree rooted at any node of 	(F) is reconstructed periodically after

performing some deletions. Let m

v

(resp. m) be the size of F

v

(resp. F) when the structure

was last reconstructed, and let n

v

(resp. n) denote the size of the current set F

v

(resp. F).

Set r = m

�

, for some su�ciently small � > 0. (The value of r is the same for all nodes

of the tree, and it is updated only when the entire structure 	(F) is reconstructed.) We

reconstruct the subtree rooted at v after performing m

v

=2r deletions from that subtree.

Hence, n

v

� m

v

(1�

1

2r

). A function f 2 F is said to be relevant for a cell � if the graph

of f either intersects � or lies below �.

If jFj � r, 	(F) consists of a single node at which we preprocess F into the range-

searching data structure, �(F), provided in Theorem 4.1. Otherwise, the root u of 	(F)

Shallow cuttings June 17, 1996

Range Searching 22

stores the following information:

(i) A partition of F

v

into pairwise-disjoint sets F

1

; : : : ;F

t

, where t �

�

1=�

2

�

.

(ii) A cutting �

i

, for each 1 � i � t. Initially, �

i

is a (1=r)-cutting of A

�k

�

S

j�i

F

j

�

,

where k is a parameter de�ned below, and each function of F

i

is relevant for at most

� = 2C

1

 (r)

r

1��

(4:1)

cells of �

i

, where C

1

is the constant arising in (4.2) below.

(iii) A data structure for point location queries, for each �

i

, as provided in Lemma 4.2.

(iv) A pointer to a subtree 	(F

i;�

), for every i and for every � 2 �

i

, where F

i;�

� F

i

is

the set of functions relevant for �.

(v) For each 1 � i � t and for every f 2 F

i

, we the set L(f) of cells � 2 �

i

for which f

is relevant.

(vi) A counter dcount

u

, which is initially set to m=2r.

(vii) The range-searching data structure �

v

= �(F

v

) on F

v

, as provided in Theorem 4.1.

This information is computed as follows. We �rst construct �

v

in O((m)m

"

) time, us-

ing Theorem 4.1. Next, we construct the F

i

's and �

i

's. Suppose we have already computed

F

1

; : : : ;F

i�1

. Let F

i

= F

v

� (F

1

[� � � [F

i�1

), and let m

i

= jF

i

j. If m

i

� m=r, then �

i

consists of just one su�ciently large primitive cell, and F

i

= F

i

. Otherwise, set

r

i

= r

m

i

m

and k =

�

m

r

�

=

�

m

i

r

i

�

:

Using Theorem 3.1, we compute a (1=r

i

)-cutting �

i

for A

�k

(F

i

) whose size is at most

C

1

 (r

i

). For each cell � 2 �

i

, let F

i;�

� F

i

be the set of functions relevant for �. We

have jF

i;�

j � k +m

i

=r

i

� 2m

i

=r

i

. Therefore

X

�2�

i

jF

i;�

j � C

1

2m

i

r

i

 (r

i

) = 2C

1

m

i

 (r

i

)

r

i

: (4:2)

We call a function `good' if it is relevant for at most � cells. Then (4.2) implies that the

number of `bad' functions is at most

2C

1

m

i

 (r

i

)

r

i

�

2C

1

 (r)

r

1��

=

m

i

r

�

�

 (r

i

)

r

i

�

 (r)

r

�

m

i

m

�

2

:

Let F

i

be the set of good functions of F

i

. We now repeat the construction forF

i+1

= F

i

�F

i

.

The above analysis implies that jF

i

j � m

1�i�

2

, so the process terminates after at most

�

1=�

2

�

Shallow cuttings June 17, 1996

Computing the (�k)-Level 23

steps. The construction of the structure is now completed by recursively building the data

structure 	(F

i;�

) for each � 2 �

i

. (The remaining pointers, lists, and counters are trivial

to produce.) The size of the data structure and the preprocessing time are both O((n)n

"

),

arguing as in [6], and the choice of r ensures that the depth of 	(F) is O(1).

Deleting a function. We �rst describe how to delete a function f 2 F from F . We

traverse 	(F) in a top-down fashion. Suppose we are at a node v. We decrease the variable

dcount

v

by 1. If dcount

v

= 0, we reconstruct 	(F

v

), including �

v

, with the current set of

functions in F

v

. Otherwise, for each cell � 2 L(f), we delete f from 	(F

i;�

) recursively.

In this case, we do not modify �

v

, so it may contain some of the functions that have been

deleted. Following the same analysis as in [6], we can show that the (amortized) deletion

time is O((n)=n

1�"

).

Answering a query. Let p be a query point. We again traverse 	(F) in a top-down

fashion. Suppose we are at a node v. If v is a leaf, we report in O(logn + �) time all �

functions of F

v

whose graphs lie below p, using the secondary range-searching data structure

�

v

(we need to �lter out those functions that have already been deleted, but their number

is small at a leaf). If v is an internal node then, for each i, we �nd in O(logn) time the

cell �

i

2 �

i

that contains p, using the point-location data structure of Lemma 4.2. If �

i

is de�ned for every i, we recursively search in 	(F

i;�

), for all i � t. Otherwise, there is an

i � t such that p does not lie in any cell of �

i

. Let �

v

be the number of functions in F

v

whose graphs lie below p. Then �

v

> m

v

=r � m

v

=2r = m

v

=2r, because initially �

i

was a

(1=r

i

)-cutting of A

�m

v

=r

(F

i

) and at most m

v

=2r functions of F

v

have been deleted since

	(F

v

) was constructed the last time. We query �

v

and report those functions of the query

output that have not been deleted so far. If the query outputs consists of �

0

v

functions, then

�

0

v

< �

v

+m

v

=2r = O(�

v

). Hence, the time spent at v is O(logn+ �

v

). The total query time

is thus O(logn+ �), where � is the total output size. We have thus shown the following.

Theorem 4.3 Given a family F of n bivariate functions satisfying (F1) and (F3) and a

subset F � F of size n, we can preprocess F (in an appropriate model of computation), in

time O((n) � n

"

), into a data structure of size O((n) � n

"

) so that all � functions whose

graphs lie below a query point can be reported in time O(logn+�), and a function f 2 F can

be inserted into or deleted from F in O((n)=n

1�"

) (amortized) time. The same dynamic

data structure can be used to determine, in O(logn) time, whether a query point lies below

the graphs of all the functions in the current set F .

5 Computing the (�k)-Level

Next, consider the problem of computing A

�k

(F), where F � F is a set of n bivariate

functions satisfying (F1) and (F3), and k is any integer < n. If F is a set of linear functions

in R

3

, this can be done by the randomized algorithm of [1] (see also [57, 56]), whose expected

time is O(nk

2

+ n log

3

n), but this algorithm does not extend to nonlinear functions. The

Shallow cuttings June 17, 1996

Computing the (�k)-Level 24

algorithm that we present below computes all 0-, 1-, and 2-dimensional faces of A

�k

(F),

along with their incidence relations. A slight enhancement of the algorithm can store

A

�k

(F) into a data structure so that for a query point p, we can determine in O(logn)

time whether �

F

(p) � k, and, if so, we return the value of �

F

(p). We construct A

�k

(F)

using a divide-and-conquer algorithm, based on our shallow cutting theorem, as follows.

(A similar algorithm was developed by Clarkson [23] for computing the (�k)-level in an

arrangement of hyperplanes.)

Choose a su�ciently large constant integer parameter r. If k � n=r, construct the

entire arrangement A(F) and output the �rst k levels. The time and storage required

are O(n

3

logn) and O(n

3

), respectively. (This can be done using one of several known

techniques, e.g., for each function f 2 F , we compute the intersection curves of f with all

the other functions of F and then compute, by a line-sweep algorithm that takes O(n

2

logn)

time, all the faces of A

�k

(F) that lie on the graph of f .)

Otherwise, the parameter q = 1 + kr=n is at most 2. Using Theorem 3.1, we compute

in O(n) time a (1=r)-cutting � of size O((r)) for A

�k

(F). For each cell � 2 �, compute

the set F

�

of the functions whose graphs cross �, and the set F

�

�

of the functions whose

graphs pass fully below �. If jF

�

�

j > k, then discard �. For the remaining cells, we

have jF

�

j � n=r and k

0

= jF

�

�

j � k. We now construct recursively A

�k�k

0

(F

�

), repeat

this construction over all cells of �, and glue together the resulting outputs. (The gluing

step involves merging those faces which are computed by separate subproblems and which

are portions of the same face of A(F). This can be accomplished in time proportional

to the total output size by a rather straightforward procedure, operating on each surface

separately, whose details are omitted.)

Let T (n; k) denote the maximum time needed to construct A

�k

(F), for jFj = n. Then

we obtain the following recurrence:

T (n; k) �

8

<

:

c

1

 (r) � T

�

n

r

; k

�

+ c

2

n for k < n=r,

c

3

n

3

logn for k � n=r,

where c

1

; c

2

; c

3

are appropriate constants. It is easily seen, arguing as in the analysis leading

to Theorem 4.1, that the solution of this recurrence is

T (n; k) = O(k

3

n

"

 (n=k)) ;

which is close to optimal in the worst case. Hence, we obtain the following result.

Theorem 5.1 Let F be a family of bivariate functions satisfying (F1) and (F3). Given a

set F � F of size n and an integer parameter k � n, we can construct A

�k

(F) in time

O(k

3

n

"

 (n=k)), in an appropriate model of computation.

If we want to store A

�k

(F) into a data structure for answering point-location queries

of the form described above, we keep the cuttings obtained during the above recursive

Shallow cuttings June 17, 1996

Nearest-Neighbor Searching 25

construction in a tree-like structure T . This yields a data structure similar to the one

described in the previous section.

For a point p, we answer a query as follows. We trace a path in T from the root down,

maintaining a global count of the number of functions that are known to pass below p.

Initially we set this count to 0. When we visit a node v, we locate p (by brute force) in the

cutting �

v

associated with v. If no cell of the cutting contains p, we report that p lies above

the k-level and stop. Otherwise, let � be the cell of �

v

containing p. We add k

0

= jF

�

�

j

to the global count, and continue the search at the child of v associated with �. When we

reach a leaf of T , we explicitly test each of the constant number of functions stored at that

leaf whether it passes below p, update the global count accordingly, and output its �nal

value. We thus obtain the following result.

Theorem 5.2 Given a collection F of n bivariate functions satisfying (F1){(F3) and

an integer parameter k < n, we can preprocess A

�k

(F) into a data structure of size

O(k

3

n

"

 (n=k)), in time O(k

3

n

"

 (n=k)), so that, for any query point p, we can determine

in O(logn) time whether �

F

(p) � k, and, if so, we compute the value of �

F

(p).

6 Nearest-Neighbor Searching

Let S = fp

1

; : : : ; p

n

g be a set of n points in the plane, and let �(�; �) be a given `distance

function' de�ned on R

2

�R

2

. Normally, we regard � as a metric, or as a convex distance func-

tion, but many of the results obtained below apply for more general `reasonable' functions

�. The function � is called reasonable if the family F = f�((x; y); (a

1

; a

2

)) j (a

1

; a

2

) 2 R

2

g

satis�es conditions (F1) and (F3) of Section 2. For example, all L

p

metrics, for integer

1 � p � 1, are reasonable. Here we do not assume any metric-like properties of �, so �

can be fairly arbitrary. We want to store S into a data structure so that points can be

inserted into or deleted from S and, for any query point q, we can e�ciently compute a

nearest neighbor of q in S under the function � (i.e., we want to return a point p

i

2 S such

that �(q; p

i

) = min

1�j�n

�(q; p

j

)). Let

F = ff

i

(x; y) = �((x; y); (�

i

; �

i

)) j p

i

= (�

i

; �

i

); 1 � i � ng :

For a given point q, �nding a nearest neighbor of q in S is equivalent to computing a function

of F that attains the lower envelope E

F

of F at q. Notice that the complexity of the lower

envelope E

F

is the same as the complexity of the Voronoi diagram of S under the distance

function � [31], if � is indeed a metric or a convex distance function.

The nearest-neighbor searching problem, also known as the post-o�ce problem, has

been widely studied because of its numerous applications [4, 6, 23, 52], but most of the

work to date deals with the case where � is the L

1

; L

2

, or L

1

metric and where S does

not change dynamically. If � is a reasonable metric, then, using the technique of Clarkson

[23] and the range searching structure of Chazelle et al. [18], a nearest-neighbor query can

Shallow cuttings June 17, 1996

Nearest-Neighbor Searching 26

be answered in O(log

2

n) time using O(n

3+"

) storage, but this data structure is di�cult to

dynamize. On the other hand, using the range-searching data structures of Agarwal and

Matou�sek [5], S can be preprocessed in O(n logn) time into a linear-size data structure

so that a query can be answered in O(n

1=2+"

) time. This data structure can be updated

in O(log

2

n) time per insertion or deletion. Since the Agarwal-Matou�sek technique will be

useful for our applications, we describe it briey. Let � = f�((x; y); (�;�))� r j �; �; r 2 Rg

be the set of all `disks' under the distance function �. We preprocess S, in O(n logn) time,

into a linear size data structure for the counting version of �-range searching (in which, for

any given 2 �, we want to compute jS\j), as described in [5]. Using this data structure,

for a query point q and a real parameter r, we can determine in O(n

1=2+"

) time whether

the distance between q and its nearest neighbor in S is less than, greater than, or equal

to r. Plugging this procedure into the parametric-searching technique of Megiddo [54] (in

the same manner as in [4]), we can answer a nearest-neighbor query, under the distance

function �, in O(n

1=2+"

) time. This structure, however, fails to answer a query in O(logn)

time even for the Euclidean metric.

In this section we present a data structure, based on Theorem 4.3, that uses only O((n)�

n

"

) space and preprocessing time, answers a query in O(logn) time, and inserts or deletes

a point in O((n)=n

1�"

) time. These bounds are signi�cantly better than the previously

mentioned bounds. For example, we can obtain, for the case of L

p

metrics, a nearest-

neighbor-searching data structure of size O(n

1+"

) that can answer a query in O(logn)

time and that can insert/delete a point in O(n

"

) time. Compared with the data structure

described in [6], we improve the query time signi�cantly at a slight increase in the update

time and in the size of the data structure.

As in Section 4, we �rst describe a static data structure. We preprocess S, or, rather,

the associated collection F , into the range-searching data structure �(F) of Theorem 4.1.

For a point q 2 R

2

, we �nd a function of F that attains E

F

at q, and thus answer a nearest

neighbor of q in S, as follows. Let

~

` be the vertical line in R

3

passing through q, and oriented

in the (+z)-direction. We trace a path in the tree-structure T = �(F), starting from the

root. Suppose we are at a node v 2 T . Recall that v is associated with a subset F

v

� F

and a weakly-primitive cell �

v

. Inductively, assume that E

F

(q) = E

F

v

(q). If v is a leaf,

we explicitly search for a function of F

v

that attains E

F

v

at q, report that function and

terminate the query. Recall that if v is not a leaf, then each child of v is associated with a

cell of a (1=r)-cutting �

v

of A

�k

(F

v

) (for appropriate parameters r and k). We determine

the highest cell � of �

v

(in the (+z)-direction) intersected by

~

`. Since �

v

covers A

�k

(F

v

),

since � is the last cell in �

v

intersecting

~

`, and since F

�

contains all functions of F

v

whose

graphs either intersect � or lie below �, it easily follows that E

F

�

(q) = E

F

v

(q) = E

F

(q).

Hence, we can recursively search at the child corresponding to �. The overall query time

is obviously O(logn).

If S is allowed to change dynamically, we use the dynamic data structure described

in Section 4, with the following modi�cation. For a (1=r)-cutting �, we now need a data

structure that, for a given query point q in the xy-plane, can determine in O(log j�j) time

Shallow cuttings June 17, 1996

Nearest-Neighbor Searching 27

the highest cell of � intersected by the vertical line

~

` passing through q. As in Lemma 4.2, we

project the facets of cells in � onto the xy-plane, let �

�

be the set of resulting regions in the

plane, and compute the arrangement A(�

�

). Since the (interiors of) cells in � are pairwise

disjoint, the highest cell of � intersected by a vertical line erected from any point within

a face � 2 A(�) is the same, so by storing this cell for each face �, and by preprocessing

A(�

�

) for planar point location queries, we can compute in O(log j�j) time the highest cell

of � intersected by a vertical line.

A query is answered as follows: Suppose we are at a node v. If v is a leaf, we compute

E

F

v

(q), using the procedure just described. Otherwise, for each �

i

, we �nd in O(logn)

time the highest cell � intersected by

~

` by locating q in A(�

�

i

) (as in Lemma 4.2). For each

1 � i � t, we recursively compute the function f

i

that attains the lower envelope E

F

i;�

at

q. Finally, we return the function that attains the envelope of ff

1

; : : : ; f

t

g at q. Since the

procedure visits O(1) nodes and spends O(logn) time at each node, the overall query time

is O(logn).

Theorem 6.1 Let S be a set of n points in the plane and let � be any reasonable dis-

tance function, as above. We can preprocess S in time O((n)n

"

) into a data structure

of size O((n)n

"

) so that a nearest-neighbor query in S can be answered in O(logn) time.

Moreover, we can insert and delete points into/from S in O((n)=n

1�"

) time per update

operation. Here (n) is an upper bound, satisfying (F3), for the maximum complexity of

the envelope E

F

, as de�ned above (if � is a metric or a convex distance function, then (n)

is also (an upper bound for) the maximum complexity of the Voronoi diagram of a set of n

points in the plane, under the distance function �).

Remark 6.2 For a point q, �nding a farthest neighbor of q in S is equivalent to �nding a

function of F that attains the upper envelope of F at q. By reversing the direction of the

z-axis, we can use a similar data structure, with similar performance bounds, for answering

farthest-neighbor queries.

Reporting the � nearest (farthest) neighbors. The above query procedures can be

modi�ed so that for a query point q and an integer � � n, we can compute the � nearest

(or farthest) neighbors of q in S in time O(logn + �). Consider the static data structure,

for instance. We again follow a path of the tree, starting from the root. Suppose we are at

a node v. If v is a leaf or jF

v

j � 3�r, we explicitly check all functions of F

v

to determine

the � nearest neighbors of q in S, and terminate the query. Otherwise, we �nd the highest

cell of �

v

intersected by the corresponding vertical line

~

`, and recursively visit that child.

For the dynamic version, the query procedure is somewhat more involved, but a query can

still be answered in O(logn+ �) time. Hence, we can conclude:

Theorem 6.3 Let S be a set of n points in the plane and let � be any reasonable distance

function, as above. We can preprocess S in time O((n)n

"

) into a data structure of size

Shallow cuttings June 17, 1996

Nearest-Neighbor Searching 28

O((n)n

"

) so that for a given point p and an integer � � n, the � nearest (or farthest)

neighbors of p can be computed in O(logn+�) time. Moreover, a point can be inserted into

or deleted from S in O((n)=n

1�"

) time.

The case of L

p

-metrics and weighted Euclidean metrics. If � is an L

p

-metric, for

any integer 1 � p � 1, then (n) = O(n) [46]. Similarly, if � is an (additive) weighted

Euclidean metric, i.e., each point p

i

2 S has a weight w

i

and �(q; p

i

) = d(q; p

i

) + w

i

, where

d(�; �) is the Euclidean distance, then also (n) = O(n) [47]. Hence, we obtain the following

result.

Corollary 6.4 Let S be a set of n points in the plane, and let � be any L

p

-metric or any

weighted Euclidean metric. We can preprocess S in O(n

1+"

) time into a data structure of

size O(n

1+"

) so that points can be inserted into or deleted from S in time O(n

"

) per update,

and a nearest-neighbor query can be answered in O(logn) time. We can also construct a

data structure with the same performance for the case when S is a set of n disjoint segments

in the plane and � is the Euclidean metric.

The general case: Space/query-time tradeo�. If the bound (n) is rather large, say,

O(n

2+"

), we can obtain a space/query-time tradeo� by combining Theorem 6.1 with the

linear-size data structure of [5] for nearest-neighbor searching, mentioned at the beginning

of this section, in a rather standard manner [22]. For example, if (n) = O(n

2+"

) then, for

any parameter n � m � n

2

, we can store S into a data structure of size O(m

1+"

) so that

a nearest-neighbor query can be answered in time O(n

1+"

=

p

m). Insertions and deletions

can be performed in O(m

1+"

=n) time, per update. Hence, we can conclude the following.

Theorem 6.5 Let S be a set of n points in the plane, n � m � n

2

a real parameter, and �

a reasonable distance function, as above. We can preprocess S in time O(m

1+"

) into a data

structure of size O(m

1+"

) so that a nearest-neighbor query can be answered in O(n

1+"

=

p

m)

time. Moreover, we can insert and delete points in O(m

1+"

=n) time per update.

Remark 6.6 If the number of queries and the number of updates are both O(n), then an

optimal choice for m is n

4=3

, for which the entire sequence of operations can be performed

in O(n

4=3+"

) time.

The dynamic bichromatic closest-pair problem. Next, we consider the following

dynamic bichromatic closest-pair problem: Let R and B be two sets of points in the plane,

of a total of at most n points. We wish to update R and B dynamically and to return the

closest pair between R and B after each update operation.

4

We use the following result of

Eppstein [35]:

4

A closest pair between R and B under a distance function � is a pair of points p 2 R; q 2 B such that

�(p; q) = min

p

0

2R;q

0

2B

�(p

0

; q

0

).

Shallow cuttings June 17, 1996

Nearest-Neighbor Searching 29

Lemma 6.7 Let R and B be two sets of points in the plane, of a total of at most n points.

Let � be a distance function for which we can store a set of n points into a data structure that

supports insertions, deletions, and nearest neighbor queries in O(T (n)) time per operation.

Then a closest pair between R and B can be maintained in O(T (n) logn) time per insertion

and in O(T (n) log

2

n) time per deletion.

If � is an L

p

metric or any weighted Euclidean metric, then, by Corollary 6.4, T (n) =

O(n

"

). On the other hand, if � is any reasonable metric, then, by choosing m = n

4=3

in

Theorem 6.5, T (n) = O(n

1=3+"

). Plugging these values into the above lemma, we obtain

the following result.

Theorem 6.8 Let R and B be two sets of points in the plane with a total of n points. We

can store R[B in a dynamic data structure of size O(n

1+"

) that maintains a closest pair in

R�B, under any L

p

-metric or any weighted Euclidean metric, in O(n

"

) time per insertion

or deletion. If we use an arbitrary, reasonable distance function, then the storage increases

to O(n

4=3+"

) and the update time to O(n

1=3+"

).

Using this theorem and extending the analysis of Agarwal et al. [2], as done in [35], we

can obtain an e�cient procedure for maintaining a minimum spanning tree (MST) T of a

set of points under any L

p

metric, as follows. For an angle � � �=2 and a unit vector d, let

Cone(d; �) = fx j \(x; d) � �g. We call a pair of point sets P;Q �-separated if there exist

a point z and a direction d such that P � z + Cone(�d; �) and Q � z + Cone(d; �). Let

�

0

be a su�ciently small angle, and let

C = f(P

1

; Q

1

); : : : ; (P

u

; Q

u

)g

be a family of �

0

-separated pairs such that, for every pair p; q 2 S, there is an i with p 2 P

i

and q 2 Q

i

; we will refer to C as an �

0

-cover of S. Consider the graph G whose vertices

are the points of S and whose edges are pairs of points (p

i

; q

i

), 1 � i � u, such that (p

i

; q

i

)

is a closest pair between P

i

and Q

i

. The weight of an edge (p

i

; q

i

) is �(p

i

; q

i

). Following the

same argument used by Agarwal et al. [2, Lemmas 1{4], but extending their Lemma 3 to

the case of an L

p

-metric, one can show that G contains a minimum spanning tree of S as

a subgraph.

Using a standard divide-and-conquer approach, an �

0

-cover C of S, with the property

that each point of S is contained in O(log

2

n) pairs, can be constructed in O(n log

2

n) time;

see e.g., [2]. Moreover, C can be maintained in O(log

2

n) time per insertion or deletion.

Insertion or deletion of a point changes O(log

2

n) edges of the graph G, and Theorem 6.8

implies that the new edges can be found in O(n

"

log

2

n) time. The problem of maintaining

am MST of S now reduces to maintaining the family C, a closest pair for each pair (P

i

; Q

i

) 2

C, and an MST of the resulting graph G. Eppstein et al. [36] have shown that an MST of

a graph with n vertices can be updated in O(

p

n) time for each insertion or deletion of an

edge into/from the graph. Hence we obtain:

Shallow cuttings June 17, 1996

Minimum-Weight Bipartite Euclidean Matching 30

Theorem 6.9 A minimum spanning tree of a set of n points in the plane, under any L

p

metric, can be maintained in O(

p

n log

2

n) time for each insertion or deletion operation,

using O(n

1+"

) storage.

7 Minimum-Weight Bipartite Euclidean Matching

Let P = fp

1

; : : : ; p

n

g and Q = fq

1

; : : : ; q

n

g be two sets of points in the plane. We wish

to compute a minimum-weight bipartite Euclidean matching M of P and Q. A matching

of P and Q is a set of n pairs (p; q) 2 P � Q such that each point of P [Q appears in

exactly one pair. The weight of a pair is the Euclidean distance between its points, and

the weight of a matching is the sum of the weights of its pairs. The standard Hungarian

method [44, 45] yields an O(n

3

)-time algorithm for computing M . Exploiting the fact that

the weights are Euclidean distances, Vaidya obtained an O(n

2:5

logn)-time algorithm for

computing M [67]. A number of e�cient algorithms have been developed for computing a

minimum-weight bipartite Euclidean matching when P and Q have some special structure

[10, 17, 48], but no progress has been made when P and Q are arbitrary sets of points

in the plane. Recently, Alon and Itai [33] have proposed an O(n

1:5+"

)-time algorithm for

computing a bottleneck Euclidean bipartite matching, in which one wishes to minimize the

maximum weight of an edge in the matching.

In this section, we show that Vaidya's algorithm, for arbitrary sets A;B, can be modi�ed

so that its running time improves to O(n

2+"

). One can equally consider the nonbipartite

version of the problem, where we are given just one set P of 2n points in the plane, and

wish to compute a minimum-weight Euclidean matching in P , that is, a partition of P into

n pairs of points, so that the sum of the intra-pair Euclidean distances is minimized. Vaidya

has also given in [67] an O(n

2:5

log n)-time algorithm for the nonbipartite case, which, so

far, we do not know how to improve.

For the sake of completeness, we �rst give a brief sketch of Vaidya's algorithm for the

bipartite case, and then show how it can be improved using the new machinery of this

paper.

The bipartite matching problem can be formulated as a linear program:

min

X

i;j

d(p

i

; q

j

)x

ij

; subject to

n

X

j=1

x

ij

= 1; i = 1; : : : ; n;

n

X

i=1

x

ij

= 1; j = 1; : : : ; n;

x

ij

� 0; i; j = 1; : : : ; n;

Shallow cuttings June 17, 1996

Minimum-Weight Bipartite Euclidean Matching 31

where (p

i

; q

j

) is an edge of M if and only if x

ij

= 1. The dual linear program is

max

X

i

�

i

+

X

j

�

j

; subject to

�

i

+ �

j

� d(p

i

; q

j

); i; j = 1; : : : ; n;

where �

i

(resp. �

j

) is the dual variable associated with the point p

i

(resp. q

j

).

The Hungarian method computes a matching in n phases, each of which augments the

matching by one edge and updates the dual variables. Let X be the current matching

computed so far by the algorithm. Initially, we set X = ;, �

i

= 0, and �

j

= min

i

d(p

i

; q

j

)

for all i; j. An edge (p

i

; q

j

) is called admissible if d(p

i

; q

j

) = �

i

+ �

j

. A vertex of P [Q

is called exposed if it is not incident to any edge of X . An alternating path is one that

alternately traverses edges of X , and edges not in X , starting with an edge not in X . An

alternating path between two exposed vertices is called an augmenting path.

During each phase, we search for an augmenting path consisting only of admissible edges,

as follows. For each exposed point q 2 Q, we grow (in an implicit manner) an `alternating

tree' whose paths are alternating paths starting at q. More precisely, each point of P [Q

in an alternating tree is reachable from its root by an alternating path that consists only of

admissible edges. For a point w of P (resp. Q), the path leading to w ends at an edge not

in X (resp. in X). Let S (resp. T) denote the set of points of Q (resp. P) that lie in any

alternating tree. In the beginning of each phase, S is the set of exposed vertices of Q and

T = ;. Let

� = min

p

i

2P�T;q

j

2S

fd(p

i

; q

j

)� �

i

� �

j

g:

At each step, the algorithm takes one of the following actions, depending on whether � = 0

or � > 0:

Case 1: � = 0. Let (p

i

; q

j

), for p

i

2 P �T and q

j

2 S, be an admissible edge (� = 0 implies

that such an edge must exist). If p

i

is an exposed vertex, an augmenting path has

been found, so the algorithm moves to the next phase (see below for more details).

Otherwise, let q

k

be the vertex such that (p

i

; q

k

) 2 X . The algorithm adds the edges

(p

i

; q

j

) and (p

i

; q

k

) to all the alternating trees that contain the vertex q

j

. It also adds

the point p

i

to T and the point q

k

to S.

Case 2: � > 0. The algorithm updates the dual variables, as follows. For each vertex p

i

2 T ,

it sets �

i

= �

i

� � and, for each q

j

2 S, it sets �

j

= �

j

+ �.

The algorithm repeats these steps until it reaches an exposed vertex of P , thereby

obtaining an augmenting path. If an augmenting path � is found, we delete the edge of

� \ X from the current matching X , add the other edges of � to X (thereby increasing

the size of the current matching by 1), and move to the next phase. This completes the

description of the algorithm. Further details of the algorithm and the proof of its correctness

can be found in [45, 67].

Shallow cuttings June 17, 1996

Minimum-Weight Bipartite Euclidean Matching 32

For arbitrary graphs, each step can be implemented in O(n) time. Since there are at

most n phases and each phase consists of O(n) steps, the total running time of the above

procedure is O(n

3

). Vaidya suggested the following approach to expedite the running time

of each step. Maintain a variable � and associate a weight w(�) with each point in P [Q.

In the beginning of each phase, � = 0 and w(p

i

) = �

i

, w(q

j

) = �

j

for each 1 � i; j � n.

During each step, the weights and � are updated, but the values of the dual variables

remain unchanged. This is done as follows. If Case 1 occurs, then we set w(p

i

) = �

i

+ �

and w(q

k

) = �

k

� �, and do not change the value of �. If Case 2 occurs, then we set

� = �+ �, and do not change the weights. Notice that, for each q

j

2 S, the current value

of �

j

is equal to w(q

j

) + �, and, similarly, for each p

i

2 T , the current value of �

i

is equal

to w(p

i

) � �. Also, the current value of the dual variables for other points is equal to

their values at the beginning of the phase. At the end of each phase, the value of the dual

variables can be computed from � and from the weights of the corresponding points. The

weight of each point changes only once during a phase, namely, when it is added either to

S or to T . Moreover, at any time during a phase,

� = min

p

i

2P�T;q

j

2S

fd(p

i

; q

j

)� w(p

i

)� w(q

j

)g �� :

Hence, � can be computed during each step by maintaining the weighted closest pair

between S and P � T . Since each step requires at most two update operations (inserting a

point into S and deleting a point from P � T), each step can be performed in O(n

"

) time,

by the algorithm provided in Theorem 6.8. (The current setup is slightly di�erent than

that of Section 6, because here the weighted distance between two points subtracts weights

associated with both points. Nevertheless, the analysis of Section 3 leading to Theorem 4.3,

and the way in which this theorem is used in Section 6 still apply.) If the distance between

two points is measured by an arbitrary reasonable distance function, each step of the above

algorithm will require O(n

1=3+"

) time, with an appropriately increased storage (the distance

function continues to be reasonable, when weights are added to the points, as above). We

can thus conclude:

Theorem 7.1 Given two sets P , Q, each consisting of n points in the plane, a minimum-

weight bipartite Euclidean matching between P and Q can be computed in O(n

2+"

) time,

using O(n

1+"

) space. If we use an arbitrary, reasonable distance function for computing

distances between points of P and Q, a minimum weight bipartite matching between P and

Q can be computed in time O(n

7=3+"

), using O(n

4=3+"

) space.

The above algorithm can be extended to obtain faster algorithms for several other prob-

lems related to the bipartite matching. For example, consider the following Euclidean

transportation problem, which is a generalization of the minimum-weight bipartite Eu-

clidean matching problem: Let P = fp

1

; : : : ; p

u

g bet a set of u `supply' points in the

plane, each with a supply value a

i

, and let Q = fq

1

; : : : ; q

v

g be a set of v `demand' points

in the plane, each with a demand value b

j

, such that

P

u

i=1

a

i

=

P

v

j=1

b

j

. Assume that

Shallow cuttings June 17, 1996

Maintaining the Intersection of Congruent Balls in Three Dimensions 33

the cost of transporting unit commodity from p

i

to q

j

is d(p

i

; q

j

). We wish to �nd out

how to satisfy all the demands at the minimum cost. Atkinson and Vaidya [13] gave an

O((u+ v)

2:5

log(u+ v) logN)-time algorithm, where N = maxfmax

i

a

i

;max

j

b

j

g. Plugging

Theorem 6.8 into their algorithm, we can improve the running time to O((u+ v)

2+"

logN).

See [14, 45, 67] for some other applications.

8 Maintaining the Intersection of Congruent Balls in Three

Dimensions

The next application of our techniques is an e�cient algorithm for dynamically maintaining

the intersection of congruent balls in 3-space, under insertions and deletions of balls. With

no loss of generality, we assume that the balls have radius 1. For a point p 2 R

3

, let

B(p) denote the ball of radius 1 centered at p. Let S be a set of n points in R

3

. Let

B = B(S) = fB(p) j p 2 Sg, and let K(S) =

T

p2S

B(p) be the common intersection

of B. We wish to maintain K(S) as we update S dynamically by inserting and deleting

points. Although the complexity of K(S) is O(n) [37], a sequence of m updates in S may

cause
(mn + m

2

) changes in the structure of K(S), even if we perform only insertions.

Consequently, we cannot hope to maintain K(S) explicitly, if we seek fast update time.

Instead, we store K(S) into a data structure so that a number of di�erent types of queries

can be answered e�ciently. The simplest query is whether a query point p lies in K(S). A

stronger type of query is to determine e�ciently, after each update, whether K(S) is empty.

In this section, we present a data structure that answers these two queries e�ciently.

Let B

+

(p) (resp. B

�

(p)) denote the region consisting of all points that lie in or above

(resp. in or below) B(p). Let K

+

(S) =

T

p2S

B

+

(p) and K

�

(S) =

T

p2S

B

�

(p). If we

regard the boundary of each region B

+

(p), for p 2 S, as the graph of a partially-de�ned

bivariate function, then (the nonvertical portion of) @K

+

(S) is the graph of the upper

envelope of these functions. We denote this upper envelope by z = F

+

(x). The same

argument as in [37] implies that K

+

(S) also has linear complexity. In fact, the surfaces

@B

+

(p) behave similar to a family of pseudoplanes|any pair of them intersect in a single

connected unbounded curve (or does not intersect at all), and, assuming general position,

any triple of them intersect at a single point (or does not intersect at all). Similar and

symmetric properties hold for the region K

�

(S), and we use the notation z = F

�

(x) to

denote the graph of its (nonvertical) boundary.

A query point p = (p

x

; p

y

; p

z

) lies in K(S) if and only if F

+

(p

x

; p

y

) � p

z

� F

�

(p

x

; p

y

).

Therefore, the problem of determining whether p 2 K(S) reduces to evaluating F

+

(p

x

; p

y

)

and F

�

(p

x

; p

y

). By Theorem 6.1, we can store fB

+

(p) j p 2 Sg and fB

�

(p) j p 2 Sg into

two data structures, each of size O(n

1+"

) so that a point can be inserted into or deleted from

S in O(n

"

) time, and so that for a query point p = (p

x

; p

y

; p

z

), the functions F

+

(p

x

; p

y

)

and F

�

(p

x

; p

y

) can be evaluated in O(logn) time.

5

5

This is an example where the given bivariate functions are only partially de�ned. As argued at the

Shallow cuttings June 17, 1996

Maintaining the Intersection of Congruent Balls in Three Dimensions 34

The same data structure can be used to determine whether K(S) is empty, although

this is a considerably more involved operation. Observe that the boundaries of the regions

K

+

(S) and K

�

(S) are both (weakly) xy-monotone|one of them is a convex surface and

the other is concave. These properties can be exploited to obtain a fast procedure for

detecting (after each update) whether K

+

(S) and K

�

(S) intersect, by applying a variant

of the parametric searching technique [54], as proposed by Toledo [66]. For the sake of

completeness, we include here a brief overview of this technique.

We wish to �nd a point x

�

2 R

2

such that F

+

(x

�

) � F

�

(x

�

); this point will serve as

a witness to the fact that K

+

(S) and K

�

(S) intersect. In fact, we will seek a point x

�

at

which

F

�

(x

�

)

def

= F

+

(x

�

)� F

�

(x

�

)

is minimized; the minimum is negative if and only if the regionsK

+

(S) andK

�

(S) intersect.

We �rst consider the 1-dimensional problem where, for a given line ` : x = c, we wish

to �nd a point y

�

= (c; y

�

) 2 ` that minimizes F

�

. We execute the query procedure

described in Section 6 to evaluate F

�

in a generic manner, without knowing the value y

�

.

This procedure makes O(logn) comparisons, each of which involves computing the sign of a

univariate, constant-degree polynomial g(y) in the y-coordinate y

�

of y

�

. We compute the

roots y

1

; : : : ; y

p

of g, and evaluate F

�

(c; y

i

) for 1 � i � p. Set y

0

= �1 and y

p+1

= +1.

Since F

�

is convex, by examining the local behavior of F

�

(c; �) at each y

i

, we can determine

whether y

�

= (c; y

i

) for some 0 � i � p + 1, and if not, then we can determine the open

interval (y

i

; y

i+1

) that contains y

�

. We can thus compute the sign of g at y

�

. Proceeding in

this manner, we can compute the value of y

�

. Since F

�

is convex over the entire xy-plane,

the above procedure can be extended to determine whether the global minimum x

�

of F

�

lies to the left of `, to the right of `, or on `, simply by examining the local behavior of F

�

at a neighborhood of y

�

. (In the third case, the procedure can return the value of x

�

= y

�

and terminate.) The total running time of this procedure is O(log

2

n), because we spend

O(logn) time at each comparison, and the algorithm makes O(logn) comparisons.

Using the above procedure as a subroutine, we can compute x

�

as follows. We now

run the query procedure of Theorem 6.1 in a generic manner at x

�

. Each comparison now

involves computing the sign of a bivariate, constant-degree polynomial �(x). We compute

the Collins' cylindrical algebraic decomposition [12, 26, 59] �̂ of R

2

into O(1) cells, so that

the sign of � is invariant within each cell of �̂; see Figure 5 (ii). Our aim is to determine

the cell � 2 �̂ that contains x

�

, thereby determining the sign of � at x

�

. The cells of �̂ are

delimited by O(1) y-vertical lines. For each vertical line `, we run the above 1-dimensional

procedure to determine which side of ` contains x

�

. If any of these subroutine calls returns

x

�

, we are done. Otherwise, we know the vertical strip � that contains x

�

.

We still have to search through the cells of �̂ within �, stacked one above the other

in the y-direction, to determine which of them contains x

�

. We note that the number of

roots of � along any vertical line ` : x = x

0

within � is the same, and that each root varies

beginning of Section 2, the preceding results hold in this case too.

Shallow cuttings June 17, 1996

Maintaining the Intersection of Congruent Balls in Three Dimensions 35

1

x

�

�

(i)

(iii)

1

x

�

�

(ii)

�̂

�

0

�

g = 0

r

1

r

2

2

Figure 5: (i) roots of �; (ii) �̂, the cylindrical algebraic decomposition of �; (iii) the curves

g = 0 and

1

continuously with x

0

. That is, the roots of � in � constitute a collection of x-monotone

arcs

1

; : : : ;

t

whose endpoints lie on the boundaries of � (see Figure 5 (ii)). It su�ces

to determine, for each

i

, whether x

�

lies below, above, or on

i

. This is accomplished by

executing the 1-dimensional algorithm generically, on the line ` : x = x

�

that contains x

�

.

In other words, we run the query procedure of Theorem 6.1 at the generic point x

i

=

i

\ `.

This time, performing a comparison involves computing the sign of a bivariate, constant-

degree polynomial g at x

i

(we prefer to treat g as a bivariate polynomial, although we

could have eliminated one variable, by restricting x

i

to lie on

i

). We compute the roots

r

1

; : : : ; r

u

of g that lie on

i

(see Figure 5 (iii)), and set r

0

and r

u+1

to be the left and right

endpoints of

i

, respectively. As above, we compute the index j such that x

�

lies in the

vertical strip �

0

bounded between r

j

and r

j+1

. Notice that the sign of g is the same for all

points on

i

within the strip �

0

, so we can now compute the sign of g at x

i

. After completing

the execution of the 1-dimensional procedure, we know whether x

�

lies above, below, or

on

i

. Repeating these procedure for all

i

's, we know the cell of �̂ that contains x

�

. The

total time spent in computing the sign of �(x

�

) is O(log

3

n), because the 1-dimensional

algorithm is composed of O(log

2

n) steps and the execution of each step requires O(logn)

time. Since the 2-dimensional algorithm also consists of O(logn) steps, the overall query

time is O(log

4

n). We thus conclude:

Theorem 8.1 The intersection of a set of congruent balls in 3-space can be maintained

dynamically, by a data structure of size O(n

1+"

) so that each insertion or deletion of a ball

takes O(n

"

) time, and the following queries can be answered: (a) For any query point p,

we can determine in O(logn) time whether p lies in the current intersection, and (b) after

performing each update, we can determine in O(log

4

n) time whether the current intersection

Shallow cuttings June 17, 1996

Smallest Stabbing Disk 36

is nonempty.

Remark 8.2 (i) The same data structure can be used to answer other queries, such as

determining whether a line intersects K(S), computing the highest (or the lowest) vertex

of K(S), etc.

(ii) The same technique can also be used to maintain the intersection of other simply-shaped,

convex objects in R

3

. The technique will be most e�ective in cases where the complexity of

such an intersection can be shown to be small.

(iii) The problem studied in this section arises in the three-dimensional 2-center problem,

where we are given a set S of n points in R

3

, and wish to cover them by the union of two

congruent balls whose radius is as small as possible. Extending to three dimensions the

standard approach to this problem [29], we face a main subproblem in which we need to

maintain dynamically the intersection of a set of congruent balls, and to determine after

each update whether this intersection is nonempty. The main di�erence, though, is that

in the 2-center problem the sequence of updates is known in advance, which makes the

problem easier to solve.

9 Smallest Stabbing Disk

Let C be a (possibly in�nite) family of simply-shaped, compact, strictly-convex sets (called

objects) in the plane. By `simply-shaped' we mean that each object is described by a

Boolean combination of a constant number of polynomial equalities and inequalities of

constant maximum degree. Let C = fc

1

; : : : ; c

n

g be a �nite subset of C. We wish to

update C dynamically, by inserting objects c 2 C into C or by deleting such objects from

C, and maintain a smallest disk, or, more generally, a smallest homothetic copy of some

given simply-shaped, compact, convex set P , that intersects all sets of C. This study extends

recent work by Agarwal and Matou�sek [6] who have obtained an algorithm that takes O(n

"

)

time per update operation for the case where C is a set of points and P is a disk.

9.1 Farthest-neighbor Voronoi diagrams

The set P induces a convex distance function de�ned by

d

P

(x; y) = min f� j y 2 x+ �Pg;

(we assume here that P contains the origin in its interior). The function d

P

is a metric if and

only if P is centrally symmetric with respect to the origin. We de�ne the farthest-neighbor

Voronoi diagram Vor

P

(C) of C, under the distance function d

P

, in a standard manner (see

[43] for details). In what follows we assume that P is strictly convex; the results can be

extended to more general sets with some extra care. We �rst prove the following theorem,

which is of independent interest (we are not aware of any previous proof of this result).

Shallow cuttings June 17, 1996

Smallest Stabbing Disk 37

Theorem 9.1 Let C be a set of n (possibly intersecting) simply-shaped, compact, convex

objects in the plane. Then the complexity of the farthest-neighbor Voronoi diagram of C,

under a convex distance function d

P

induced by any simply-shaped, compact, strictly-convex

set P , is O(�

s

(n)). Here s is a constant depending on the shape of P and of the objects in

C. If C is a set of n line segments and d

P

is the Euclidean distance function (i.e., P is a

disk), the complexity of the farthest-neighbor Voronoi diagram is O(n).

Proof: Let R be one of the Voronoi cells of Vor

P

(C), and let c 2 C be the farthest neighbor

of all points of R. We show that R has the following `anti-star-shape' property: Let x 2 R,

and let q 2 c be the nearest point to x (i.e., d

P

(x; q) = d

P

(x; c)); the convexity of c and the

strict convexity of P imply that q is unique. Let � be the ray emanating from q towards

x, and let y be any point on � past x (i.e., x lies in the segment qy). We claim that c is

the farthest neighbor of y; see Figure 6. Indeed, suppose to the contrary that the farthest

neighbor of y in C is c

0

6= c (so that d

P

(y; c

0

) > d

P

(y; c)), and let r 2 c

0

be the nearest point

to x. Let ` be the (unique) line passing through q and tangent to x+ d

P

(x; c)P there. The

convexity of c implies that c is contained in the (closed) halfplane bounded by ` and not

containing x. This in turn is easily seen to imply that d

P

(y; c) = d

P

(y; q). Now, by the

triangle inequality, we have

y

q

r

x

�

`

c

c

0

P

Figure 6: Anti-star-shape property of Voronoi cells

d

P

(y; c

0

) � d

P

(y; r)

� d

P

(y; x) + d

P

(x; r)

= d

P

(y; x) + d

P

(x; c

0

)

� d

P

(y; x) + d

P

(x; c)

= d

P

(y; x) + d

P

(x; q)

= d

P

(y; q)

= d

P

(y; c);

Shallow cuttings June 17, 1996

Smallest Stabbing Disk 38

a contradiction that establishes the claim.

This implies that R is unbounded, and so Vor

P

(C) is an outerplanar map. It is easy

to verify that every vertex of Vor

P

(C) has degree at least three. Hence, by Euler's formula

for planar graphs, the complexity of Vor

P

(C) is proportional to the number of faces in

it. We bound the number of faces in Vor

P

(C), as follows. By a compactness argument,

there exists a su�ciently large r such that the circle �

r

of radius r about the origin cuts

the cells of Vor

P

(C) in the same sequence as does the circle at in�nity. For each c 2 C,

let f

c

(�) = d

P

((r; �); c), and let F (�) = max

c2C

f

c

(�). Clearly, the number of edges of

Vor

P

(C) crossed by �

r

, and thus the number of faces in Vor

P

(C), is equal to the number

of breakpoints in the upper envelope F . Since we have assumed P and each set c 2 C to be

simply shaped, it follows that, for each pair c; c

0

2 C, the functions f

c

and f

c

0
have at most

some constant number, s, of intersection points. Hence, the number of breakpoints of F is,

by standard Davenport-Schinzel theory [40, 63], at most �

s

(n). This establishes the �rst

part of the claim.

b

0

L

a

a

0

0

b

0

a

L

b

R

a

0

L

b

L

a

0

R

b

b

0

R

a

R

Figure 7: Partition of the circle �

r

into maximal arcs.

For the case of line segments and Euclidean distance, the bound improves to O(n). To

see this, let C be a set of n line segments in the plane. Traverse the circle �

r

, as de�ned

above, and decompose it into maximal arcs so that the following conditions are satis�ed for

each arc �.

(i) The farthest segment from all points q 2 � is the same segment e.

(ii) The nearest endpoint of e from q is �xed.

(iii) � lies fully in one of the halfplanes containing e.

We label each arc � by the endpoint of the corresponding segment e, but we use a

di�erent label for arcs that lie on di�erent `sides' of e (as in (iii) above); see Figure 7. We

call an arc �, labeled by endpoint a, a left arc if it lies on the left side of the segment

Shallow cuttings June 17, 1996

Smallest Stabbing Disk 39

incident to a, when this segment is directed towards a; otherwise, � is a right arc. Let S

L

(resp. S

R

, S) denote the cyclic sequence consisting of the labels of all left (resp. right, all)

arcs in the clockwise order along �

r

. Note that S is obtained by merging S

L

and S

R

, and it

does not contain any pair of equal adjacent elements (S

L

and S

R

may contain such pairs).

Each of S

L

and S

R

is composed of at most 2n symbols. We claim that S

L

cannot contain an

alternating subcycle of the form ha � � �b � � �a � � �bi, where a and b are two segment endpoints.

In order to prove this claim, it su�ces to rule out the existence of such a subcycle in

the partition of �

r

induced by the one or two segments incident to a and b. First, such

a subcycle is impossible if a and b are endpoints of the same segment e, because all arcs

labeled by a are separated from all arcs labeled by b by the perpendicular bisector of e.

Suppose then that a and b are endpoints of two distinct respective segments e

1

, e

2

. Let

a

0

be the other endpoint of e

1

, and let b

0

be the other endpoint of e

2

. Since r is su�ciently

large, the perpendicular bisector of any two endpoints of segments in C partitions �

r

into

two arcs, each of which spans an angle more than, say, 3�=4. Both appearances of a

(resp. of b) in the assumed subcycle occur within an arc

1

(resp.

2

), bounded by the

perpendicular bisector of a and b and by the line containing e

1

(resp. e

2

). See Figure 8. An

easy calculation shows that the angles spanned by

1

;

2

are less than 3�=4 (assuming that

r is chosen su�ciently large), and by de�nition, a is the nearest endpoint of e

1

within

1

and b is the nearest endpoint of e

2

within

2

. It follows that

1

and

2

overlap, and that

their intersection �

�

contains (at least) the two middle elements of the subcycle. (Since the

subcycle is contained in

1

[

2

, we can regard the subcycle as a linear sequence, according

to the clockwise order of its elements along

1

[

2

, so the notion of the middle elements is

well de�ned.)

a

b`

ab

�

r

e

2

1

2

e

1

b

0

a

0

Figure 8: Segments e

1

; e

2

and arcs

1

;

2

If

1

lies clockwise to

2

, then all four elements of the subcycle occur within

1

. But

then the perpendicular bisector `

ab

intersects

1

at three points, a contraction. On the other

hand, if

2

lies clockwise to

1

, then

2

contains the last three elements hb � � �a � � � bi of our

subcycle. This, however, implies that `

ab

intersects

2

twice, which is impossible because

the angle spanned by

2

is less than 3�=4 and the angle spanned by each of the two arcs into

Shallow cuttings June 17, 1996

Smallest Stabbing Disk 40

which �

r

is partitioned by `

ab

is more than 3�=4. This completes the proof of the claim.

A symmetric argument shows that S

R

too cannot contain such a subcycle. Hence, if we

erase from S

L

and from S

R

every element equal to its predecessor, we obtain two (cyclic)

Davenport{Schinzel sequences of order 2, each composed of at most 2n symbols, which are

thus of length at most 4n � 2 each. It is now a fairly standard exercise to show that the

total length of S is also linear in n (see, e.g., [63]). This completes the proof. 2

For each object c

i

2 C, de�ne a bivariate function f

i

(x) = �min

q2c

i

d

P

(q;x), for x 2 R

2

.

Let F = ff

i

j 1 � i � ng. The minimization diagram of F is the farthest-neighbor

Voronoi diagram of C under the distance function d

P

. Following the same argument as in

Theorem 6.1 and using Theorem 9.1, we obtain:

Corollary 9.2 Let C be a set of n (possibly intersecting) simply-shaped, compact, convex

sets in the plane and d

P

be a convex distance function as above. C can be preprocessed into

a farthest-neighbor-searching data structure of size O(n

1+"

) so that a query can be answered

in O(logn) time and an object (of the same form) can be inserted into or deleted from C in

O(n

"

) time.

9.2 Maintaining the smallest stabbing disk

Returning to the smallest stabbing disk problem, we need to compute the highest point w

�

on the lower envelope E

F

of F . In view of Corollary 9.2 and the easily-established fact that

the cell of A(F) lying below E

F

is convex, a natural approach to computing w

�

is to use

the multi-dimensional parametric searching technique of Toledo [66], in a manner similar

to that described in the preceding section. Omitting further details, which can easily be

worked out by the reader, we conclude:

Theorem 9.3 A set C of n (possibly intersecting) simply-shaped, compact, convex sets in

the plane can be stored in a data structure of size O(n

1+"

) so that a smallest homothetic

placement of some given simply-shaped, compact, strictly-convex set P that intersects all

objects of C can be computed in O(n

"

) time, after each insertion or deletion of a set into/from

C.

Remark 9.4 A related problem is that of maintaining the smallest disk (or homothetic

copy of some given P) enclosing all but at most k objects of a dynamically changing col-

lection C. The same technique as above can be used, except that now we need to replace

Vor

P

(C) by a di�erent farthest-neighbor diagram, where the d

P

-distance to an object c is

the maximum distance to a point of c. See [65] for a recent study of such Voronoi diagrams.

Shallow cuttings June 17, 1996

Other Applications 41

10 Other Applications

In this section, we list some other applications of the techniques developed in this paper.

To keep the length of the paper under control, we omit most of the details concerning

these applications; some of these details are fairly routine, but some are more technical and

problem-speci�c. These details will be provided in [32]. We are con�dent that the new

techniques will also �nd many additional applications.

10.1 Smallest stabbing disk with at most k violations

Let C and P be as in Section 9, and let 1 � k � n be an integer parameter. We consider

the problem of �nding a smallest homothetic placement of P that stabs at least n � k of

the objects of C. This problem extends the problem studied by Matou�sek [50], in which

one seeks the smallest disk stabbing all but at most k points of a given set of points in the

plane.

Let F = ff

i

j 1 � i � ng be the set of bivariate functions as de�ned in Section 9. As

easily seen, our goal is to �nd a point in A

�k

(F) with the maximum z-coordinate. In view

of Corollary 9.2, this can be done in time O(n

1+"

k

2

), by explicitly computing A

�k

(F), as

in Theorem 5.1. However, one can do much better. Note that the following problem

max z; subject to

z � f

i

(x; y); i = 1; : : : ; n

is an LP-type problem (see [53, 64]). Matou�sek [50, Theorem 2.2] showed that the number

of local maxima in the �rst k levels of A(F) is O((k + 1)

3

). Note that each local maxima

w of the j-th level lies on at most three function graphs, and is the unique maximum of

the lower envelope of a subcollection F

0

of n � j functions of F . Moreover, there exists a

local maximum w

0

of the (j � 1)-st level that `hides' w, in the sense that w

0

is the unique

maximum of the lower envelope of F

0

[ffg, where f is one of the functions whose graph

contains w

0

.

Matou�sek also proposed a method for computing all these maxima, which proceeds in a

depth-�rst-search fashion, starting from the unique maximum p in A

�0

(F) (i.e., the lower

envelope of F). Suppose the algorithm is currently at a local maxima q of j-th level for some

j � k; q is the unqiue maximum of the lower envelope of a subset F

0

� F of n� j functions.

If j < k, the algorithm removes one of the (at most) three constraints de�ning q, say f ,

and �nds the maximum q

0

of the LP-type problem de�ned by the constraints in F

0

n ffg,

using an appropriate dynamic data structure. Applying this step repeatedly, we �nd all

local maxima violating at most k constraints. The cost of this algorithm is proportional to

the preprocessing cost for constructing the data structure plus the number of maxima (i.e.,

O((k+ 1)

3

)) times the cost of a query and an update of the structure.

In out setting, a point q in R

3

represents a homothetic copy of P that misses exactly k

Shallow cuttings June 17, 1996

Other Applications 42

objects of C if and only if it lies at the k-th level of A(F). Hence, to implement Matou�sek's

technique for our problem, we �rst construct the data structure of Theorem 9.3, in time

O(n

1+"

). This also yields a smallest homothetic copy of P that stabs all the objects of C.

Then we compute each of the O((k + 1)

3

) maxima of A

�k

(F), using the above technique.

Each step of the algorithm starts at some local minimum q on one of the �rst k levels, so

that the data structure currently represents all the objects of C not violating q. It then

deletes one of the (at most 3) objects de�ning q, and queries the structure to obtain the

minimum for the resulting set of remaining constraints (as in Theorem 9.3). The cost of

such a query is O(n

"

). We thus obtain:

Theorem 10.1 Let C be a family of n (possibly intersecting) simply-shaped, compact, con-

vex sets in the plane, and let 0 � k � n be a parameter. We can �nd a smallest homothetic

placement of some given simply-shaped, compact, strictly-convex set P , which stabs all ex-

cept at most k of the sets of C, in time O(n

1+"

+ k

3

n

"

).

Remark 10.2 Note that this approach can be generalized to many other optimization

problems, where the optimizing object has three degrees of freedom and we seek an optimum

solution that violates at most k of the given constraints. The machinery developed in this

paper is powerful enough to allow such extensions, requiring only that the lower envelope

of any subcollection of objects is a convex surface and that the relevant constraints satisfy

some rather mild conditions.

10.2 Segment center with at most k violations

Let S be a set of n points in the plane, and let e be a �xed-length segment. A placement

e

�

of e is called a segment center of S if the maximum distance between the points of S

and e

�

is minimized. We call e

�

a segment center of S with k violations if the (k + 1)-st

largest distance between e

�

and the points of S is minimized. The problem of computing

the segment center (without violations) has been studied in [3, 34, 42]; the best algorithm,

given in [34], computes the segment center in O(n

1+"

) time.

Applying the machinery developed in Section 5, and extending the result of [34], one

can obtain the following result.

Theorem 10.3 The segment center with k violations of a set S of n points in the plane

can be computed in time O(n

1+"

k

2

).

Here is a brief sketch of the proof. We �rst solve the �xed size problem: Given a real

d > 0, determine whether there exists a placement of e for which the (k + 1)-st largest

distance to the points of S is � d. As follows from the analysis of [34], this is equivalent to

the problem of determining whether there exists a (translated and rotated) placement Z of

the hippodrome H(e; d), de�ned as the Minkowski sum of e and a (closed) disk of radius d,

that contains all but at most k points of S.

Shallow cuttings June 17, 1996

Conclusions 43

Extending the technique of [34], one can reduce this latter problem to the following one:

We are given two collections F and G of n partially-de�ned �xed-degree algebraic bivariate

functions, and we wish to determine whether there exists an intersection between the �rst

k lower levels of A(F) and the �rst k upper levels of A(G), so that the sum of the levels of

such an intersection does not exceed k. This can be solved e�ciently using the machinery

developed in Section 5. As shown in [34], we have (n) = O(n logn) for the collections F

and G, which then implies that the asymptotic running time of the algorithm is O(n

1+"

k

2

).

Once the �xed-size problem is solved, the segment center problem can be solved by an

application of the parametric searching technique of [54]. The bound on the running time

remains asymptotically the same.

11 Conclusions

In this paper we have extended known range searching techniques to arrangements of low-

degree algebraic bivariate functions in 3-space. By establishing sharp bounds on the vertical

decomposition of the �rst k levels of such an arrangement, we were able to extend the

construction of [51] of shallow cuttings to such arrangements. This is turn has yielded a

collection of static and dynamic range searching techniques for problems that involve such

arrangements, from which we have obtained new and e�cient solutions to several geometric

optimization problems, including minimum weight Euclidean bipartite matching.

The main open problem that the paper raises is to extend our results to higher di-

mensions. The �rst obstacle that we face here is the lack of really sharp bounds on the

complexity of vertical decompositions in arrangements of surfaces, even for the whole ar-

rangement, which prevents our technique from `taking o�' at all.

Another open problem is to extend our results to other cases involving shallow levels in

3-dimensional arrangements. For example, we may want to maintain dynamically a single

cell in an arrangement of surfaces in R

3

, or the union or intersection of a collection of

3-dimensional objects, etc. Extending the analysis of Section 2 to these situations seem

considerably more di�cult.

References

[1] P. Agarwal, M. de Berg, J. Matou�sek, and O. Schwarzkopf, Computing levels in arrangements

and higher order Voronoi diagrams, Proc. 10th Annual Symp. Computational Geometry, 1994,

67{75.

[2] P. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl, Euclidean minimum spanning

trees and bichromatic closest pairs, Discrete Comput. Geom. 6 (1991), 407{422.

[3] P. Agarwal, A. Efrat, M. Sharir, and S. Toledo, Computing a segment-center for a planar point

set, J. Algorithms 15 (1993), 314{323.

Shallow cuttings June 17, 1996

References 44

[4] P. Agarwal and J. Matou�sek, Ray shooting and parametric search, SIAM J. Comput. 22 (1993),

794{806.

[5] P. Agarwal and J. Matou�sek, Range searching with semialgebraic sets, Discrete Comput. Geom.

11 (1994), 393{418.

[6] P. Agarwal and J. Matou�sek, Dynamic half-space range searching and its applications, Algo-

rithmica 14 (1995), 325{345.

[7] P. Agarwal, J. Matou�sek, and O. Schwarzkopf, Computing many faces in arrangements of lines

and segments, Proc. 10th Annual Symp. Computational Geometry, 1994, 76{84.

[8] P. Agarwal, O. Schwarzkopf, and M. Sharir, Overlay of lower envelopes in three dimensions

and its applications, Discrete Comput. Geom. 14 (1995), in press.

[9] P. Agarwal, M. Sharir, and P. Shor, Sharp upper and lower bounds for the length of general

Davenport Schinzel sequences, J. of Combin. Theory, Ser. A 52 (1989), 228{274.

[10] A. Aggarwal, A. Bar-Noy, S. Khuller, D. Kravets, and B. Schieber, E�cient minimum cost

matching using quadrangle inequality, J. Algorithms 19 (1995), 116{143.

[11] A. Aggarwal, M. Hansen, and T. Leighton, Solving query-retrieval problems by compacting

Voronoi diagrams, Proc. 22nd Annual ACM Symp. Theory of Computing, 1990, 331{340.

[12] D. Arnon, G. Collins, and S. McCallum, Cylindrical algebraic decomposition I: The basic

algorithm, SIAM J. Comput. 13 (1984), 865{877.

[13] D. Atkinson and P. Vaidya, Using geometry to solve the transportation problem in the plane,

Algorithmica 13 (1995), 442{461.

[14] F. Aurenhammer, F. Ho�mann, and B. Aronov, Minkowski-type theorems and least square

partitioning, Proc. 8th Annual Symp. Computational Geometry, 1992, 350{357.

[15] J. Bentley and J. Saxe, Decomposable searching problems I: Static-to-dynamic transformation,

J. Algorithms 1 (1980), 301{358.

[16] H. Br�onnimann, B. Chazelle, and J. Matou�sek, Product range spaces, sensitive sampling, and

derandomization, Proc. 34th Annual IEEE Symp. Foundations of Computer Science, 1993,

400{409.

[17] S. Buss and P. Yianilos, Linear and O(n logn) time minimum-cost matching algorithms for

quasi-convex tours, Proc. 5th Annual ACM-SIAM Symp. Discrete Algorithms, 1994, 65{76.

[18] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, A singly exponential strati�cation

scheme for real semialgebraic varieties and its applications, Proc. 16th Int. Colloq. Automata,

Languages and Programming, 1989, 179{193. (See also Theoretical Comput. Sci. 84 (1991),

77{105.)

[19] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, Diameter, width, closest line pair, and

parametric searching, Discrete Comput. Geom. 10 (1993), 183{196.

[20] B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in geometry,

Combinatorica 10 (1990), 229{249.

Shallow cuttings June 17, 1996

References 45

[21] B. Chazelle and F. P. Preparata, Halfspace range searching: An algorithmic application of

k-sets, Discrete Comput. Geom. 1 (1986), 83{93.

[22] B. Chazelle, M. Sharir, and E. Welzl, Quasi-optimal upper bounds for simplex range searching

and new zone theorems, Algorithmica 8 (1992), 407{430.

[23] K. Clarkson, New applications of random sampling in computational geometry, Discrete Com-

put. Geom. 2 (1987), 195{222.

[24] K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl, Combinatorial complexity

bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990), 99{160.

[25] K. Clarkson and P. Shor, Applications of random sampling in computational geometry, II,

Discrete Comput. Geom. 4 (1989), 387{421.

[26] G. Collins, Quanti�er elimination for real closed �elds by cylindrical algebraic decomposition,

Second GI Conf. on Automata Theory and Formal Languages, Lecture Notes in Computer

Science, vol. 33 (H. Barkhage, ed.), 1975, Springer-Verlag, New York{Berlin{Heidelberg, 134{

183.

[27] M. de Berg, K. Dobrindt, and O. Schwarzkopf, On lazy randomized incremental construction,

Discrete Comput. Geom. 14 (1995), 261{286.

[28] M. de Berg, D. Halperin, and L. Guibas, Vertical decomposition for triangles in 3-space, Discrete

Comput. Geom., to appear.

[29] Z. Drezner, The planar two-center and two-median problems, Transportation Science 18 (1984),

351{361.

[30] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer{Verlag, Heidelberg, 1987.

[31] H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements, Discrete Comput. Geom.

1 (1986), 25-44.

[32] A. Efrat, Location Problems in Geometric Optimization, Ph.D. Dissertation, Tel Aviv Univer-

sity, in preparation.

[33] A. Efrat and A. Itai, Improvements on bottleneck matching and related problems using geom-

etry, manuscript, 1995.

[34] A. Efrat and M. Sharir, A near-linear algorithm for the planar segment center problem, to

appear in Discrete Comput. Geom.

[35] D. Eppstein, Dynamic Euclidean minimum spanning trees and extrema of binary functions,

Discrete Comput. Geom. 13 (1995), 111{122.

[36] D. Eppstein, Z. Galil, G. Italiano, and A. Nissenzweig, Sparsi�cation|A technique for speed-

ing up dynamic graph algorithms, Proc. 33rd Annual IEEE Symp. Foundations of Computer

Science, 1992, 60{69.

[37] B. Gr�unbaum, A proof of V�azsonyi's conjecture, Bull. Research Council Israel, Sec. A 6 (1956),

77{78.

Shallow cuttings June 17, 1996

References 46

[38] L. Guibas, D. Halperin, J. Matou�sek, and M. Sharir, Vertical decompsition of arrangements of

hyperplanes in four dimensions, Discrete Comput. Geom. 14 (1995), 113-122.

[39] D. Halperin and M. Sharir, New bounds for lower envelopes in three dimensions, with applica-

tions to visibility of terrains, Discrete Comput. Geom. 12 (1994), 313{326.

[40] S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized path

compression schemes, Combinatorica 6 (1986), 151{177.

[41] D. Haussler and E. Welzl, �-nets and simplex range queries, Discrete Comput. Geom. 2 (1987),

127{151.

[42] H. Imai, D.T. Lee, and C. Yang, 1-Segment center covering problems, ORSA J. Comput. 4

(1992), 426{434.

[43] D. Leven and M. Sharir, Planning a purely translational motion for a convex object in two-

dimensional space using generalized Voronoi diagrams,Discrete Comput. Geom. 2 (1987), 9{31.

[44] H. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistics Quar-

terly 2 (1955), 83{97.

[45] E. Lawler, Combinatorial Optimization: Networks and Matroids, Saunders College Publishing,

Fort Worth, TX, 1976.

[46] D.T. Lee, Two-dimensional Voronoi diagrams in the L

p

-metric, J. Assoc. Comput. Mach. 27

(1980), 604{618.

[47] D.T. Lee and S. Drysdale, Generalizations of Voronoi diagrams in the plane, SIAM J. Comput.

10 (1981), 73{87.

[48] O. Marcotte and S. Suri, Fast matching algorithms for points on a polygon, SIAM J. Comput.

20 (1991), 405{422.

[49] J. Matou�sek, Approximations and optimal geometric divide-and-conquer, J. Computer and

Systems Sciences 50 (1995), 203{208.

[50] J. Matou�sek, On geometric optimization with few violated constraints, Discrete Comput. Geom.

14 (1995), 365{384.

[51] J. Matou�sek, Reporting points in halfspaces, Computational Geometry: Theory and Appl. 2

(1992), 169{186.

[52] J. Matou�sek and O. Schwarzkopf, On ray shooting in convex polytopes, Discrete Comput.

Geom. 10 (1993), 215{232.

[53] J. Matou�sek, M. Sharir, and E. Welzl, A subexponential bound for linear programming and

related problems, to appear in Algorithmica.

[54] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J.

Assoc. Comput. Mach. 30 (1983), 852{865.

[55] K. Mehlhorn, S. Meiser, and R. Rasch, Furthest site abstract Voronoi diagrams, Tech. Report,

Max-Planck Institut f�ur Informatik, Saarbr�ucken, 1992.

Shallow cuttings June 17, 1996

References 47

[56] K. Mulmuley, Computational Geometry: An Introduction Through Randomized Algorithms,

Prentice Hall, Englewood Cli�s, NJ, 1993.

[57] K. Mulmuley, On levels in arrangements and Voronoi diagrams, Discrete Comput. Geom. 6

(1991), 307{338.

[58] M. Overmars, The Design of Dynamic Data Structures, Lect. Notes in Computer Science, vol.

156, Springer-Verlag, Berlin, 1983.

[59] J. Schwartz and M. Sharir, On the `piano movers' problem II: General technique for computing

topological properties of real algebraic manifolds, Adv. Applied Math. 4 (1983), 298{351.

[60] M. Sharir, Intersection and closest-pair problems for a set of planar discs, SIAM J. Comput.

14 (1985), 448{468.

[61] M. Sharir, On k-sets in arrangements of curves and surfaces, Discrete Comput. Geom. 6 (1991),

593{613.

[62] M. Sharir, Almost tight upper bounds for lower envelopes in higher dimensions, Discrete Com-

put. Geom. 12 (1994), 327{345.

[63] M. Sharir and P. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications,

Cambridge University Press, New York, 1995.

[64] M. Sharir and E. Welzl, A combinatorial bound for linear programming and related problems,

Proc. 9th Annual Symp. Theoretical Aspects of Computer Science, 1992, pp. 569{579.

[65] M. Sharir and E. Welzl, Circular and spherical seperability, manuscript.

[66] S. Toledo, Maximizing non-linear concave functions in �xed dimensions, Proc. 33rd Annual

IEEE Symp. Foundations of Computer Science, 1992, 676{685.

[67] P. Vaidya, Geometry helps in matching, SIAM J. Comput. 18 (1989), 1201{1225.

[68] L. Valiant, Parallelism in comparison problems, SIAM J. Comput. 4 (1975), 348{355.

Shallow cuttings June 17, 1996

