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Abstract

We introduce two new related metrics, the geodesic width and the link width, for measuring
the “distance” between two non-intersecting polylines in the plane. If the two polylines have n
vertices in total, we present algorithms to compute the geodesic width of the two polylines in
O(n2 log n) time using O(n2) space and the link width in O(n3 log n) time using O(n2) work-
ing space where n is the total number of edges of the polylines. Our computation of
these metrics relies on two closely-related combinatorial strutures: the shortest-path diagram
and the link diagram of a simple polygon. The shortest-path (resp., link) diagram encodes the
Euclidean (resp., link) shortest path distance between all pairs of points on the boundary of the
polygon. We use these algorithms to solve two problems:

• Compute a continuous transformation that “morphs” one polyline into another polyline.
Our morphing strategies ensure that each point on a polyline moves as little as necessary
during the morphing, that every intermediate polyline is also simple and disjoint to any

other intermediate polyline, and that no portion of the polylines to be morphed is
stretched or compressed by more than a user-defined parameter during the entire morphing.
We present an algorithm that computes the geodesic width of the two polylines and utilizes
it to construct a corresponding morphing strategy in O(n2 log2 n) time using O(n2) space.
We also give an O(n log n) time algorithm to compute a 2-approximation of the geodesic
width and a corresponding morphing scheme.
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• Locate a continuously-moving target using a group of guards moving inside a simple poly-
gon. The guards always determine a simple polygonal chain within the polygon, with
consecutive guards along the chain being mutually visible. We compute a strategy that
sweeps such a chain of guards through the polygon in order to locate a target. We com-
pute in O(n3) time and O(n2) working space the minimum number r∗ of guards needed
to sweep an n-vertex polygon. We also give an approximation algorithm, using O(n log n)
time and O(n) space, to compute an integer r such that max(r − 16, 2) ≤ r∗ ≤ r and P
can be swept with a chain of r guards.

1 Introduction

A basic question that arises when comparing shapes (point sets, polygons, images, triangular
meshes, molecules, etc.) is that of defining a metric that measures the difference between the
two shapes. Depending on the application, a well-defined metric will capture one’s intuitive notion
of similarity while being mathematically precise and efficiently computable. The Hausdorff metric
is a famous example of a metric for point sets and images [25]. One of the first metrics defined
to measure the difference between two polylines in the plane was the Fréchet metric. An intuitive
way to understand this metric is as follows: Let α and β be the two polylines. Imagine that a man
walks from one end of α to the other end and that a dog walks from one end of β to the other end
with the man holding the dog by a leash. The man and the dog must both walk continuously and
their motion is required to be monotonic. The Fréchet distance between α and β is the minimum
leash length needed. Formally, let d(p, q) denote the Euclidean distance between two points p and
q in the plane. The Fréchet distance between α and β is

F(α, β) = min
f :[0,1]→α,g:[0,1]→β

max
t

d(f(t), g(t)),

where f and g are continuous nondecreasing functions defining the positions of the man and the
dog on the curve at every instant.

In this paper, we introduce two new metrics for measuring the distance between two polylines
and use them to solve problems motivated by applications in computer graphics and robotics. Our
metrics are motivated by the observation that in the Fréchet metric, the leash is allowed to cross
the two polylines. A natural restriction to apply is to require that the leash not cross the polylines.
We have two standard ways in which to measure the length of the leash: its Euclidean length and
its link length (the number of line segments comprising it). Each of these measures directly leads
to the new polyline metrics we define:

1. the geodesic width

W (α, β) = min
f :[0,1]→α,g:[0,1]→β

max
t

dE(f(t), g(t)),

where dE(p, q) denotes the length of a shortest path between p and q that does not cross α
and β, and lies between the two shortest paths connecting the endpoints of α and β. The
minimization is over continuous nondecreasing functions. There are four “reasonable” ways
to connect the endpoints of α and β, and W (α, β) is defined as the minimum obtained among
all four.

2. the link width

L(α, β) = min
f :[0,1]→α,g:[0,1]→β

max
t

dL(f(t), g(t)),
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where dL(p, q) denotes the minimum number of edges in a piecewise-linear path between p
and q that does not cross α and β, and changes continuously as t grows from 0 to 1. Here we
do not require that f and g are nondecreasing.

Each of these metrics has a natural interpretation. Consider the Euclidean shortest path
(geodesic) π(t) between f(t) and g(t) that does not cross α and β. If we let every point f(t), 0 ≤
t ≤ 1 move along π(t) at a velocity proportional to the length dE(f(t), g(t)) of π(t) we obtain a
continuous sequence of polylines. When we view these polylines in sequence, we see an animation
that morphs α into β. Since geodesics do not cross (although they may coincide), We have the use-
ful and desirable property that no intermediate polyline intersects itself, and no two intermediate
polylines cross each other.

In the case of the link width, we consider a minimum-link path between f(t) and g(t), as t
increases from 0 to 1, yielding a sequence of polylines that “sweeps” the area between α and β. If
we imagine that the vertices of these polylines correspond to guards and that the edges of these
polylines correspond to lines of sight between two adjacent (along the sweeping polyline) guards,
then the sweep corresponds to a motion of a set of guards that can find any continuously-moving
intruder in the area between α and β 1. We also have the property that the number of guards
needed is as small as possible.

The solutions to both of these problems is similar in spirit, sharing many main ideas. In the
rest of this section, we discuss the morphing and sweeping problems in more detail.

1.1 Morphing Polylines

In the last few years, the problem of continuously morphing or deforming an object or image
into another object or image has become increasingly popular in computer graphics and computer
vision. In this problem, we are given two shapes α and β and we are asked to produce a continuous
sequence of shapes “between” α and β. Rendering this sequence continuously as an animation will
show α transforming into β. This problem has applications in animation, special effects in movies
and entertainment, contour interpolation in medical imaging, computer-aided geometric design,
and handwriting recognition.

There are many qualities that are desirable in a good morphing scheme. Since α and β are
usually connected and simple, all intermediate shapes should also be connected and simple. The
morphing should transform a connected portion of α to a connected portion of β. It is also useful
for the transformation to treat α and β as near-rigid objects and to avoid superfluous deformations
during the morphing.

There are two common ways used in the literature to specify morphing schemes. The first
approach uses zero sets of implicit functions to represent the morphing [9, 21, 24, 27]. The zero sets
of two implicit functions represent α and β. Interpolating between (the zero sets of) these functions
produces the morphing. Turk and O’ Brien [48] combine the problems of creating and interpolating
implicit functions by casting the problem in a dimension one more than the dimension in which
α and β are embedded. These techniques are elegant and have proven to be quite successful.
However, they have the drawback that unless the implicit functions are chosen with great care,
intermediate shapes are not guaranteed to be simple. Another problem with these methods is that
the correspondences between various parts of α and β are implicit and not user-controllable.

The second popular approach first computes correspondences between points of α and β (for
instance, the vertices of α and β, if α and β are polyhedral) and then creates intermediate shapes

1We ignore issues related to the intruder going “around” α and β and creeping up behind the guards.
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Figure 1: The two polylines α and β and an example of a morphing between them. Dashed lines
represent intermediate polylines. Dotted lines show the paths traveled by the points on α and β
during the morphing.

as defined by interpolated positions between corresponding points [16, 30, 38, 39]. Since the in-
terpolated positions are usually chosen to lie on the segments or splines joining corresponding
points, these techniques usually make it very difficult to ensure that intermediate shapes do not
self-intersect.

Recently, Surazhsky and Gotsman [40, 41, 42] have proposed elegant methods for computing a
morphing between polygons, such that no intermediate polygon intersects itself; however, interme-
diate polygons (as opposed to polylines) may intersect each other, so our goals for polylines cannot
be met directly by their polygon morphing schemes. Also, there is no guarantee that these schemes
minimize the amount of change needed during the morphing.

Surprisingly, the problem of computing continuous morphings has so far received relatively
little attention in the theoretical computational geometry community. If α and β are n-vertex
parallel polygons, i.e., polygons with the same sequence of angles, Hershberger and Suri [23],
improving upon an earlier result of Guibas and Hershberger [17], showed that α and β can be
morphed into one another such that every interpolating polygon is also parallel to α and β using
O(n logn) moves; roughly speaking, a parallel move is a translation of a side of a polygon parallel to
itself. When α and β are simple polygons, an approach that has been used is to find “compatible”
decompositions of α and β and to use these decompositions to generate the correspondences between
α and β. Aronov et al. [5] show that a compatible triangulation (also called a piecewise-linear
homeomorphism) of size Θ(n2) exists between two n-vertex simple polygons. Gupta andWenger [20]
construct compatible triangulations whose size is within a constant factor of optimal. Shapira and
Rappaport [14] decompose the polygons into star-shaped pieces. Their technique is not able to
avoid all self-intersections during the morphing and can take O(n4) time.

In the first part of this paper, we consider the problem of morphing two non-intersecting simple
polygonal chains (or polylines) α and β in the plane. A morphing scheme Γ(α, β) = {γ(t) | 0 ≤
t ≤ 1} from α to β is a family of polylines such that α = γ(0), β = γ(1), for every 0 ≤ t ≤ 1,
γ(t) is connected and simple, and the scheme is continuous, meaning that for any t and any ε > 0,
there is a neighborhood of t for which the Hausdorff distance between γ(t) and γ(t′) is less than
ε for any t′ in the neighborhood. See Figure 1 for an example of a morphing. We compute a
morphing scheme from α to β that consists of two parts. The first part is an explicit mapping
between α and β. Given two functions f : [0, 1] → α and g : [0, 1] → β that parameterize α and
β, respectively, we define the mapping as the set of pairs {(f(u), g(u)), 0 ≤ u ≤ 1}. We enforce the
natural requirement that f and g are monotone along α and β. The second part of the morphing
scheme specifies a route connecting every point f(u) to the corresponding point g(u), for 0 ≤ u ≤ 1.
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In this paper, we adopt the policy of moving f(u) to g(u) along the Euclidean shortest path from
f(u) to g(u) that avoids α and β. This policy guarantees that all intermediate polylines are simple,
since f and g are monotone along α and β and shortest paths do not cross each other (although,
two such shortest paths might have a common sub-path). (This property of intermediate polylines
being simple does not hold for the Fréchet metric [3, 15], which corresponds to linking f(u) to g(u)
with a straight segment, instead of using shortest paths avoiding α and β, and then optimizing
over parameterizations f and g; one can readily construct examples for which γ(t) self-intersects
for some t.) The resulting morphing scheme is straightforward: we move each point f(u) along
its designated route at a constant speed proportional to the length of the route. This morphing is
guaranteed to be connected and continuous. Note that once we specify the mapping functions f
and g, the morphing scheme is completely determined.

Given these requirements on the morphing scheme, it is possible to generate an uncountable
number of different morphing schemes. Clearly, some schemes are better than others. In an effort
to formalize a quantitative notion of the quality of a morphing scheme, we define the width W (f, g)
of a morphing scheme specified by the functions f and g to be the maximum over all values of u of
the length of the route connecting the point f(u) on α to the point g(u) on β. We seek morphing
schemes that minimize the width over all possible morphing schemes, i.e., a morphing scheme whose
width is W (α, β), the geodesic width of α and β.

In this part of the paper, we establish three main results. We first show that if n is the total
number of vertices of α and β, we can compute W (α, β) and a morphing scheme with that width
in O(n2 log2 n) time using O(n2) space. To develop this algorithm, we study the shortest path
diagram, a combinatorial structure that encodes all of the shortest paths connecting points on α to
points on β. We show that the shortest path diagram has size O(n2) and that we can construct it
in O(n2 logn) time using O(n log3 n) working space.2 We also show that, for any parameter r > 0,
we can represent using O(n2) space all shortest paths whose length is at most r. Our algorithm
uses this fact in combination with parametric search [34]. In this respect, our algorithm is similar
to the technique used by Alt and Godau [3] to compute the Fréchet distance between two polylines.
However, we need to establish several properties of the shortest path diagram in order to obtain
our results.

We also consider the problem of computing morphing schemes that treat α and β as being
“rigid.” Consider the case in which α and β correspond to physical objects. It may be desirable to
control the extent by which a portion of α or β is stretched or compressed by the morphing scheme.
Given a constant κ > 1, we restrict our attention to morphing schemes that stretch or compress
any portion of α or β by at most a factor of κ; we show that we can compute in O(n2 log2 n) time
using O(n2) space a morphing of minimum width among all such morphings.

Finally, we also describe an algorithm that computes in O(n logn) time a morphing scheme
whose width is at most 2W (α, β).

1.2 Sweeping Polygons

In the second part of this paper, we focus on computing a motion plan inside a simple polygon
for multiple mobile guards whose goal is to “see” targets inside the polygon, or to verify that no
target is present in the polygon. Nothing is known about the location of the targets or their motion
abilities, except that their motion must be continuous. The guards see a target when there is
an unobstructed line-of-sight between one of the guards and the target. We may impose various

2We use O(n log3 n) space if we are allowed to output the elements of the shortest path diagram as we compute
them. If we are required to store the entire shortest path diagram, we need O(n2) space.
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limitations on the viewing frustum and the range of the vision sensors of the guards.

Parsons [37] and Megiddo et al. [35] study a similar problem in the context of pursuit-evasion
in a graph; in this scenario, the guards and target can move from vertex to vertex of a graph,
until a guard and the target eventually lie at the same vertex. In our geometric setting, what
makes this problem challenging is the issue of recontamination: a particular region of the polygon
may have been cleared by the guards, but if the target can find a way to enter the region again, it
becomes recontaminated and must again be cleared. Thus, unless one has sufficiently many guards,
the target finding problem is not always solvable. Crass et al. [10], Suzuki and Yamashita [45],
Guibas et al. [19], and LaValle et al. [32] study various versions of this problem where the guards
move independently. Guibas et al. prove that for a simple polygon with n vertices and h holes,
Θ(
√
h + log n) guards are needed in the worst case to detect all targets. They also prove that

computing the smallest number of guards needed to find a moving target in a polygonal environment
is NP -hard.

In this paper, we look at a more constrained but still realistic model of how a polygon might
be cleared by a group of guards. We assume that the guards always form a simple polygonal chain
through the polygon; the guards at the ends of the chain are always on two edges of the polygon,
while the rest are at internal vertices of the chain. All links in the chain are segments inside the
polygon. Thus, the guards are mutually visible in pairs and are all linked together. Such a guard
configuration has obvious advantages for safety and communication, if this target-finding operation
happens in adversarial settings. Our goal is to sweep the polygon with a continuously moving chain
of guards, so that, at any instant, the chain of guards partitions the polygon into a “cleared” region
and an “uncleared” region. In the end, we would like to ensure that every point of the polygon has
been swept over an odd number of times. This property guarantees that if any targets are present
in the polygon, they will have to be swept over by the guard chain and thus discovered.

There has been considerable work on the class of polygons that can be swept with a chain of
only two observers—these polygons are called streets [22, 26, 31, 47]. In the framework of Icking
and Klein [26], the guards are required to start at a point p on the boundary of the polygon and
finish at a point q also on the boundary of the polygon. One guard moves clockwise from p to q
and the other moves counterclockwise from p to q. Given p and q, Heffernan [22] shows that O(n)
time suffices to check whether a sweep by two guards exists between p and q and Icking and Klein
construct such a sweep in O(n logn+k) time, where k is the number of “walk” instructions given to
the guards to implement the sweep. Tseng et al. [47] consider the problem of finding two points p
and q on the boundary of the polygon such that a straight walk or a straight counter-walk exists
between p and q that sweeps the polygon (the guards are not allowed to backtrack in a straight
walk, whereas in a straight counter-walk, one guard moves from p to q and the other from q to p
without backtracking). They check if two such points exist (and output a pair) in O(n logn) time.
Based on work by Suzuki and Yamashita [45], Lee, Park, and Chwa [33] and Tan [46] have given
techniques to check in O(n2) time if a chain of two or three guards can sweep a polygon (i.e., if
there exists a search schedule for a 1-searcher or a 2-searcher, in their terminology).

While these results are restricted to streets and to polygons that can be swept by three guards,
we are interested in sweeping polygons that may require more than three guards. Let P be a
polygon with n vertices and let r∗ be the minimum number of guards needed to sweep P . Our
aim is to compute r∗ (or to find a good approximation to r∗) and to determine a search schedule
of small complexity for the guards to perform the sweep (we formally define a search schedule and
its complexity later). The relationship between r∗ and the link width, L(α, β), defined earlier is
as follows: The boundary, ∂P , of P can be partitioned into two polylines, α and β, such that
L(α, β) = r∗, and there exists no partitioning of ∂P into two polylines having link width strictly
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less than r∗.
We describe two main results.

1. We compute r∗ in O(n3) time, using O(n2) working space, and generate a search schedule of
size O(r∗n3);

2. Using O(n logn) time and O(n) space, we compute an integer r such that r ≤ r∗ + 16, and
we can sweep P using r guards.

An intermediate result we achieve is one that uses O(n2) time and O(n2) space to compute an
integer r ≤ r∗ + 2 such that we can sweep P using r guards with a search schedule of size O(rn2).
We can also compute in O(rn2 log r) time a search schedule of size O(rn2) for P that uses r + 4
guards. We also show how to sweep P using r guards, where r is two more than the link radius
of P , and generate a search schedule of size O(rn). (The link radius of P is the minimum over all
points p ∈ P of the maximum link distance from p to other points of P .)

The primary difficulty in planning motions for more than two guards is that the guards at the
internal vertices of the chain can be located anywhere in the interior of P . To solve this problem, we
introduce a structure called the “link diagram”, which represents the link distance and minimum-
link paths between all pairs of points on the boundary of P . As far as we are aware, this structure
appears to be a new concept. We prove that the link diagram has Θ(n3) size and describe an
algorithm to construct it in O(n3) time.

Our first approximation algorithm (with an additive error of two) is based on the observation
that we can approximate the link diagram of P by the link distances between the O(n2) pairs of
vertices of P , if we are willing to tolerate a small additive error (of at most two). Our second,
more efficient, approximation algorithm (also with a small additive error) is based on an interesting
relationship we establish between r∗ and the “link breadth” of P . Surprisingly, we can show that
r∗ is bounded from above and from below by the link breadth (ignoring additive constants).

2 Computing the Morphing Width Exactly

2.1 Geometric Preliminaries

We assume that α ∪ β is a closed Jordan path, i.e. that α and β have common endpoints a and b.
This assumption is without loss of generality since, if this is not the case, we augment α ∪ β with
two curves, γ1 and γ2, of minimum total length, not crossing α or β, that match the endpoints of
α with the endpoints of β. Since the total length is minimized, a simple exchange argument shows
that the curves γ1 and γ2 do not cross each other. Thus, α ∪ γ1 ∪ β ∪ γ2 forms a closed Jordan
path, so we can extend α and β in such a way that they have common endpoints.

Let P be the simple polygon whose boundary, ∂P , is the union of α and β. For two points
p, q ∈ P , let πP (p, q) denote the shortest path in the plane between p and q that lies inside P and
let dP (p, q) denote the length of this path. We will drop the subscript when P is clear from the
context. For two points p, q ∈ P , it is well-known that π(p, q) is a polygonal chain whose vertices
(other than p and q) are reflex vertices of P . We say that the combinatorial structure of π(p, q) is
the following sequence: the edge of P on which p lies, the sequence of reflex vertices of P through
which π(p, q) passes, and the edge of P on which q lies.

We assume, without loss of generality, that both α and β have unit length; otherwise, we can
use a simple rescaling in the parameterization. Let f : [0, 1]→ α, where f(0) = a and f(1) = b be
a continuous, increasing3 function. Let g : [0, 1]→ β, where g(0) = a and g(1) = b be a continuous,

3The function f is increasing if for every 0 ≤ u1 < u2 ≤ 1, f(u1) is closer to a along α than is f(u2).
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increasing function. We say that the pair of functions (f, g) induces a mapping from α to β that
associates the point f(u) ∈ α with the point g(u) ∈ β, where 0 ≤ u ≤ 1. We define the width
W (f, g) of a mapping to be max{d(f(u), g(u)), 0 ≤ u ≤ 1}. The following lemma states a useful
property of the total number of combinatorially-distinct paths π(f(u), g(u)), 0 ≤ u ≤ 1.

Lemma 2.1 Let (f, g) be a pair of functions inducing a mapping from α to β. Let 0 ≤ u1 < u2 <
. . . < uk ≤ 1 be numbers such that π(f(ui), g(ui)) and π(f(uj), g(uj)) are combinatorially different
(1 ≤ i < j ≤ k). Then k = O(n) and we can store a representation of the set of shortest paths
{π(f(ui), g(ui)), 1 ≤ i ≤ k} using O(n) space.

Proof : Clearly if a vertex v of P appears on π(f(uj), g(uj)) but not on π(f(uj+1), g(uj+1)), then
v does not appear on any path π(f(uk), g(uk)) for k > j, since π(f(uj+1), g(uj+1)) separates P
into two regions, and v lies in the interior of only one of them. From this observation, it also
follows that we can store the difference between every two consecutive paths π(f(uj), g(uj)) and
π(f(uj+1), g(uj+1)) using only O(n) space. ¤

Given a pair (f, g), for 0 ≤ u, t ≤ 1, let δ(u, t) be the point on π(f(u), g(u)) such that
d(f(u), δ(u, t)) = t·d(f(u), g(u)). The following lemma shows how to convert (f, g) into a morphing.

Lemma 2.2 Let (f, g) be a pair of functions inducing a mapping from α to β. For 0 ≤ t ≤ 1, let
γ(t) be the sequence of points {δ(u, t), 0 ≤ u ≤ 1}. The sequence γ(t) is connected and simple and
the set Γ = {γ(t) | 0 ≤ t ≤ 1} is a continuous morphing scheme from α to β.

Proof : Clearly for any choice of ξ > 0 we can find an ε > 0 such that |d(f(u), g(u))−d(f(u+ε), g(u+
ε))| ≤ ξ, and moreover, the Hausdorff distance4 between π(f(u), g(u)) and π(f(u+ ε), g(u+ ε)) is
at most ξ. In particular ||δ(u, t)− δ(u + ε, t)|| ≤ ξ, for every t. Thus, it is an elementary calculus
exercise to show that {δ(u, t), 0 ≤ u ≤ 1} is continuous for any choice of t. Using similar arguments,
one can show that for every t, ||δ(u, t)− δ(u, t+ ε′)|| ≤ ξ, for an appropriate ε′ = ε′(u, t) > 0; thus,
the Hausdorff distance between γ(t) and γ(t+ ε′) is at most ξ, implying that Γ is continuous. ¤

Given these two lemmas, we concentrate in the rest of this part of the paper on computing a
mapping (f, g) from α to β and ignore the process of converting such a mapping into a morphing
scheme.

2.2 The Shortest Path Diagram

In this section, we define the shortest path diagram of a simple polygon and establish some of its
properties. The shortest path diagram represents all of the shortest paths inside P in terms of their
combinatorial structures.

Let o ∈ ∂P . We parameterize points p ∈ ∂P by the clockwise distance from o to p along ∂P ,
divided by the perimeter of P . Let φ : [0, 1) → ∂P denote the bijective function corresponding
to this parameterization; thus, φ() maps every point of ∂P to a point in the interval [0, 1). The
shortest-path diagram SP of P is a decomposition of the unit square into maximally connected
regions such that for any points (u1, v1) and (u2, v2) in the same region, the combinatorial structures
of the shortest paths π(φ(u1), φ(v1)) and π(φ(u2), φ(v2)) are identical. We will use the terms faces,
arcs, and nodes, respectively, to denote the regions of SP , the one-dimensional boundaries between

4The Hausdorff distance between α and β is ≤ ξ if and only if for every point x of one of the curves there is a
point on the other curve whose Euclidean distance from x is ≤ ξ — see, e.g., [2] for details.
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the regions of SP , and the points where two or more arcs of SP meet. Two adjacent faces of SP
correspond to shortest paths whose combinatorial structures differ by one element. Therefore, every
node in SP has even degree. We now prove that the size of SP is O(n2). We first characterize the
arcs of SP .

Lemma 2.3 Let (u, v) be a point on an arc of SP . Then the shortest path π = π(φ(u), φ(v))
satisfies one of the following conditions:

1. If π consists of only one edge, then π passes through a vertex of P .

2. If π contains two or more edges, then either the first or last edge of π touches two vertices
of P .

Proof : Suppose the conditions of the lemma are not true. Then there exists a square s of suitably
small size centered at (u, v) such that for any point (u′, v′) ∈ s, π(φ(u), φ(v)) and π(φ(u′), φ(v′))
are combinatorially equivalent, which contradicts the fact that (u, v) is a point on an arc of SP . ¤

Corollary 2.4 If (u, v) is a node of SP , then the first and last edges of π(φ(u), φ(v)) are each
incident on two vertices of P .

A simple consequence of this corollary is that no two nodes of SP have identical combinatorial
structures. This characterization of the nodes of SP let us bound the number of nodes in SP .

Lemma 2.5 There are O(n2) nodes in SP .

Proof : For two points p, q ∈ ∂P , we say that the shortest path π(p, q) is special if both the first
and last edges of π(p, q) are incident on two vertices of P . By Corollary 2.4, every node in SP
corresponds to a unique special path. We prove that there are O(n2) special shortest paths in P ,
which proves the lemma. Let π(p, q) be a special path and let e and f be the edges of π(p, q) that
are incident on p and q respectively. There are four types of special paths:

1. Both p and q are vertices of P . Clearly, there are O(n2) such special paths.

2. p is not a vertex of P but q is. In this case, let r be the vertex of P that lies in e and is closer
to p. The special path π(r, q) is of the previous type, so we can charge π(p, q) to π(r, q).

3. p is a vertex of P but q is not. We handle this case in a manner similar to the previous case.

4. Neither p nor q is a vertex of P . We can handle this case by combining the arguments for
the previous two cases.

Each special path is charged at most four times by this argument, thus proving the lemma. ¤

Theorem 2.6 If P is a polygon with n vertices, then its shortest-path diagram has complexity
O(n2).

In order to describe the algorithm to construct SP , we prove a property of the nodes of SP .

Lemma 2.7 There are four arcs incident on each node of SP .

Proof : Let π(φ(u), φ(v)) be the path corresponding to a node (u, v), connecting the points φ(u) and
φ(v) on ∂P . Clearly both the first and last edges of π are adjacent to two vertices (not necessarily
distinct). We need to check two cases:
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φ(u)
φ(u′)

r1

φ(u)

φ(u′)

r1 = r′2

φ(u)φ(u′)

r1 = r′2

(i) (ii)

(iii)

r1

φ(u) φ(u′)
(iv)

r′1

r2 = r′2

r′1

r1

φ(u) φ(u′)
(v)

r2 = r′2

r′1

r′1

φ(v) = φ(v′)φ(v) = φ(v′)

φ(v) = φ(v′)

φ(v) = φ(v′)

φ(v)
φ(v′)

Figure 2: Proof of Lemmas 2.7 and 2.8

• π(φ(u), φ(v)) consists of a single segment φ(u)φ(v) (see for example Fig. 2 (iv)). Assume first
that φ(u)φ(v) is adjacent to two reflex vertices r1 and r2 of P , different from its endpoints.
By slightly perturbing φ(u) and φ(v) along ∂P , we can align π(φ(u), φ(v)) so that among
all vertices of P , π touches only r1, only r2, neither r1 nor r2, or both (and, in this case, π
consists of three edges). Clearly these four cases are the only four possible cases, for small
enough perturbation of u and v. This is also the only case at which an arc is not horizontal
nor vertical.

It is easily checked that a similar argument holds if either r1, r2 or both are also the endpoints
of π(φ(u), φ(v)).

• π(φ(u), φ(v)) consists of two or more segments. In this case, we can perturb the endpoints of
φ(u) and φ(v) independently — see for example Fig. 2(i), (ii), (iii) and (v), where the paths
obtained by perturbing only one of them corresponds to the four arcs adjacent to (u, v).
Clearly no other arc is adjacent to the node (u, v).

¤

The next lemma establishes the relationship between two nodes that are connected by an arc.
The intuition behind this lemma is that if two nodes are connected by an arc, then the shortest
paths corresponding to these nodes are closely related. In particular, it is true that the first edge
on one path is adjacent to the first edge in the other path in the visibility ordering around the first
or second vertex of one of the two paths or that an analogous statement holds for the last edges of
the two paths.

Lemma 2.8 Let (u, v) and (u′, v′) be two nodes of SP that are incident on the same arc γ of SP .
Assume that u 6= u′. Let r1, r2, . . . be the (ordered) sequence of reflex vertices on π(φ(u), φ(v))
and let r′1, r

′
2, . . . be the sequence of reflex vertices on π(φ(u′), φ(v′)). Assume that r1 and r′1 are

the vertices closer to φ(u) and φ(u′), respectively, in each sequence. Then one of the following
conditions holds:
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(i) The paths π(φ(u), φ(v)) and π(φ(u′), φ(v′)) pass through the same number of reflex vertices
of P , r1 = r′1, and the triangle with vertices r1, φ(u), and φ(u

′) does not contain any vertices
of P in its interior, (see Fig. 2 (i))

(ii) The path π(φ(u′), φ(v′)) passes through one more reflex vertex than π(φ(u), φ(v)), r1 = r′2,
and the triangle with vertices r2, φ(u), and φ(u′) does not contain any vertices of P in its
interior (see Fig. 2 (ii) and Fig. 2 (iii)).

(iii) The paths π(φ(u), φ(v)) and π(φ(u′), φ(v′)) pass through the same number of reflex vertices
of P , r2 = r′2, and the triangle with vertices r2, φ(u), and φ(u

′) does not contain any vertices
of P in its interior, (see Fig. 2 (iv) and Fig. 2 (v) ).

We are now ready to describe the algorithm for constructing SP . There are two main steps.

1. We construct the set S of all of the nodes of SP . To do so, we compute the shortest paths
between all pairs of vertices of P using the techniques of Guibas et al. [18]. We add the node
corresponding to each of these paths to S. If we compute the shortest path for a pair of
vertices (p, q), where p is a reflex vertex, then we extend the first edge of π(p, q) backward
till it intersects ∂P at a point p′ by performing a ray-shooting query [8]. We then add the
node corresponding to (p′, q) to S. We perform a similar process if q is a reflex vertex. As a
by-product of the process of computing all of the shortest paths, we also store for each reflex
vertex v of P a sorted list Lv of all of the vertices of P that are visible to v.

2. We use Lemma 2.8 to connect all the nodes in S by computing the arcs of SP . Let (u, v)
be a node computed in the previous step and let r and s be the first and last vertices
on π(φ(u), φ(v)), respectively. We assume, without loss of generality, that π(φ(u), φ(v)) is
directed from φ(u) to φ(v) and that r is to the left of π(φ(u), φ(v)).

(a) We do a binary search to locate φ(u) in the list Lr. Let p be the vertex in Lr to the
left of φ(u). Let p′ be the point on ∂P obtained by extending the segment rp beyond
p (we have already computed p′ in the previous step). We connect (u, v) to the node
(φ−1(p′), v).

(b) If r′ is the second vertex on π(φ(u), φ(v)) and r′ lies on the right of π(φ(u), φ(v)), we
locate φ(u) in the list Lr′ , find the point p′ in Lr′ to the right of φ(u), and connect (u, v)
to the node (φ−1(p′′), v), where p′′ is the point on ∂P obtained by extending the segment
r′p′ beyond p′.

(c) We execute an analogous procedure with φ(v) and s.

The correctness of the algorithm follows from Corollary 2.4 and Lemma 2.8. We now analyze
the running time of the algorithm. We can compute the shortest path tree for each vertex of P
in O(n) time per vertex [18]. We can answer each ray-shooting query made in Step 1 in O(logn)
time [8]. Thus, we spend a total of O(n2 log n) time in Step 1. In Step 2, for each arc we add, we
spend O(logn) time. Therefore, the running time of the algorithm is O(n2 log n). The algorithm
uses O(n2) space. If it is enough to output the nodes and arcs of SP as we find them, we can reduce
the space requirement to O(n log3 n) using the technique of Agarwal et al. [1] to store the visibility
graph of a polygon compactly.

Theorem 2.9 We can construct the shortest path diagram of a polygon with n vertices in O(n2 logn)
time using O(n log3 n) working space.
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2.3 The Main Algorithm

In this section, we present an algorithm for computing a mapping (f, g) between α and β whose
width is W (α, β), the morphing width of α and β. We will use the shortest path diagram SP as
the basis of our algorithm in combination with parametric search [34]. To make the description of
the algorithm simpler, we slightly modify the definition of SP . Recall that a and b are the common
endpoints of α and β and that α and β have unit length. Let φ1 : [0, 1]→ ∂α denote the bijective
function such that φ1(u), 0 ≤ u ≤ 1 is the point on α whose distance from a along α is u. Define
φ2 : [0, 1]→ ∂β similarly. The shortest-path diagram SP of P = α∪β is a decomposition of the unit
square into maximally connected regions such that for any points (u1, v1) and (u2, v2) in the same
region, the combinatorial structures of the shortest paths π(φ1(u1), φ2(v1)) and π(φ1(u2), φ2(v2))
are identical. Note that we can use the algorithm of the previous section (with minor modifications)
to construct SP .

We define a trajectory to be an xy-monotone path in SP connecting the points (0, 0) and (1, 1).
Let T be a trajectory in SP . We observe that there is a unique mapping (fT , gT ) corresponding
to T ; for every point (x, y) ∈ T , this mapping associates the point φ1(x) ∈ α with the point
φ2(y) ∈ β. We abuse notation and let d(u, v) denote the shortest-path distance d(φ(u), φ(v)). We
define dT = max(u,v)∈T d(u, v) as the maximum value that d(u, v) assumes over all points (u, v) ∈ T .
The following simple lemma is central to our algorithm (refer to the introduction for the definition
of the geodesic width W (α, β)):

Lemma 2.10 If T is a trajectory in SP and (fT , gT ) is the mapping corresponding to T , then the
geodesic width W (fT , gT ) = dT .

Thus, it is enough to compute the trajectory T ∗ that minimizes the value of dT ∗ over all
trajectories. We omit the details of constructing the mapping corresponding to T ∗.

It appears difficult to compute T ∗ directly from SP . We adopt an approach that is similar to the
technique used by Alt and Godau [3] for computing the Fréchet distance between two polylines. In
a pre-processing step, we compute SP . We then construct an oracle that determines for a parameter
r > 0, whether there exists a trajectory Tr with d(Tr) ≤ r. We combine this oracle with parametric
search [34] to compute T ∗.

For r > 0, we define SP (r) to be set of all points (u, v) such that d(u, v) ≤ r; clearly, SP (r)
is a refinement of SP . Our oracle is simple: we first construct SP (r) and then check if there is a
trajectory that passes only through the points of SP (r). To construct SP (r), we note that in each
face of SP , the function d(u, v) has constant description complexity. Therefore, the complexity of
the portion of SP (r) inside a face of SP is proportional to the size of that face. Thus, the size of
SP (r) is O(n2) and we can compute it from SP in O(n2) time. We use a standard graph search to
check if there is a trajectory that passes only through points of SP (r).

We briefly describe the generic part, which is essentially identical to the method used in [3].
We consider the set X of all of the locally x-extreme points of SP . As r changes, the points of
X change, and when r = r∗, two of them have the same x-coordinate. Following the parametric
search paradigm, it is enough to sort the x-coordinates of the points of X at the unknown value
of r∗, while maintaining an interval [rmin, rmax] in which r∗ lies. During the sorting process, we
submit critical values r′ to the oracle, to find whether r′ is larger or smaller than r∗, and each such
query shrinks [rmin, rmax], until at the end of the process, this interval consists of a single point,
which is r∗. Thus we obtain the following result:
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Theorem 2.11 Given two non-intersecting, simple polylines α and β, we can compute a mapping
(f, g) between α and β whose width is the morphing width of α and β in O(n2 log2 n) time using
O(n2) space.

We now show how to extend this result when we want to control the amount of distortion α
and β undergo during the morphing. We start by formalizing the notion of distortion. Let (f, g)
be a mapping from α to β. For 0 ≤ u1 < u2 ≤ 1, let f(u1, u2) denote the portion of α between
f(u1) and f(u2) and let |f(u1, u2)| denote the length of f(u1, u2); define similar notation for g. For
κ > 1, we say that the mapping (f, g) is κ-stretched if for every 0 ≤ u1 < u2 ≤ 1, we have that
(1/κ)|f(u1, u2)| ≤ |g(u1, u2)| ≤ κ|f(u1, u2)|. If T is the trajectory corresponding to a κ-stretched
mapping, we say that T is κ-stretched; it is easy to see that the slope at every point on T lies
between 1/κ and κ.

In the rest of this section we present an algorithm to find the κ-stretched trajectory T ∗ that
minimizes the value of dT ∗ over all κ-stretched trajectories. Once again, we construct an oracle
that checks, given a parameter r > 0, whether there is a κ-stretched trajectory T such that dT ≤ r.
We omit the details of how we combine this oracle with parametric search.

Let S be the set of cells of the vertical decomposition of the complement of SP (r). Each cell in
S has constant description complexity; thus the size |S| of S is O(n2). To describe the algorithm,
we will find it convenient to think of these cells as obstacles. We say that a κ-stretched trajectory
T is legal if it does not contain any point in the interior of a cell in S, i.e., if it lies entirely inside
SP (r). The following lemma is central to our argument:

Lemma 2.12 Given r ≥ 0, κ ≥ 1, we can find a legal κ-stretched trajectory in SP (r) or determine
that no such trajectory exists in O(n2 log n) time.

Proof : Let p be a point in SP (r). We define a flashlight Fp centered at p to be the wedge with
p as origin and whose two edges have slope κ and 1/κ, respectively. A point q is illuminated by
Fp if q is inside Fp and the segment pq does not intersect the interior of any cells in S. A point q
is illuminated if it is illuminated either by the flashlight F(0,0) or by a flashlight Fp such that p is
also illuminated. It is clear that the point (1, 1) is illuminated if and only if SP (r) contains a legal
κ-stretched trajectory. Therefore, we settle the question of whether SP (r) contains a κ-stretched
trajectory or not by computing the set of all illuminated points and checking if the point (1, 1) is
illuminated.

We compute the set of illuminated points by performing a sweep starting at (0, 0). We use a
sweep line ` making an angle of 3π/4 with the x-axis and moving to the right. We initially place a
flashlight at (0, 0) and add more flashlights as the sweep proceeds. At each instant, we maintain the
invariant that we have computed the set of illuminated points to the left of `. We also maintain the
intervals of ` that are illuminated and the intervals in which ` intersects the cells of S. The event
points of the sweep are the nodes of the cells of S, the intersections of the edges of the flashlights
with the arcs of the cells of S, and intersections between the flashlights themselves. The last two
types of events are interesting.

1. The edge of a flashlight Fp intersects the boundary of a cell c ∈ S. We trace the illuminated
portion of ∂c until we reach a point r where this illuminated portion ends. If the line through
p and r is tangent to c and does not intersect the interior of any other cell in S adjacent to
r, we add a flashlight centered at r.

2. The intervals of ` illuminated by two flashlights intersect. It is easy to see that the union of
these two flashlights is connected to the right of `. Therefore, we merge these two flashlights
into one.
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There are at most 2|S| + 1 flashlights created during this sweep, since we place at most two
flashlights on the boundary of each cell in S. Every time we merge two flashlights, we decrease the
number of flashlights by one. Therefore, there are O(|S|) events during the sweep, each of which
we can process in O(logn) time using standard data structures. Since |S| = O(n2), we have proven
the lemma.

It is easy to see that if there is a legal κ-stretched trajectory, then there is a polygonal trajectory
whose vertices are the origins of the flashlights placed by the algorithm. Therefore, the algorithm
will detect that (1, 1) is illuminated. Since the converse is also true, we have established the
correctness of the algorithm. ¤

We obtain the following theorem once we use this lemma in combination with parametric search:

Theorem 2.13 Given two non-intersecting, simple polylines α and β and a parameter κ > 1, we
can compute a κ-stretched mapping (f, g) between α and β with minimum width in O(n2 log2 n)
time using O(n2) space.

3 Approximating the Morphing Width

In this section we describe an approximation algorithm for computing the morphing width W (α, β)
of α and β. As before, a and b are the the two common endpoints of α and β and P is the polygon
whose boundary formed by the union on α and β. Let σ = πP (a, b) denote the shortest path
between a and b inside P . Let P1 and P2 be the two polygons created from P by adding σ; see
Figure 3(i). The boundary ∂P1 may be degenerate in the sense that non-consecutive vertices of P1

have identical coordinates. This degeneracy occurs whenever σ has two consecutive vertices such
that one vertex lies in ∂P1 and the other vertex lies in ∂P2. A similar remark holds for ∂P2. We
first prove a structural lemma that states that we can approximate W (α, β) within a factor of two.
Then we show how to compute such an approximation and a morphing scheme with that width.

3.1 A Structural Lemma

The intuition behind our 2-approximation for W (α, β) is that the width of the morphing scheme
obtained by first transforming α into σ and then transforming σ into β is at most 2W (α, β). We
now provide a formal basis for this intuition. For a point x ∈ P , let dP (σ, x) denote the minimum
length of a shortest path between x and a point of σ, and let w = maxx∈∂P dP (σ, x).

Clearly, any morphing scheme for P has width at least w, since for all y ∈ β, d(q, y) ≥ d(σ, q)
and for all x ∈ α, d(x, r) ≥ d(σ, r). We claim that the morphing width of both P1 and P2 is at most
w, which implies the result. We prove the claim for P1. A similar argument holds for P2.

We parameterize α and σ monotonically such that α = ∪1
s=0α(s) and σ = ∪1

t=0σ(t). Let
u(s, t) denote the length of the shortest path connecting the points α(s) and σ(t) inside P1. By
construction, for any 0 ≤ a0 ≤ 1, there exits a b0 such that u(a0, b0) ≤ w. Furthermore, we claim
that if there exists b1 ≥ b0 such that u(a0, b1) ≤ w then u(a0, v) ≤ w, for all b0 ≤ v ≤ b1.

Indeed, assume that this claim is false, and let a0, b0, and b1 be such that b0 ≤ b1, b1 − b0 is
minimized, u(a0, b0) = u(a0, b1) = w, and u(a0, v) > w for all b0 < v < b1. Let p = α(a0), q =
σ(b0), r = σ(b1), γpq = πP1

(p, q), γqr = σ(q, r), and γrp = πP1
(r, p). Let P ′ be the polygon bounded

by γ = γpq∪γqr∪γrp. We assume without loss of generality that γ is oriented such that the interior
of P ′ lies to the left of γ. See Figure 3(ii). We assume that γpq and γrp are disjoint in their interior.
Otherwise, the following argument can be applied to their portions that are disjoint.
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Note that γpq, γqr and γrp are all portions of shortest paths, and can not be shortened inside
P ′, since P ′ ⊆ P . In particular, except for p, q, r all other vertices of P ′ have an angle at least π.
Following the same reasoning, the angles of P ′ at q and r must also be at least π/2 (otherwise, γpq or
γrp can be shortcut). The angle µ of P ′ at p is nonzero. Let k be the number of vertices of P ′. The
arguments above imply that the sum of the angles of P ′ is at least (k−3)π+2(π/2)+µ > (k−2)π,
which is impossible, since the sum of the angles of a polygon with k vertices is equal to (k − 2)π.

It is now straightforward to prove, that the set

U =
{

(s, t)
∣

∣

∣
0 ≤ s, t ≤ 1, u(s, t) ≤ w

}

is connected and contains the points (0, 0) and (1, 1). In particular, U contains an xy-monotone
trajectory that connects (0, 0) to (1, 1). The xy-monotonicity of the trajectory follows from the
structure of the Voronoi diagram induced by σ inside P . (See the next section for details.) This
trajectory corresponds to a morphing scheme for α and σ with width at most w. This argument
proves the following theorem:

Theorem 3.1 Let q ∈ α and r ∈ β be the two points that maximize dP (σ, q) and dP (σ, r), respec-
tively. Let w = max(dP (σ, q), dP (σ, r)); then w ≤W (α, β) ≤ 2w.

s

t

σ
P1

β

α q

r

(a)

α

p

µ

q r
β

P ′ γpr
γpq

(b)

Figure 3: Illustration of the proof of Theorem 3.1: (a) The shortest path σ. (b) The polygon P ′.
If the angles at q and r are smaller than π/2 (as in the figure), we can shorten γpq, γpr to realize a
shorter path between p and a point inside σ(q, r).

3.2 Computing a Morphing Scheme with Width ≤ 2W (α, β)

In this section, we describe an algorithm that uses Theorem 3.1 to compute a morphing scheme
with width at most 2W (α, β). We only sketch the algorithm, since the details are straightforward
but somewhat tedious. We parameterize α and β as before. For each point x ∈ α, we find the
shortest path π(x, σ) and the point x′ ∈ σ that realizes this shortest path. Using this information,
we construct a morphing scheme for α and σ. We perform a similar procedure for each point on
β to compute a morphing scheme for β and σ. Finally, we merge these two morphing schemes to
obtain a morphing scheme for α and β. The key step in this algorithm is finding for each point
in α and β the closest point on σ. We spend the rest of the section describing our procedure for
doing so in O(n logn) time. Since we compute the curve σ in linear time using the algorithm of
Guibas et al. [18], we obtain the following theorem:
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Theorem 3.2 We compute in O(n logn) time a morphing scheme (f, g) for α and β such that the
width W (f, g) satisfies W (α, β) ≤W (f, g) ≤ 2W (α, β).

We now turn our attention to the problem of computing for each point on α the point on σ
that is closest to it. We adopt an identical procedure for β. For a point x ∈ P1, let v(x) be the
point of σ such that the length of the Euclidean shortest path πP1

(x, v(x)) is the smallest over all
the paths from x to points on σ; v(x) is either a vertex of σ or a point that lies in the interior of
an edge of σ. We now define the geodesic Voronoi diagram of σ inside P1, denoted by VP1

(σ), as
the decomposition of P1 into maximal cells such that for any two points x and y in the same cell
of VP1

(σ), the shortest paths πP1
(x, v(x)) and πP1

(y, v(y)) are combinatorially identical. It is clear
that once we compute VP1

(σ), we compute for each point on α the point on σ that is closest to it.
We are not aware of any near-linear time algorithm for computing such a Voronoi diagram in the
general case (when σ is an arbitrary polyline and not a shortest-path). In the rest of the section,
we drop the subscript from VP1

(σ).

R1 R2

R3

R4

R5

R6

R7

Q

σ

(a)

e

S0

S1

S2

S3

(b)

Figure 4: Illustration of the proof of Lemma 3.3: (a) Decomposing a sub-polygon Q into cells of
the Voronoi diagram. (b) Decomposing the Voronoi cell corresponding to the edge e by performing
vertical sweeping. The resulting sub-polygons are S0, S1, S2, and S3. Each polygon except S0 has
an associated gateway; all shortest paths from inside such a polygon to e pass through the gateway.

Let Q be the set of polygons that are the closures of the maximal connected components of the
interior of P1. Clearly, the overall combinatorial complexity of the polygons in Q is bounded by
O(n). We compute the portion of V(σ) inside each polygon Q ∈ Q separately. Let σ ′ denote the
portion of σ inside Q. The portion of V(σ) inside Q is identical to the Voronoi diagram VQ(σ′) of
σ′ inside Q. However, since σ′ cannot be shortened inside Q and since ∂Q is not degenerate, we
conclude that σ′ is concave.

The Voronoi diagram of σ′ inside Q is induced either by the interior of an edge of σ′ or by
a vertex of σ′. The bisector of the interior of an edge of σ′ and its endpoint is simply a ray
perpendicular to the edge emanating from the vertex directed into the interior of Q. Each vertex
of σ′ induces two such rays and the region between them is the cell of VQ(σ′) corresponding to the
vertex. Since σ′ is concave, these rays do not intersect. In particular, these rays decompose Q into
a set of polygons R1, R2, . . . , Ru such that each such polygon is the cell in VQ(σ′) corresponding to
either a vertex of σ′ or an edge of σ′.

We compute the decomposition of Q into the polygons R1, R2, . . . , Ru by preprocessing Q for
ray shooting and performing u−1 ray shooting queries in Q. If we use the algorithm of Guibas et al.
[18] to perform these queries, this procedure takes a total of O(

∑

Q∈Q |Q| log |Q|) = O(n logn) time,
where |Q| denotes the number of vertices of Q.
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We are now left with the task of computing the portion of VQ(σ′) inside each Rj . If Rj

corresponds to a vertex of σ′, the desired decomposition of Rj is given simply by the shortest path
map (rooted at that vertex), which is computed in O(|Rj |) time [18]. If Rj corresponds to an edge
e of σ′, we observe that e is on the boundary of Rj and we would like to compute the Voronoi
diagram VRj (e) of e inside Rj . Rotate Rj so that e is parallel to the x-axis (note that the two edges
adjacent to e are vertical). For a point x ∈ Rj , the shortest-path to e ends in a vertical segment
connected to e. From each vertex of Rj that is vertically visible from e (we assume that all the
vertices that see e are above it), if we shoot a vertical ray upwards until the ray intersects ∂Rj , we
decompose Rj into a set S of polygons. One of the polygons S ∈ S has e on its boundary; for every
point x ∈ S, πS(x, e) is a vertical segment. Every other polygon S ′ ∈ S has a vertex p(S ′) that
is vertically visible from e. For every point x ∈ S ′, πS′(x, e) passes through p(S ′). Thus, we now
compute the Voronoi diagram of e inside Rj by computing the shortest path map of p(S ′) inside
each polygon S ′ ∈ S.

We compute the set of vertices {p(S ′), S′ ∈ S} in O(|Rj | log |Rj |) time (in fact, we do so in
linear time by computing the vertical decomposition of Rj [7]). Inside each sub-polygon S ′ ∈ S,
we compute the shortest path map of p(S ′) in O(|S′|) time. Thus, the overall running time of the
algorithm is O(n logn).

Lemma 3.3 If P is a polygon with n vertices and σ is a concave chain forming a portion of ∂P ,
we compute the Voronoi diagram induced by σ inside P in O(n logn) time.

4 Sweeping Polygons: An Exact Algorithm

4.1 Geometric Preliminaries

Let P be a simple polygon in the plane. Let G = {G1, G2, . . . , Gr} be a set of point guards
in P . For a guard Gi ∈ G, let γi(t) denote the position of Gi in P at time t; we require that
γi(t) : [0,∞) → P be a continuous function. A configuration of G at time t, denoted Γ(t), is the
set of points {γi(t) | 1 ≤ i ≤ r}. We say that Γ(t) is legal if

1. γ1(t) and γr(t) both lie on ∂P , and

2. for every 1 ≤ i < r, the segment γi(t)γi+1(t) does not intersect the exterior of P .

From now on, we will use the term configuration to mean legal configuration. A configuration of G
defines a piecewise-linear path (the configuration chain) connecting the points γ1(t) and γr(t) that
“cuts” through P and does not intersect the exterior of P .

A motion strategy (γ,G) = {γi, 1 ≤ i ≤ r} is a specification of γi, for each guard Gi ∈ G. We
assume that each guard can follow an algebraic path, once the path is specified. Thus, each γi is a
piecewise-algebraic function. The complexity of γi is the number of algebraic functions needed to
define it. The complexity of a motion strategy is the total complexity of the γi’s.

In order to formalize the notion of sweeping a polygon, we assume that the chain corresponding
to the configuration of the guards is oriented from G1 to Gr. For a motion strategy (γ,G), let
AP (t) denote the fraction of the area of P to the right of the configuration chain defined by Γ(t);
AP (0) = 0. The portion of P that lies to the right of the configuration chain is said to be clear;
the portion of P to the left of the configuration chain is said to be contaminated.

We say that a motion strategy (γ,G) is a search schedule for P if AP (t) = 1, for some t > 0.
Finally, we say that P is r-searchable if a search schedule that uses at most r guards exists for P .
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See Figure 5 for an example of such a sweep. We will see (Figure 10) later that there are n-vertex
polygons that are not o(n)-searchable.

Our algorithms will compute a search schedule for P ; while we do not explicitly specify the γi’s,
they can be readily computed from the output of the algorithms.

(a) (b) (c) (d)

$G_1$

(e) (f)

Figure 5: A search schedule with three guards. The unswept (“contaminated”) region is shown
shaded.

We assume without loss of generality that P has unit perimeter (the length of ∂P is 1) and
that all of the guards start at the same point in ∂P at the beginning of the sweep and converge
at another point of ∂P at the end of the sweep. Thus, at the beginning of the sweep, all of the
polygon is contaminated and at the end of the sweep all of the polygon is clear. The following
lemma, whose proof follows easily from the definitions, characterizes when a motion strategy is a
search schedule:

Lemma 4.1 Given a motion strategy (γ,G), let δ1 (resp., δr) denote the total distance that G1

(resp., Gr) travels in the counterclockwise (resp., clockwise) direction during γ. If |δ1 + δr| = 1,
then (γ,G) is a search schedule for P .

Using this lemma, it is easy to show that in any search schedule, each point in P is swept over
an odd number of times.

In all of our algorithms, we construct search schedules in which each configuration of the guards
corresponds to a “minimum-link” path between the first and last guards.

We now review some standard definitions related to such paths. Given two points p, q ∈ P ,
we say that p and q see each other if the segment pq does not intersect the exterior of P . For
a point p ∈ P , the visibility polygon Vp is the set of all points in P that see p. Similarly, for a
segment e ⊂ P , the weak visibility polygon Ve is the set of all points in P that see some point in
e. See Figure 6(a) for an example. An edge of Ve is either (i) a portion of an edge of P or (ii)
a segment with one endpoint at a reflex vertex of P and the other endpoint on an edge of P . In
the second case, we call the edge a chord of Ve. See Figure 6(a). A chord s divides P into two or
more sub-polygons; we use P [s; e] to denote the sub-polygons not containing e. Given two points
p, q ∈ P that see each other, let ` be the line passing through p and q. Then the extension of (p, q)
is the connected component of ` ∩ P that contains the segment pq.

A minimum-link path between p and q is a piecewise-linear path between p and q that does not
intersect the exterior of P and has the minimum number of line segments; the link distance dL(p, q)
between p and q is the number of line segments in such a path.

The window partition Wp of a p ∈ P is a partition of P into maximal regions of constant link
distance from p. An edge of Wp is either a portion of an edge of P or is a chord that separates two
regions of Wp; we call such a chord a window of Wp. See Figure 6(b) for an example. If a window
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Figure 6: A weak visibility polygon, window partition, and window tree.

w ∈ Wp has endpoints x and y, then one endpoint of w (say, x) is a reflex vertex v of P and the
other endpoint (y) lies on an edge e of P ; x is closer to p than y in terms of geodesic distance. We
call x the supporting vertex of the window and we call y the far endpoint of the window. We say
that the combinatorial type of w is the vertex-edge pair (v, e). The combinatorial type of Wp is a
list of the combinatorial types of all of its windows. The planar dual of Wp is the window tree, Tp.
Suri [44] introduced the notion of window partition and showed that it can be constructed in time
and space O(n). The definitions of window partition and window tree extend naturally to the case
in which the source is a line segment, instead of a point.

We can use the window partition Wp to compute a minimum-link path from p to any other
point in P . In general, minimum-link paths are not unique. The canonical minimum-link path
πL(p, q) between p ∈ P and q ∈ P is a path that uses only extensions of windows in Wp, with
the last link chosen to pass through the last vertex of the geodesic shortest path between p and
q. We define the combinatorial type of a link of πL(p, q) (except, possibly, the last link) to be the
combinatorial type of the window of Wp of which it is an extension. Each link of πL(p, q) passes
through a reflex vertex of P , which is said to support the link. (The reflex vertex is also a vertex
of the geodesic shortest path between p and q.) We say that a link of πL(p, q) is pinned if it passes
through two reflex vertices of P such that the vertices are locally supporting the link on opposite
sides of the link.

4.2 The Link Diagram

We now define the link diagram of P , a structure that is central to our algorithm for computing r∗,
and is analogous to the shortest path diagram defined in Section 2.2. We first select an arbitrary
point o ∈ ∂P as the origin of ∂P and parameterize every point p ∈ ∂P by the clockwise distance
from o to p along the (unit-length) boundary ∂P . Let φ : [0, 1)→ ∂P denote the bijective function
corresponding to this parameterization; thus, φ maps each point in ∂P to a point in the interval
[0, 1). For any point (x, y) in the unit square, we abuse notation slightly by letting dL(x, y) denote
the link distance between the points φ(x) ∈ ∂P and φ(y) ∈ ∂P . The link diagram LP is defined
analogously to the shortest-path diagram to be the decomposition of the unit square into maximally
connected regions such that the combinatorial type is the same for all paths corresponding to the
points within a region. See Figure 7 for an example of LP . A face of LP is a maximally-connected
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region for which the function dL assumes the same value; an arc of LP separates two different faces
of LP (the values of dL in these two faces differ by 1); and a node of LP is a point on the boundary
of four or more5 faces of LP or a point adjacent to two different arcs that separate the same pair
of faces.

p1 p5

p2 p4

p3

p6

o

(a)

p5

p3

p2

p4

p1

p6

(b)

Figure 7: (a) A polygon P and (b) its link diagram. Shaded areas correspond to pairs of points
on ∂P with link distance two.

4.3 The Complexity of the Link Diagram

We obtain a tight bound on the worst-case complexity of the link diagram, LP :

Theorem 4.2 The link diagram LP of a polygon P with n vertices has size Θ(n3) in the worst
case.

Proof : Consider any vertical line `(t), for 0 ≤ t ≤ 1, and the corresponding slice of the LP . The
boundary, ∂P , of P is decomposed into O(n) pieces by the vertices of P and the far endpoints
of the windows of Wφ(t). This decomposition exactly corresponds to the restriction of LP to `(t).
Specifically, `(t) crossing an arc of LP corresponds exactly to the point φ(u) coinciding with a
vertex of P or with a far endpoint of a window of Wφ(t). See Figure 8.

Now consider how the vertical slice of LP varies as we vary t ∈ [0, 1]. As t varies, and φ(t)
slides around the boundary of P , the window partition Wφ(t) changes. In particular, each window
λ of Wφ(t) for which the canonical minimum-link path from φ(t) to λ has no pinned links will
pivot continuously about its supporting vertex. The combinatorial type ofWφ(t) changes at certain
critical values of t, when a window, λ, of Wφ(t) comes in contact with a vertex, v, of P . At such an
event, `(t) passes through one or more nodes of LP , corresponding to the fact that the combinatorial
type of paths from φ(t) to points of ∂P in the sub-window tree associated with λ may have changed.

In fact, Arkin et al. [4] show that the combinatorial type ofWφ(t) changes at the O(n2) values of
t that correspond to far endpoints of windows in the window partitionsWv rooted at the n vertices
of P . Since each vertical “strip” of LP between any two event values of t has O(n) arcs (swept out
by the endpoints of windows of Wφ(t) for values of t within the strip), and there are only O(n2)
event values of t, we get an overall complexity of O(n3). (Note too that the nodes of LP lie on a
total of O(n2) vertical (or horizontal) lines.)

5A node of LP cannot be adjacent to an odd number of faces; if it were, then one of the arcs adjacent to the node
separates faces where the value of dL differs by zero or by at least two, which is impossible.
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Figure 8: The vertical line `(t) intersects LP at (t, u) and φ(u) is the supporting vertex of a window
of Wt.

The upper bound of O(n3) is tight in the worst-case: There are polygons for which the link
diagram has size Ω(n3). In Figure 9 we show a polygon P whose boundary consists of three portions:
γ1 is a convex chain of n vertices while γ2 and γ3 are sequences of n “teeth” each. Let ci, 1 ≤ i ≤ n
denote the “base” of each tooth in γ2 and let di, 1 ≤ i ≤ n denote the bases in γ3. We choose
γ1 to be small enough that every point in γ1 can see every point of ci and every point of dj , for
1 ≤ i, j ≤ n. Let ci have endpoints pi and qi. Consider Wpi

. Since pi can see every point on γ1,
a window of Wpi

(in fact, a chord of the visibility polygon Vpi
) has an endpoint p′ in ∂P to the

left of the vertices of γ1. For every j, 1 ≤ i ≤ n, there is a window w′ in Wpi
such that w′ has an

endpoint q ∈ dj . The point (f−1(pi), f
−1(q)) is on an arc of LP . Now consider moving a point p

from pi to qi. This motion causes p′ to move clockwise along γ1 and q to move clockwise along
dj . Every time p′ passes a vertex of γ1, the function defining the motion of q (with respect to p)
changes. (This function will be a fractional linear function, a homography; see [4].) Therefore, by
the time p reaches qi, the point (f

−1(p), f−1(q)) has traced Ω(n) arcs of LP . The same process can
be repeated for every ci and dj , 1 ≤ i, j ≤ n, which implies that LP has size Ω(n3). ¤

4.4 Computing the Link Diagram

We now describe an algorithm to construct LP . The algorithm is very similar to the preprocessing
algorithm of Arkin et al. (Section 3.1 of [4]). The algorithm simply mimics the proof of the size
bound by sweeping a vertical line `(t) across LP and maintaining the intersection of `(t) with LP .
We represent this intersection by a sequence L(t) of O(n) sorted numbers in [0, 1); u ∈ L(t) if and
only if φ(u) is an endpoint (either a far endpoint or a supporting vertex) of a window in Wt. If
u ∈ L(t), we use σ(t, u) to denote the arc of LP on which the point (t, u) lies, and we store the
combinatorial type of σ(t, u) with u in L(t).

1. For each vertex v ∈ P , we compute Wv. This gives O(n) windows per v, for a total of O(n2)
windows overall. We let Q denote the sorted sequence of the vertices of P and these O(n2)
window endpoints, sorted around ∂P . Computing Q requires O(n2 log n) time. The points
Q induce a partitioning of ∂P into segments (“atomic segments” in [4]). By Lemma 1 of [4],
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Figure 9: Lower bound construction for the size of LP .

we know that the combinatorial type of Wt remains constant for points φ(t) in an atomic
segment.

2. For each atomic segment s, we compute the window partitionWs. This takes a total of O(n3)
time, since any one Ws is computed in linear time. As in step (P4) of the preprocessing
algorithm in [4], we keep track, for each window λ of Ws, of the coefficients that specify the
homography (fractional linear function) that describes how the far endpoint of λ varies with
t, for φ(t) ∈ s. This can be done easily during the construction of Ws, as observed in [4].
These functions describe the equations of arcs σ(t, u) that lie within the vertical strip of LP
corresponding to atomic segment s. (In addition to these curved arcs, LP has horizontal arcs
corresponding to reflex vertices that are supporting vertices of windows λ in Ws.)

In conclusion, we have shown:

Theorem 4.3 We can construct LP in O(n3) time, using O(n2) working space.

4.5 Computing an Optimal Search Schedule

We now turn our attention to using LP to compute the optimum number r∗ of guards and a
corresponding search schedule for r∗ guards.

Theorem 4.4 One can compute r∗ by searching LP , in O(n3) time. Within the same time bound,
one can produce a search schedule of O(r∗n3) complexity for P using r∗ guards.

Proof : Lemma 4.1 states that a motion strategy (γ,G) is a search schedule if the total distance
travelled by the extreme guards (measured counterclockwise for one guard and clockwise for the
other) sums to the perimeter of P . To exploit this fact, we augment the diagram LP by placing
a translated copy of it (translated upwards by distance 1) just above it in the plane. Lemma 4.1
implies that any path from the diagonal y = x in the bottom copy to the diagonal y = x+1 in the
top copy corresponds to a search schedule for P . Our algorithm for computing r∗ is simple. We
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consider the graph defined by the nodes and arcs of the two copies of LP . We label each arc and
each node with the smallest link distance associated with the faces adjacent to it. We then perform
a breadth-first search in this graph to compute the smallest integer r∗ such that a path exists
between the two diagonals that uses only arcs and nodes with labels at most r∗−1 (since a chain of
r∗ − 1 links corresponds to r∗ guards). We can adapt this procedure to compute a search schedule
too. Clearly, the breadth-first search takes O(n3) time and produces a path in LP that visits O(n3)
nodes. To compute the search schedule, at each node of this path, we may need to update the
motions of at most r∗ guards, thus computing a search schedule of complexity O(r∗n3). ¤

Remark. In the worst case, r∗ may be Ω(n), since there are n-vertex polygons that are not
o(n)-searchable. Figure 10 shows such a polygon P . It consists of three “arms,” L1, L2 and L3,
joined by a central region. Any polygonal chain lying inside P that joins a point p in the central
region to the tip pi of an arm Li has Ω(n) segments. Suppose L3 is the last arm to be searched in
a sweep. Then, while a guard visits p3, a guard must be positioned at a point in the central region.
Otherwise, the target might escape from L1 to L2 or vice-versa. A similar fact holds if L1 or L2 is
the last arm to be searched. Therefore, Ω(n) guards are needed to sweep P .

p1

L1

L3

p3

L2

p2

p

Figure 10: A polygon P such that r∗ = Ω(n).

5 Sweeping Polygons: Approximation Algorithms

We have obtained three approximation results: (1) an algorithm that uses O(n logn) time to
compute r∗ within an additive error of at most 16, (2) an algorithm that uses O(n2) time to
compute r∗ within an additive error of two, and (3) a method for sweeping P that uses at most
the link radius of P (which we can compute in O(n logn) time [11]) plus two guards. Here, we give
details of only the first result, (1), which closely parallels the approximation algorithm we already
described in the geodesic case; we defer the other two methods to the appendix.

Let a, b ∈ ∂P be a pair of points, maximizing dL(a, b); we call such a pair a diametrical pair of
P , and let DP = πL(a, b) denote a corresponding path that represents a link diameter of P . (There
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Figure 11: Definitions for Lemma 5.1

may be many minimum-link paths that attain the diameter; we fix one of them arbitrarily to be
DP .)

We define a concept that is very similar to that of link width, L(α, β), which we defined in
the introduction. In order to distinguish it and hopefully avoid confusion, we refer to this new
concept as the “link breadth.” In particular, we define the link breadth of P relative to DP to
be L(P,DP ) = maxv∈P dL(DP , v). The link breadth of P is then defined to be the minimum,
minDP

L(P,DP ), taken over all realizations of the diameter. (It turns out that different realizations
of DP can result in different breadths, but there can be variation only by 1 link.) In our discussion,
it suffices to fix one realization of the diameter, DP , and do analysis with respect to the breadth
L = L(P,DP ). For points p, q ∈ ∂P , we let ∂P (p, q) denote the portion of ∂P traced when moving
from p to q in a clockwise direction (i.e., with the interior of P lying to the right). We first state
two lemmas that establish the relationship between the link breadth and the link diameter of P .

Lemma 5.1 Let DP = πL(a, b) be a diameter of P , let c be a point that realizes the breadth,
L = dL(DP , c), and let u be a point on DP that is closest to c in link distance. (See Figure 11.)
Then, dL(a, u) ≥ L− 7 and dL(b, u) ≥ L− 7.

Proof : Note that we can assume, without loss of generality, that πL(a, b) and πL(c, u) do not
intersect in their interior. Let γ be the curve πL(c, u)||πL(u, b)||πL(b, c), where || denotes the
concatenation operator. The curve γ is a closed curve, and it might be self intersecting. Let Iγ
denote the region delimited by γ (i.e., the union of bounded faces in the arrangement induced by γ).

Observe that any point y of πL(c, u) can be connected to a point either of πL(u, b) or of πL(b, c)
by a segment that does not intersect those polygonal paths in its interior. Indeed, if this is not so,
then there exists a point y ∈ πL(c, u), such that any ray emanating from y directed into Iγ hits
πL(c, u); see Figure 11(b). In particular, in any triangulation of Iγ , the triangle T that contains
y must have all its vertices on πL(c, u), implying that it is possible to shortcut πL(c, u), using the
edge of T that does not belong to πL(c, u). However, this contradicts the minimality (in the link
distance) of πL(c, u).

This implies that there is a point x ∈ πL(c, u) that “sees” both πL(b, c) and πL(b, u); namely,
there are two points v, w on πL(b, c) and πL(b, u), respectively, so that the segments xv and xw
do not intersect γ in their interior. We have the following inequalities (all follow from the triangle
inequality for link distance):
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• dL(c, x)− 1 ≤ dL(c, v) ≤ dL(c, x) + 1.

• dL(b, w)− 2 ≤ dL(b, v) ≤ dL(b, w) + 2.

• dL(c, x) ≤ L = dL(c, u) ≤ dL(c, x) + 1

• dL(c, v) + dL(b, v)− 1 ≤ dL(b, c).

These inequalities imply that dL(c, x)− 1 + dL(b, w)− 2− 1 ≤ dL(b, c). Hence,

dL(c, u)− 1− 4 + dL(b, u)− 2 ≤ dL(b, c) ≤ dL(a, b) ≤ dL(a, u) + dL(b, u),

using the fact that dL(a, b) is the diameter of P . We conclude that L− 7 = dL(c, u)− 7 ≤ dL(a, u),
and, by symmetry, that L − 7 ≤ dL(b, u). ¤

Lemma 5.2 Let p ∈ ∂P (c, a) and q ∈ ∂P (b, c). Then dL(p, b) ≥ L− 8, and dL(q, a) ≥ L− 8.

Proof : We prove that dL(p, b) ≥ L − 8; the second inequality is shown symmetrically. We may
assume that u is chosen to be the last point along πL(a, b) (i.e., the closest to b along the path)
among all choices of u that realize the link breadth.

We claim that the path πL(p, b) must intersect the visibility polygon, Vu. This will suffice to
prove the lemma, since it implies that dL(b, u) ≤ dL(p, b) + 1 (since, once the path πL(b, p) enters
Vu, one additional link suffices to reach u), which implies that dL(p, b) ≥ L − 8 (since Lemma 5.1
says that L − 7 ≤ dL(b, u)).

If, to the contrary, πL(p, b) does not intersect Vu, then the points b and p must lie in the same
pocket of Vu, separated from u by a window, rr′. Since a and b are in different pockets of Vu, it
follows that c lies in the same pocket as p and b. Both paths πL(b, u) and πL(c, u) must cross the
window rr′. This implies that there is a path of link length dL(c, u) that joins c to a point, u′ ∈ rr′,
of πL(b, u) that is closer to b than u, contradicting our choice of u. ¤

Lemma 5.3 The number of guards needed to sweep a polygon P is at least max(L − 7, 2).

Proof : If there is a sweeping strategy of P by a chain of k segments (k+ 1 guards), then it is easy
to verify that during the sweep one of the following three events must happen:

• One of the guards is located at the point b and other one is located on ∂P (c, a).

• One of the guards is located at the point a, and the other one is located on ∂P (b, c).

• One of the guards is located at c, and the other one is located on ∂P (a, b).

However, by Lemma 5.2, we know that in the first two cases k ≥ L − 8. In the third case, the
chain of guards must cross πL(a, b), which implies that k ≥ L. ¤

Lemma 5.4 Let σ = (p1, . . . , pm) ⊆ ∂P be a connected subset of ∂P that has no shortcut within
P ; i.e., pipi+2 6⊂ P . Assume that for any point q ∈ ∂P , we have dL(σ, q) ≤ k. Then, the polygon
P can be swept using a chain of k + 3 guards.

Proof : Let σ̂ = ∂P \ σ, and let qi ∈ σ̂ denote a point of σ̂ that is closest to pi (in link distance).
Arguing as in the proof of Lemma 5.1, it follows that since σ cannot be shortcut, any point on σ
sees a point of σ̂; thus, piqi ⊂ P . (However, note that piqi might cross pjqj .)

Let Qi be the region bounded by ∂P (qi, qi+1)||qi+1pi+1||pi+1pi||piqi, for i = 1, . . . ,m− 1. (Note
that the closed curve defining Qi may have a self-crossing at the intersection of piqi and pi+1qi+1.)
For any point p ∈ ∂Qi, there exists a path that has at most k + 2 segments connecting p with pi
and that lies inside Qi. Indeed, let π = πL(p, σ) be a minimum-link path connecting p with σ. The
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path π has at most k segments and must intersect (the intersection might be the endpoint of π)
one of the segments piqi, pipi+1, pi+1qi+1, and thus it can be modified into a path π′ that connects
p with pi that has at most k + 2 segments.

This implies that we can sweep Qi in the following canonical way: (i) In the beginning the
guards stand along the segment piqi, and connect those two endpoints, (ii) In the end of the first
stage of the sweep, the guards stand along the segments pipi+1||pi+1qi+1, and (iii) In the second
stage of the sweep, all of the guards standing along pipi+1 are moved to stand at pi+1. This sweeping
requires at most k+3 guards. Thus, we can sweep P by sweeping Q1, Q2, . . . , in succession, using
the above strategy. Overall, this combined strategy sweeps P using k+3 guards, so that the guard
who is always located on σ moves monotonically along σ. ¤

Theorem 5.5 max(L − 7, 2) ≤ r∗ ≤ L+ 5.

Proof : Let P1, P2 be the two polygons formed by splitting P along DP = πL(a, b). By Lemma 5.4,
P1, P2 can be swept with L+ 3 guards, so that one of the guards lies on DP , and its movement is
monotone from a towards b. Moreover, the sweeping of P1 and P2 is decomposed into steps where
in the intermediate step only 3 guards are necessary (namely, two guards placed on an edge of the
diameter, and the other guard placed on an edge of the polygon). Thus, by sweeping the regions
of P1, P2 in an interleaving manner, we have that the number of guards necessary to sweep P is at
most L+ 5. The lower bound follows from Lemma 5.3. ¤

Theorem 5.6 Given a polygon P , one can compute in O(n logn) time a number k, so that the
number of guards needed to sweep P is between max(k − 11, 2) and k + 5.

Proof : Compute the link-diameter, DP , of P in O(n logn) time [28, 29, 43]. Pick a vertex v of P ,
and compute the window partition, Wv, and the window tree, Tv, in O(n) time. We now mark, in
linear time, all of the nodes V of Tv that correspond to regions of Wv that intersect DP . Let µ be
the vertex of Tv so that the minimum distance (in Tv) to any vertex of V is maximized, and let d
be this minimum distance between µ and a vertex of Tv.

It is straightforward to verify that d ≤ L ≤ d + 4. Set k = d + 4. We know by Theorem 5.5,
that P can be swept using k + 5 guards and that at least max(k − 11, 2) guards are needed. ¤

6 Conclusion

In the time since this paper was submitted, Bespamyatnikh [6] has obtained an improvement to
one of our results: He gives a simplified algorithm for computing geodesic width that runs in time
O(n2), using O(n) space, improving our time bound by a factor of O(log2 n) and our space bound
by a factor of O(n).

Finally, we mention two interesting open directions for future research. First, can we find
an appropriate extension of our polygon sweeping results to polygonal domains that have holes?
Second, what results can be obtained for the natural generalizations of our problems to three
dimensions?
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A Appendix

We give details of the other two approximation methods ((2) and (3)) that were stated at the
beginning of Section 5.
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A.1 A simple additive approximation method

We describe a method that computes in time O(n2) an integer r such that P can be swept using r
guards and r−2 ≤ r∗. We can also compute in O(n2r) time a search schedule of O(n2r) commands
that sweeps P using a chain of at most r + 4 guards.

Let e1, e2, . . . , en be the edges of P . Define an n× n matrix M, where Mij is an upper bound
on the link distance between any point of ei and any point of ej ; namely, Mij = dL(ei, ej) + 2,
where dL(ei, ej) = minp∈ei,q∈ej

dL(p, q). The matrix M can be computed in O(n2), by computing
the link distance from ei to all other edges in O(n) time [44].

As is easily shown,M forms an approximation to the link diagram, LP , since, if p is a point on
an edge ei ⊆ ∂P , and q is a point on an edge ej ⊆ ∂P , then dL(p, q) is between Mij − 2 and Mij .

Lemma A.1 Let π and π′ be two minimum-link paths, each connecting a point on edge f to a
point on edge f ′. Let r = dL(f, f

′). Then, there exists a sweeping strategy, morphing π into π′,
using at most r + 3 guards. Moreover, in time O(r) we can compute a schedule that uses at most
r + 7 guards, while issuing O(r) commands.

Proof : Since the link distance between any point of f and any point of f ′ is at most r + 2, there
is a morphing strategy between π and π′ using at most r + 3 guards. Unfortunately, computing
this strategy requires the link diagram of P , which is too expensive to compute within the claimed
time bound.

Alternatively, we now sketch an algorithm to compute a strategy that uses at most r+7 guards
(4 “spare” guards). Let γ be the closed connected curve comprised of π, π ′ and the relevant portions
of f and f ′, so that π, π′ ⊆ γ (note that γ may have self-intersections). Let Iγ denote the interior of
the bounded region delimited by γ, and let I1, . . . , Ik be the connected components of the interior
of Iγ .

We compute a morphing between πi = π ∩ ∂Ii and π′i = π′ ∩ ∂Ii, with the motion restricted
to lie inside Ii, for i = 1, . . . , k. Since π and π′ are both minimum-link paths, we know that the
number of links in πi and π′i is the same, up to at most an additive error of 2; otherwise, replacing
one of the subpaths (πi or π

′
i) with the other would result in a net decrease in link length of π or

π′. This property also implies that we can compute all of these regions in total time O(r), since we
can simply check the jth segment of π for intersection with O(1) segments of π ′ (namely, segments
j − 2, j − 1, j, j + 1, j + 2).

We do the morphing region by region, starting with I1. Let π = (u1, . . . , uk) and π′ =
(u′1, . . . , u

′
k′) be the vertex sequences defining the paths. We know that k, k′ ≤ r+1. Note that the

endpoints of πi lie either at the points (u1 and uk) on edges f and f ′, or at crossing points, where
a link of π crosses a link of π′. (We assume, for simplicity of discussion, there are no degeneracies,
where links intersect at a vertex.)

Assume that we want to transform π into π′. Consider a general step of the morphing, in which
we want to morph the subpath πi to the path π′i, with a chain of K = 4 + |πi| guards, where |πi|
denotes the number of vertices of π that lie along πi. Initially there is a guard at each vertex of πi
(including its endpoints, which may be crossing points of π and π′); the spare guards are placed at
the first endpoint of πi.

We triangulate Ii using only diagonals that join a vertex of πi to a vertex of π′i. We know
that this can be done, since the minimum-link property implies that (1) there can be no diagonal
between two vertices of πi or two vertices of π′i, and (2) any endpoint of πi that is a crossing point
is an “ear tip,” with an associated diagonal between a vertex of πi and a vertex of π′i clipping it
off. (In the special case in which πi consists of a single edge, the diagonal that cuts off one crossing
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point is incident on the other, and Ii is a quadrilateral; this can be handled separately.) Thus, we
obtain a triangulation of Ii whose dual graph is Hamiltonian.

Our morphing strategy considers each triangle, τ , in turn along the dual path in the triangu-
lation. We perform the morphing triangle by triangle, “shifting” the chain of guards across each
triangle in succession. Suppose that we have completed the morph up to diagonal uju

′
l, so that

the partially morphed chain has one guard at each vertex of π′i up to and including u′l, and the
remaining guards lie along πi, from uj onwards, with all spare guards at uj . We can assume that if
the first vertex of π′i (and πi) is a crossing point, then the guard that previously was situated there
has been advanced along the chain and is now among the spares. Let τ be the next triangle. In
particular, if τ = ujuj+1u

′
l shares an edge (ujuj+1) with πi and a vertex (u′l) with π

′
i, then we send

all of the guards at uj to vertex uj+1; we know that they stay visible to u′l and uj+1. If τ = uju
′
lu

′
l+1

shares an edge (u′lu
′
l+1) with π′i and a vertex (uj) with πi, then we send one of the (spare) guards

from uj to u
′
l+1 (while he maintains visibility with the guards at uj and u′l).

The fact that this strategy works, without running out of spare guards, follows again from the
minimum-link property: There are at most K vertices along any chain formed by the path along
π′i to a vertex u′l, then the diagonal u′luj , then the remaining path, along πi, from the vertex uj to
the end of πi. This is easily verified, again, by an exchange argument.

Overall, the morphing strategy uses a number of commands proportional to the number of
triangles, which is clearly O(r). ¤

We construct a graph G on the grid 2n × 2n, so that two nodes are adjacent in G if and only
if they are vertically or horizontally adjacent in the grid. We also connect the vertices on the
boundary of G to the corresponding vertices on the other side of G (i.e., we “glue” together the
top side of G to the bottom side of G, and the left side of G to the right side of G). For a vertex
(i, j) ∈ V (G), we assign it weight w(i, j) =M1+((i−1) mod n),1+((j−1) mod n). It is easy to verify that
a sweeping strategy for P can be interpreted as a path σ in G connecting (1, 1) to (1, n), so that
the maximum weight vertex along σ has weight at most two greater than the number of guards
needed to sweep P .

On the other hand, a path σ inG connecting (1, 1) to (1, n), such that the maximum weight along
σ is w, can be interpreted as a sweeping strategy that requires at most w guards, by Lemma A.1.
Such a minimum-weight path σ in G can be computed in O(n2) time using Dijkstra’s algorithm.
We conclude:

Theorem A.2 Given a simple polygon P , one can compute in O(n2) time a number r, so that
P can be swept with r guards and r − 2 ≤ r∗. Moreover, one can compute in O(n2r log r) time a
sweeping strategy for P using at most r + 4 guards, with O(n2r) commands issued to the guards.

Proof : The algorithm for computing r is described above. For the computation of the motion
strategy, we first compute the minimum-weight path σ in G that connects (1, 1) with (1, n). Next,
each edge e of σ connects two configurations π = (ei, ej) and π′ = (ei, ek).

It is now an easy matter to compute a morphing between these two configurations by computing
a middle configuration πmid having one guard located on a vertex ej ∩ ek of P . Next, using the
algorithm of Lemma 5.4, one can compute a morphing strategy between π and πmid, and a morphing
strategy between πmid and π′. ¤

A.2 Link radius+ 2 number of guards suffice
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We now prove that any polygon P is (RP + 2)-searchable by describing an algorithm that
constructs a search schedule for P by using at most RP + 2 guards. We assume without loss of
generality that all of the guards are initially placed at some point p ∈ ∂P . We set r, the number
of guards in G, to be one more than the height of Tp. Let v be a node in Tp and let w be the
window associated with v. Each child of v is associated with a window that is a chord of Vw. We
assume that the left-to-right order of v’s children corresponds to the clockwise order of the chords
of Vw starting at w. The motion strategy that our algorithm constructs corresponds to a modified
pre-order traversal of Tp where we visit a node v before we visit each of v’s children. The following
recursive procedure describes our algorithm (initially, we invoke this procedure with the root of Tp
and the set G of all guards):
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Figure 12: Different stages of the algorithm

Visit(v,G ′): v is a node in TP and G′ = {Gd+1, Gd+2, . . . , Gr}, where d is the height of v in Tp. Let
w = ab be the window associated with v. Suppose v has m children, i.e., Vw has m chord edges.
Let wi = aibi be the window associated with vi, the ith child of v. We set b0 = a and am+1 = b.
For each 1 ≤ i ≤ m+ 1, we perform the following steps:

1. We move guard Gd+2 from bi−1 to ai and also move guard Gd+1 simultaneously on w so that
Gd+1 always sees Gd+2. See Figure 12.

2. We station Gd+1 on w such that it can see ai and bi and invoke the procedure Visit(vi,G′ \
Gd+1).

This completes the description of the algorithm. It is clear that each configuration assumed by
the guards is legal. It is easy to construct a motion strategy (γ,G) from the algorithm. We now
turn our attention to proving that the motion strategy is indeed a search schedule for P and on
bounding the number of guards in G.
Lemma A.3 Suppose v is a node in Tp and w is the window associated with v. The polygon P [w; p]
is clear after the algorithm completes visiting v.
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Proof : Let d be the height of v and let G ′ = {Gd+1, Gd+2, . . . , Gr}. Let v′ be the parent of v in Tp
and let w′ be the window associated with v′. During the invocation of Visit(v′,G′∪{Gd}), we visit
the children of v′ in clockwise order around Vw′ . As a result, after Visit(v,G ′) is completed, the
configuration of the guards Gd and Gd+1 does not cross the window w. Since each configuration
the guards assume in the algorithm is legal, after Visit(v,G ′) is completed, P [w; p] always lies to
the same side of the configuration of the guards. This proves the lemma. ¤

The above lemma has the following corollary:

Corollary A.4 The motion strategy (γ,G) computed by the above algorithm is a search schedule
for P .

It is clear that the maximum number of guards used by the algorithm is one more that the
height of Tp. Since the height of Tp is equal to the maximum link distance from p of any point in
P , it is we use at most DP + 1 guards. However, we can improve the number of guards as follows:
We compute the link center C of P . If C intersects ∂P , we pick p to be a point in this intersection,
thus using RP + 1 guards. Otherwise, we pick p to be any point in ∂P that is seen by a point p′

in C. In this case, the height of Tp is one more than the height of Tp′ , which implies that we use
RP + 2 guards. We have now proved the main result of this section:

Theorem A.5 For any polygon P with n vertices, we can compute in O(nRP ) time a search
schedule for RP + 2 guards that sweep P .

Remarks: Throughout the motion, guard G1 is stationed at p. At any stage of the algorithm,
the configuration of the guards in G is a canonical minimum-link path between the positions of the
first and last guards.
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