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Abstract. Let C be a collection of n Jordan regions in the plane in general position, such that
each pair of their boundaries intersect in at most s points, where s is a constant. If the boundaries
of two sets in C cross exactly twice, then their intersection points are called regular vertices of the
arrangement A(C). Let R(C) denote the set of regular vertices on the boundary of the union of C.
We present several bounds on |R(C)|, determined by the type of the sets of C. (i) If each set of C is
convex, then |R(C)| = O(n1.5+ε) for any ε > 0.1 (ii) If C consists of two collections C1 and C2 where
C1 is a collection of n convex pseudo-disks in the plane (closed Jordan regions with the property
that the boundaries of any two of them intersect at most twice), and C2 is a collection of polygons
with a total of n sides, then |R(C)| = O(n4/3), and this bound is tight in the worst case. (iii) If no
further assumptions are made on the sets of C, then we show that there is a positive integer r that
depends only on s such that |R(C)| = O(n2−1/r).

1 Introduction

Let C be a collection of n Jordan regions (the interiors of closed Jordan curves) in the plane,
with the property that the boundaries of any pair of regions intersect in at most some constant
number s of points. We assume that the sets of C are in general position, so that no point is
incident to more than two boundaries, and at each intersection point where the boundaries meet
they cross transversally. Let U denote the union of C. We consider the arrangement A(C), formed
by the boundaries of the sets in C, and define a vertex of A(C) (an intersection point between
two boundaries) to be regular if the two boundaries cross exactly twice; all other vertices are
called irregular. The goal is to obtain sharp bounds on the maximal number of regular vertices
that appear on ∂U . We denote the set of regular vertices on ∂U by R(C).

The interest in this problem goes back to the work of Kedem et al. [12], where it was shown
that if all vertices of A(C) are regular (such a collection C is called a family of pseudo-disks),
then the number of (regular) vertices of ∂U is at most 6n − 12, for n ≥ 3, and this bound is
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tight in the worst case. Recently, Pach and Sharir [16] have shown that if C is an arbitrary
finite collection of convex sets (so that any two of their boundaries can intersect in an arbitrary
number of points) then one has |R(C)| ≤ 2|I(C)| + 6n − 12, where I(C) is the set of irregular
vertices on ∂U . This result was instrumental in a recent paper by Efrat and Sharir [7], showing
that the complexity of the union of n planar “fat” convex sets, each pair of whose boundaries
intersect in at most some constant number of points, is nearly linear in n. However, since I(C)
can be Ω(n2) for a general collection C, even when no pair of boundaries cross at more than four
points, the bound of [16] only yields the trivial O(n2) upper bound on |R(C)|. As an example of
such a construction, consider a collection of n narrow rectangles arranged in an n/2× n/2 grid.

Pach and Sharir [16] also give a construction where the number of regular vertices on the
boundary of the union of n rectangles and n congruent disks is Ω(n4/3). This is the best known
lower bound for the general problem stated above, with a constant number of intersections
between any pair of boundaries. Without this last constraint, it is easy to obtain examples with
Ω(n2) regular vertices on the boundary of the union; see, e.g., [13, 16].

In Section 2 we show that the Ω(n4/3) lower bound is tight for the special class (ii) of
collections C as in the abstract. Specifically, we show:

Theorem 1. The number of regular vertices on the boundary of the union of a family of n
convex pseudo-disks and a family of convex polygons with a total of n edges is Θ(n4/3).

For the other two main results, we first present in Section 3 a technique for transforming the
family of regions so that every regular vertex in R(C) becomes a point of tangency between the
two regions, and so that the number of intersections between any pair of boundaries does not
increase (see Lemma 1).

Next, in Section 4, we consider the case of general convex regions, and show:

Theorem 2. The number of regular vertices on the boundary of the union of a family of n
convex Jordan regions in the plane where any two boundaries intersect in at most a constant

number of points, is O(n1.5+ε) for any ε > 0.

Finally, in Section 5, we study the case of general Jordan regions, and show:

Theorem 3. The maximum possible number of regular vertices on the boundary of the union

of a family of n Jordan regions in the plane, where any two boundaries intersect in at most a

constant number s of points, is O(n2−1/r), where r is a positive integer that depends only on s.

In other words, we show that in fairly general settings, the number of regular vertices on ∂U
is subquadratic. Besides being an interesting result in itself, this is likely to have implications
on the analysis of the complexity of the union of geometric objects in two and three dimensions.
Moreover, our experience has been that improved combinatorial bounds on the complexity of
the union of geometric objects often entails efficient algorithms for computing such boundaries.
This in turn could have useful implications in applications like robot motion planning [10], solid
modeling and others.

Remark: Note that using a straightforward perturbation scheme, one can show that the maxi-
mum number of regular vertices on the union is achieved when the given regions are in general
position, so this assumption involves no loss of generality.

On the number of regular vertices January 19, 1999
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2 Pseudo-disks and Convex Polygons: Proof of Theorem 1

Let C = C1 ∪ C2 where C1 is a collection of n convex pseudo-disks in the plane (closed Jordan
regions with the property that the boundaries of any two of them intersect at most twice), and
C2 is a collection of convex polygons with a total of n sides. We form the union U1 of C1. By [12],
the boundary of U1 consists of at most 6n convex arcs, each lying on the boundary of a single
pseudo-disk. Without loss of generality, we will treat only arcs that lie on the top boundary of
their respective pseudo-disks; arcs that include leftmost and/or rightmost points of pseudo-disks
are split at those points. Let Γ denote the set of these arcs. Clearly, the relative interiors of the
arcs in Γ are pairwise disjoint. Let m ≤ 6n denote the size of Γ .

Let U2 denote the union of C2, and put U = U1 ∪U2. Clearly, the number of regular vertices
on the boundary of U that are incident to two boundaries of sets in C1 is at most 6n.

It is also easy to show that the number of regular vertices that lie on the boundary of U and
are incident to two boundaries of polygons in C2 is O(n). Indeed, let v be such a vertex, and
let c, c′ be the two polygons in C2 whose boundaries contain v. Let K = c ∩ c′. Recall that K
must be a convex polygon whose boundary contains only two vertices (one of which is v) where
∂c and ∂c′ meet. Hence it must also contain at least one vertex w of c or of c′, such that vw is
an edge of K. We charge v to such a vertex w, and note that any vertex w can be charged at
most twice in this manner. Hence the total number of vertices of ∂U of this type is O(n). It thus
remains to bound the number of mixed regular vertices of ∂U , namely, those that are incident
to the boundaries of a pseudo-disk in C1 and of a polygon in C2.

Let γ ∈ Γ , let d ∈ C1 be the pseudo-disk whose boundary contains γ, and consider its
interaction with a polygon c of C2 that forms a regular vertex on γ. Since γ lies on the top
boundary of d, it follows that either c contains the extreme left or right point of d, or c∩ ∂d lies
completely in the top portion of ∂d. Polygons c ∈ C2 that contain the leftmost (rightmost) point
of d contribute at most one mixed vertex of ∂U on γ (two if c contains both extreme points of
d), for a total of at most 2n vertices. Similarly we can eliminate polygons c which contain one of
the endpoints of γ, as those produce at most 2m ≤ 12n mixed vertices on ∂U . From this point
on we restrict our attention to polygons c that form regular vertices on γ and satisfy c∩∂d ⊂ γ.
Let c be such a polygon, and let v,w be the two points of intersection of γ with ∂c. If v,w lie on
different edges of c then the portion of c inside d must contain a vertex of c, and we can then
charge v and w to such a vertex, in the same manner as in the preceding paragraph. It follows
that the number of such vertices v,w is O(n), and we can thus ignore such cases in subsequent
analysis. We can thus assume that γ crosses the boundary of each such polygon c at two points
that lie on the same edge e of c. We refer to these remaining regular vertices as edge-touching

vertices. Note that since γ lies on the top boundary of d, the edge e must lie on the bottom
boundary of c.

We adapt the analysis technique of [8, 9]. First, we derive a weaker upper bound on the
number of mixed edge-touching regular vertices on ∂U . To this end, we construct a bipartite
graph H whose nodes are the arcs in Γ and the polygon edges, and each of its edges connects an
arc γ to a polygon edge e if γ crosses e twice, at two regular vertices, at least one of which lies
on ∂U . We claim that H does not contain a K2,3 as a subgraph (composed of two arcs in Γ and
of three polygon edges). Indeed, suppose that H did contain such a subgraph, consisting of two
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γ2

e2

γ1

e1

e3

Fig. 1. The graph H
does not contain any
K2,3 consisting of two
arcs γ1, γ2, and three
polygon edges e1, e2,
e3.

arcs γ1, γ2 ∈ Γ , and of three polygon edges e1, e2, e3 of polygons c1,
c2, c3, respectively. Suppose γ1 ⊂ ∂d1, d1 ∈ C1. Since γ1 intersects
each of the three edges twice and each edge lies on the lower boundary
of its polygon, the portion of γ1 outside c1 ∪ c2 ∪ c3 must lie below the
lower envelope L of the lines containing e1, e2, e3. Moreover, the regular
vertices of ∂U formed by γ1 with the three edges must lie on L. Assume,
with no loss of generality, that e1, e2, e3 appear in this left-to-right order
along L; see Figure 1.

L is partitioned by γ1 into at most seven sections: the three segments
d∩ei∩L, i = 1, 2, 3, and at most four maximal connected complementary
sections of L where the edge-touching vertices of γ2 and the edges ei

that appear on ∂U may show up. Since γ1 and γ2 are openly disjoint and γ2 \ (c1 ∪ c2 ∪ c3) has
to lie below L, all edge-touching vertices of ∂U induced by γ2 must appear along only one of the
latter four complementary sections of the envelope (refer to Figure 1). However, none of these
sections contain portions of all three edges. Hence γ2 cannot connect to all of e1, e2, and e3 in
the graph.

Since the graph H is bipartite, with at most m and n nodes, respectively, in each class,
and since it contains no K2,3 as a subgraph, it follows from standard extremal graph-theoretic
arguments (see [15]) that the number of its edges, and hence the number of mixed edge-touching
regular vertices on ∂U is O(mn1/2 + n).

We next choose an integer parameter r, to be fixed below, and construct a (1/r)-cutting
on the edges of the polygons in C2 (see [4, 11] for details). This yields a tiling of the plane by
O(r2) pairwise openly disjoint vertical trapezoids, each crossed by at most n/r edges. For each
trapezoid τ , consider the set Γτ of all the arcs in Γ that cross τ , clipped to within τ ; some
of these arcs may intersect τ in two connected portions, and we regard each such portion as a
separate arc.

We classify the arcs in Γτ according to the pairs of sides of τ that they cross. One class
consists of short arcs that have at least one endpoint inside τ ; any other, long arc meets ∂τ
exactly twice. There are at most 2m short arcs in total. One class of long arcs is referred to as
the class of bottom arcs; these are the arcs that have both endpoints on the bottom side of τ .

Let CH(X) denote the convex hull of the set X. We claim that, for any class Γ ′ of arcs,
other than those of the short arcs or of the bottom arcs, the number of mixed edge-touching
regular vertices on ∂U that are formed within τ by arcs of Γ ′ is O(n/r). The proof is similar to
that in [8]. It is based on the observation that none of the at most n/r polygon edges that cross
τ can form mixed edge-touching regular vertices on ∂U with more than one arc of Γ ′. Indeed, if
this could happen for one such edge e and two such arcs γ, γ′, then CH(e ∩ γ) and CH(e ∩ γ′)
must be disjoint, with, say, CH(e ∩ γ) lying to the left of CH(e ∩ γ′). (Indeed, the convexity
of the pseudo-disks rules out the case that these two intervals are nested within each other; on
the other hand, if these intervals overlapped without being nested, then γ and γ′ would have to
cross, which is impossible.) If we trace γ from the right endpoint of CH(e ∩ γ) to the right, and
trace γ′ from the left endpoint of CH(e ∩ γ′) to the left, then these curves must cross within
τ—a contradiction. Indeed, for this not to happen, either one of these curves has to end inside
τ (so Γ ′ is the class of short arcs), or both extensions must cross the bottom side of τ (so Γ ′ is
the class of bottom arcs). Since Γ ′ is neither of these classes, the claim follows; see [8, 9] for a
similar argument. We have thus shown that the number of mixed edge-touching regular vertices
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on ∂U that are formed within τ by arcs that are neither short nor bottom is O(n/r), for an
overall bound of O(r2 · (n/r)) = O(nr), over all trapezoids τ .

We next claim that the total number of bottom arcs, over all trapezoids τ , is O(r2 + m).
More precisely, we first discard any bottom arc that does not form a mixed edge-touching regular
vertex of ∂U within its containing trapezoid, and then claim the above bound for the number of
remaining bottom arcs. If τ is a trapezoid with bottom edge e, then any two remaining bottom
arcs γ, γ′ within τ are such that CH(e∩γ), CH(e∩γ′) are disjoint. This follows from an argument
similar to that in the preceding paragraph.

We establish this bound using a graph-planarity argument, similar to that used in [9]. We
construct a plane embedding of a planar graph G as follows. The nodes of G are the bottom
edges of the trapezoids of our cutting. The edges of G are defined and drawn as follows.

Let γ′ be a bottom subarc of some arc γ ∈ Γ , formed within some trapezoid τ . Let e denote
the bottom edge of τ , and let u and v be the two intersection points of γ with e, where u lies
to the left of v—these are the endpoints of γ′. Now follow γ from v to the right until another
bottom edge e′ of some trapezoid τ ′ is encountered; denote this subarc of γ by γR. Note that γ
can hit e′ either from above or from below. (If we do not meet any bottom edge, we can charge
γ′ uniquely to the right endpoint of γ, so the overall number of these bottom arcs is at most m.
We disregard them in the following argument.) We distinguish between two cases:

γ′

u v

u′ v′

v′′

Fig. 2. The portion of
γ between v′ and v′′ is
added as an edge to the
graph G.

If the portion of γ to the left of u does not intersect e′, then we
connect e and e′ in the graph G along γR. If, on the other hand, the
portion of γ to the left of u does intersect e′, then we claim that both
u and v must lie on the top edge of τ ′. Indeed, by construction, γR

does not meet any nonvertical edge of the cutting. Moreover, γR must
hit e′ from above, for otherwise the convexity of γ implies that the
entire portion of γ to the left of the hitting point lies below the line
supporting e′, so it cannot meet e′ again. Now if we follow γR from e′

to the left, the first vertical edge of the cutting that we meet must be
the left edge of τ ′, but then γ could not have met e′ again further to
the left. Hence γR is fully contained in τ ′, so v lies on the top side of
τ ′. We can assume that u also lies on the top side of τ , for otherwise

there is a trapezoid vertex on uv, and γ′ can be uniquely charged to it; there can be O(r2) such
bottom arcs. A similar, slightly modified argument implies that the portion of γ between u and
e′ is also fully contained in τ ′. Let u′ and v′ be the intersection points of γ with e′, where u′ lies
to the left of v′. We now apply the same analysis to the portions of γ extending to the left of
u′ and to the right of v′, respectively. We iterate this process until those portions do not end
up on the same bottom side. When this is the case, we add the last right portion of γ as an
edge of the graph G. (Again, if during this process we reach the right endpoint of γ, we charge
γ′ uniquely to that endpoint; the overall number of these bottom subarcs is at most m.) See
Figure 2. Note that the entire portion of γ between (the final) points u′ and v′ contains only one
bottom subarc, namely γ′. Hence the number of edges of G is equal to the number of bottom
subarcs excluding those that we have already charged to the right endpoint of their containing
arcs in Γ .

Since the relative interiors of the arcs of Γ are pairwise disjoint, G is indeed a plane embedding
of a planar graph. Let f be a face of G of degree 2. By construction, f is bounded by the subarcs
δ, δ′ of two respective distinct arcs γ, γ′ of Γ , and by portions of the bottom edges e, e′ of two
respective trapezoids τ, τ ′. If the interior of f , as a planar region, contains an endpoint of e or
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e δ′

δ e′

Fig. 3. A face of G of de-
gree 2 containing an end-
point of a bottom side

of e′, then we can charge f to this endpoint (see Figure 3 for an
illustration of this case). Since there are O(r2) such endpoints and
each of them is charged at most once, the number of such faces f
is O(r2). Otherwise, both δ, δ′ must leave e from the same (top or
bottom) side of it, and similarly for e′. (We say that δ leaves the top

(bottom) side of e, if in a small neighborhood of the intersection point
of δ and e, δ is on the top (bottom) side of e.) Since, by construction,
each of δ, δ′ must leave at least one of e, e′ from its bottom side,

there are only two possible cases:

(i) δ and δ′ leave both e and e′ from their bottom sides; see Figure 4(i). It is easily seen that

e′

f
δ

f

δ′w

e

e′ e w u

δ

v

γ
γ

v

u
δ′

(i) (ii)

Fig. 4. The portion of γ to the left of CH(γ ∩ e) must lie fully within f .

in this case the left endpoints of δ, δ′ lie on the same edge, say e. Suppose, without loss of
generality, that v = δ ∩ e lies to the right of w = δ′ ∩ e. Let u be the other intersection of γ with
e; by construction, such a point must exist. By convexity of pseudo-circles u must lie between w
and v, and the extension of γ to the left of u lies in f locally near u. Moreover, this extension lies
fully below the lines containing e and e′, implying that it cannot intersect any of the four sides
of f , and thus the left endpoint of γ must lie inside f . The number of such faces is therefore at
most m.

(ii) δ and δ′ leave, say, e from its bottom side and e′ from its top side; see Figure 4(ii). In this
case, by construction, the left endpoints of δ and δ′ lie on e. Again, we assume that v = δ∩e lies
to the right of w = δ′ ∩ e. Let u be the other intersection of γ with e; as above, by construction,
such a point must exist, it must lie between w and v, and the extension of γ to the left of u
must lie in f locally near u. As above, we claim that this extension lies fully within f . As in the
previous case, this extension cannot intersect e, δ, or δ′. Moreover, it also cannot meet e′ (from
its top side), since this would contradict our assumption that δ is an edge of G. Hence, in this
case too the left endpoint of γ must lie inside f , so the overall number of faces of G of degree 2
is at most m.

Hence, a straightforward application of Euler’s formula for planar graphs implies that the
number of edges of G is O(r2 + m).

Let mτ denote the number of short and (undiscarded) bottom arcs in τ . The preceding
analysis implies that

∑

τ mτ = O(r2 + m). The weaker bound obtained above implies that the
number of mixed edge-touching regular vertices on ∂U that are formed within a trapezoid τ by

On the number of regular vertices January 19, 1999



Transforming the Regions 6

its mτ short and bottom arcs is O(mτ (n/r)1/2 + n/r), for a total of

O

(

∑

τ

[

mτ

(

n

r

)1/2

+
n

r

])

= O

(

(m + r2)

(

n

r

)1/2

+ nr

)

.

As argued above, the overall number of all other mixed edge-touching regular vertices on ∂U is
O(m + nr). If we choose r = ⌈m2/3/n1/3⌉ = ⌈n1/3⌉, the overall bound becomes O(n4/3). This,
combined with the lower bound construction in [16], completes the proof of Theorem 1. ⊓⊔

3 Transforming the Regions

The next lemma is used as a first step in the proofs of Theorems 2 and 3.

Lemma 1. Let C be a collection of n Jordan regions in the plane, so that each pair of boundaries

intersect in a finite number s of points. Then we can transform this collection so that if c and

c′ are a pair of regions in C whose boundaries originally crossed regularly, with at least one

of these two crossing points lying on ∂U , then after the transformation c and c′ are openly

disjoint and touch at a single point that lies on the new union boundary. Moreover, the number

of intersections between any two region boundaries does not increase after the transformation.

Finally, if all original regions in C are convex, then they remain so after the transformation.

Proof: Before starting the transformation process, we first remove from C any region that is
fully contained in the interior of the union U . This can be done without loss of generality. We
thus assume from now on that C does not contain any such region.

The transformation process is iterative: Order the regions in C arbitrarily as (c1, . . . , cn).
Let Ci denote the collection after the first i steps of the transformation, with C0 = C. We now
describe how to transform Ci−1 into Ci.

Put c = ci, and apply a homeomorphism τc of the plane that maps c onto the closed unit
disk D; the existence of such a homeomorphism is a consequence of Schönfliess’ Theorem [14].
If all the sets are convex, then we take τc to be the identity and for uniformity put D = c. We
now apply the following steps:

(i) For each c′ 6= c ∈ C, we replace each maximal connected arc of D ∩ ∂τc(c
′) by the line

segment connecting its endpoints. See Figure 5(ii). (It is possible that such an arc is a single
point, in which case this step does not modify it.)

(ii) We shortcut each maximal connected arc γ of ∂D ∩ int(τc(U)) as follows. Let u and v
denote the endpoints of γ, and let a, b ∈ C, a, b 6= c, be the sets whose transformed boundaries
contain u, v, respectively. If a 6= b, we replace γ by the line segment uv; see the left-hand side
of Figure 5(iii). If a = b, we choose a point v′ on ∂D that lies outside τc(a) very close to v (and
does not lie inside any other transformed set), and again replace the portion of ∂D between u
and v′ by the line segment uv′; see the right-hand side of Figure 5(iii) (where the relevant set is
d).

(iii) We now transform the plane back using τ−1
c .

We iterate these three stages, applying them to each ci ∈ C in the above order.

We claim that this transformation does not increase the number of intersections between
any pair of boundaries. Indeed, consider the step where a set ci is processed, and let a, b be two
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γ

u

v

u

v
a

b

d
D

d

a

b

(i) (ii) (iii)

Fig. 5. Demonstration of the transformation rules: (i) The disk D with the images of three other sets, referred
to as a, b, and d. (ii) The modified sets a, b, and d; the arcs γ of ∂D shortcut in the next stage are highlighted.
(iii) D after applying stage (ii) of the transformation; the shaded region is a new connected component of the
complement of the union (a new ‘hole’).

distinct sets in Ci−1. If ci 6= a, b then the portions of ∂a and ∂b outside ci do not change, while
their portions inside ci, after applying τci and our “straightening” step (step (ii)), consist of
straight segments. If two such segments uv and wz, lying on the modified respective boundaries
∂a, ∂b inside D, cross at some point x, then, since u,w, v, z all lie on ∂D and must appear there
in this cyclic order, and since the original respective portions of ∂τci(a) and ∂τci(b) connecting
u to v and w to z lie fully inside D, these original portions must cross each other at some
point x′. We charge x to x′, and note that this charging is unique, implying that the number of
intersections has not increased.

Suppose then that ci = a, say, and let x be a new intersection between ∂D and ∂τci(b),
after the straightening step. Then x must lie (in the τci image) on one of the new straight
segments uv or uv′ on ∂a in the transformed plane, and on some new straight portion wz of the
transformed ∂b. If x is a common endpoint of these two straight segments, then it must have
been an intersection point between ∂a and ∂b in Ci−1, so no new intersection arises in this case.
Otherwise, as above, it follows that one of w, z, say w, must lie on the portion of ∂D that has
been replaced by uv or uv′, so we can charge x to w, which was an old intersection point of ∂a
and ∂b (in the transformed plane), and this charging is unique, again implying that the number
of intersections has not increased.

In particular, every pair of new boundaries intersect (transversally) at most s times, and
every pair of boundaries that originally intersected in two (regular) vertices either continue to
do so, or just touch each other in a single point, or do not intersect at all after the transformation.
Specifically, in the case of regular intersection between two boundaries ∂a, ∂b, if at least one of
the two intersections lies on ∂U , then the two transformed boundaries touch at a single point that
lies on ∂U ; see Figure 5(iii). Indeed, suppose that ∂a and ∂b intersect at exactly two points u, v,
at least one of which lies on ∂U , and suppose that a is processed before b. When a is processed,
∂a and ∂b become touching by construction, and it is easy to verify that this situation does
not change after any subsequent transformation step (one needs to verify this only for the step
that processes b because no other step affects the neighborhood of this touching point that lies
outside all other regions).

All these considerations complete the proof of the lemma. ⊓⊔

Observe that U might be changed by these transformations: The original ∂U is still a portion
of the new boundary (not taking into account the slight perturbation introduced in the second
case of step (ii)), but U could have gained additional ‘holes,’ as shown in Figure 5(iii). Note also
that the result of the transformation may depend on the order in which the sets are processed.

On the number of regular vertices January 19, 1999
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4 Convex Regions: Proof of Theorem 2

We first apply the transformation described in the previous section to the given family C of convex
sets. As already noted, if the sets are convex, then there is no need to apply a homeomorphism to
the plane at each step of this process, and the sets remain convex after the transformation. The
transformed sets have the following properties. They are convex. Any two boundaries intersect
at most s times. Any two sets that intersected regularly become disjoint or touch at a single
point. If two sets intersected regularly with at least one point of intersection of their boundaries
on ∂U , the transformed sets are openly disjoint and touch on ∂U . If they intersected regularly
without creating vertices on ∂U , they are now disjoint. From now on, we assume that C has the
properties just noted.

For each c ∈ C, let ec denote its ‘equator’, namely the segment connecting the leftmost point
and the rightmost point in c. (By an appropriate general position assumption, or by appropriate
tilting of the plane, ec is uniquely defined for each c ∈ C; these segments were called ‘sentinels’ in
[1].) In what follows we ignore boundary touchings that occur at endpoints of equators—there
are at most 2n such touchings.

We first construct a hereditary segment tree Q on the x-projections of the equators (that
is, of the sets in C), as in [3] (consult [3] for more details, and for the terminology that we use
below). Each node v of Q stores the standard segment-tree list Lv of sets with so-called ‘long’
equators, and also a list Sv of sets with ‘short’ equators, those that are stored in some list Lw,
for a proper descendant w of v, and thus have at least one equator endpoint in the interior of the
vertical strip σv associated with v. It is easily verified that for any boundary touching between
two sets a, b ∈ C, not occuring at an endpoint of any equator, there is a unique node v of Q (on
the path to the leaf w whose strip σw contains the touching), such that the touching point lies
in σv and either both a and b belong to Lv or one of them belongs to Lv and the other to Sv.
Also, any such touching occurs between the upper boundary of one set and the lower boundary
of the other. We have

∑

v(|Lv| + |Sv|) = O(n log n).

We now fix a node v and bound the number of boundary touchings within σv formed between
two sets in Lv ∪ Sv, at least one of which lies in Lv. We will only describe the case where the
other set lies in Sv, because the case where both of them lie in Lv is simpler and can be handled
by a similar approach. Moreover, with no loss of generality, it suffices to consider only boundary
touchings where the set in Lv lies above the set in Sv.

We apply fairly standard range-searching techniques to obtain a finite collection {Ai × Bi}i

of complete bipartite graphs, such that
σv

eb

ea

b ∈ Lv

a ∈ Svζ

σ(i)

Fig. 6. Illustrating property (b)

(a) For each i, Ai ⊆ Sv and Bi ⊆ Lv.

(b) For each i there is a substrip σ(i) ⊆ σv, such that for each
a ∈ Ai, b ∈ Bi, the x-projection of a contains that of σ(i),
the equator eb lies fully above a within σv, and the equator
ea lies fully below b within σ(i). See Figure 6.

(c) For each pair of sets a ∈ Sv, b ∈ Lv, such that ∂a touches
∂b at a point ζ within σv and a lies below b, there is an
index i such that a ∈ Ai, b ∈ Bi, and ζ ∈ σ(i).

(d)
∑

i(|Ai| + |Bi|) = O(|Sv|
1+ε|Lv|

1/2+ε + |Lv|
1+ε|Sv|

1/2+ε),
for any ε > 0, where the constant of proportionality de-
pends on ε and on s.
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Suppose this has been done. Then fix an index i, and note that any boundary touching ζ ∈ ∂U
that occurs within σ(i) between a set a in Ai and a set b in Bi must occur along the upper
envelope of the upper boundaries of the sets of Ai, and along the lower envelope of the lower
boundaries of the sets of Bi. Indeed, suppose to the contrary that, say, ζ does not lie on this upper
envelope. Since ζ lies on the boundary of the union of Ai, the set a′ appearing on the envelope at
the x-coordinate of ζ must be such that ea′ lies above ζ, which contradicts the property that ea′

has to lie fully below b within σ(i). The argument for the lower envelope is fully symmetric. The
number of such touchings is therefore proportional to the combined complexity of these envelopes
within σ(i), which is at most λs(|Ai|) + λs(|Bi|), where λs(n) denotes the maximum length of
(n, s)-Davenport-Schinzel sequences [17]. Summing over all i’s, we obtain that the total number
of boundary touchings ‘associated’ with v is proportional to O(|Sv||Lv|

1/2+ε + |Lv||Sv|
1/2+ε), for

a slightly larger, but still arbitrarily small ε > 0. Summing these bounds over all nodes v of
Q, we obtain the overall bound O(n3/2+ε), again for slightly larger, but still arbitrarily small
ε > 0, with the constant of proportionality depending on ε and on s. This therefore completes
the proof of the theorem.

To obtain the decomposition {Ai×Bi}, we use a multi-level range-searching structure, where
each node w at each level of the structure will store a complete bipartite graph A′

w × B′
w, such

that A′
w ⊆ Sv and B′

w ⊆ Lv. Each subsequent level of the structure enforces some more of the
desired constraints, and the bipartite graphs within each subsequent level form a refinement
of the graphs obtained at the previous level. See [2] for more details concerning multi-level
range-searching structures.

In the first level we enforce the property that the segments eb, for b ∈ Lv, lie above the sets
a in Sv (for each of the bipartite graphs to be generated at this step). In what follows, we clip
all the relevant a’s and b’s to within σv. Actually, we want to have the property that the equator
eb of any such b lies above the upper boundary of any such a. We may replace any eb by the line
containing it (this has no effect on what happens within σv), and replace any a by the portion
of σv lying below the upper boundary of the original a (so we first make a smaller by ignoring
its portion outside σv, and then make a larger by allowing it to expand downwards within σv).
We apply a standard duality transform to the plane (as in [6]), which preserves incidences and
the above/below relationship. This duality maps the upper boundary of any a ∈ Sv to a convex
x-monotone curve γa, and the (extended) equators eb of sets in Lv are mapped to points e∗b .
An equator eb lies above the upper boundary of a if and only if the dual point e∗b lies above γa.
Note also that any pair of curves γa, γa′ intersect each other at most s times, because any such
intersection point is the dual of a common tangent to the upper boundaries of a and a′, and
there can be at most s such common tangents, because ∂a and ∂a′ intersect in at most s points.

Thus, in this dual setting, the desired first-level decomposition {A′
w × B′

w}w of Sv × Lv has
to satisfy the following properties:

(e) For each w, the point e∗b dual to the equator eb of any set b ∈ B′
w lies above γa, for every

a ∈ A′
w.

(f) For any a ∈ Sv, b ∈ Lv, such that e∗b lies above γa, there is a w such that a ∈ A′
w and b ∈ B′

w.

Put mv = |Sv|, nv = |Lv|. To obtain this decomposition, we fix some sufficiently large
constant parameter ξ, draw a random sample R of ξ sets a ∈ Sv, consider the arrangement AR

of the corresponding curves γa, and apply a vertical decomposition to AR that produces O(ξ2)
pseudo-trapezoidal cells. Since each pseudo-trapezoid is determined by at most four curves γa, it
follows from [5] that with high probability, no pseudo-trapezoid is crossed by more than cmv

ξ log ξ

On the number of regular vertices January 19, 1999
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curves, for some appropriate constant c. We may assume that our sample R does indeed have
this property.

For each pseudo-trapezoid τ , let Bτ denote the subset of Lv consisting of those sets b whose
dual points e∗b lie inside τ , and let Aτ (resp. Cτ ) denote the subset of Sv consisting of those sets
a whose dual curves γa pass below τ (resp. cross τ). Put kτ = |Aτ |, nτ = |Bτ |, and mτ = |Cτ |.
We have

∑

τ nτ = nv, kτ ≤ mv, and mτ ≤ cmv
ξ log ξ. By partitioning τ vertically into subcells,

if necessary, we may also assume that nτ ≤ nv/ξ
2 for each τ , while the total number of subcells

remains O(ξ2).

We add to the first-level output collection of complete bipartite graphs all the products
Aτ × Bτ , and repeat the whole process recursively within each cell τ , with the sets Cτ and Bτ .
We stop the recursion when the size of Cτ or of Bτ falls below some specified constant, and then
output all appropriate singleton products {a} × {b}, for a ∈ Cτ , b ∈ Bτ .

It is clear from the construction that the resulting decomposition satisfies the required prop-
erties (e) and (f). We next estimate its total size

∑

τ (|Aτ | + |Bτ |). At the top level of the
recursion we have

∑

τ |Bτ | = nv. Since the number of levels of recursion is O(log nv) and the
points e∗b are partitioned among the recursive subproblems, it follows that in total we have
∑

τ |Bτ | = O(nv log nv). Similarly, at the top level of the recursion we have
∑

τ |Aτ | = O(mvξ
2),

and
∑

τ |Cτ | = O(mvξ log ξ) (where both constants of proportionality depend only on s). The

maximum depth j of the recursion satisfies ξ2j ≤ nv, or ξj ≤ n
1/2
v . It follows that, for an

appropriate constant c′ that depends on s, the overall sum
∑

τ |Aτ | is at most proportional to

mvξ
2
(

1 + c′ξ log ξ + · · · + (c′ξ log ξ)j−1
)

= O(mv(c
′ξ log ξ)j) = O(mvn

1/2+ε
v ),

where we can make ε > 0 arbitrarily small by choosing ξ sufficiently large (as a function of ε
and s). Hence we have

∑

τ

|Aτ | = O(mvn
1/2+ε
v ) and

∑

τ

|Bτ | = O(nv log nv). (1)

Next, fix a pair A = Aτ , B = Bτ in this decomposition. For each a ∈ A, b ∈ B the equator
eb lies above the upper boundary of a (within σv). This already implies (arguing as above)
that any boundary touching between ∂a and ∂b, for any pair a ∈ A, b ∈ B that lies on the
union boundary, must lie on the lower envelope E of the lower boundaries of the sets in B. The
complexity of E is at most λs(|B|), which is nearly linear in |B|.

For each a ∈ A, let ax denote its x-projection, clipped to within σv. We construct a secondary
segment tree T on the intervals ax. Each node u of T is associated with a vertical strip σ(u) ⊆ σv.
In addition to the standard segment-tree list A(u) of x-projections of sets in A that is stored at
u, we also store there a list B(u) of the sets in B whose lower boundaries appear in E ∩σ(u). We
clearly have that

∑

u |A
(u)| = O(|A| log |A|) and that

∑

|B(u)|>1 |B
(u)| = O(λs(|B|) log |A|).

Indeed, the first bound is a standard property of segment trees. The second bound is a
consequence of the following observations: (a) The number of breakpoints of E is at most λs(|B|).
(b) Each breakpoint belongs to at most log |A| strips σ(u). (c) For any u, the size of B(u) is upper
bounded by 1 plus the number of breakpoints of E in σ(u).

Now suppose that there is a pair a ∈ A, b ∈ B, with a touching ζ between the upper part
of ∂a and the lower part of ∂b that lies on the union boundary. There is a unique node u of T
such that a ∈ A(u) and ζ ∈ σ(u). Hence ∂b appears on E within σ(u), so b ∈ B(u). Note also that
the line containing ea passes fully below b ∩ σ(u) (because the x-projection of a fully contains
the projection of σ(u)).
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We now fix a node u for which |B(u)| > 1, and apply a symmetric version of the first-level
decomposition to A(u) × B(u), to obtain a collection {A′

j × B′
j}j of complete bipartite graphs,

such that

(g) For each j, we have A′
j ⊆ A(u) and B′

j ⊆ B(u); we also associate the strip σ(u) with j.

(h) For each j, each a ∈ A′
j and each b ∈ B′

j , the equator ea lies fully below b within σ(u).
(i) For any boundary touching ζ as above, there is an index j such that a ∈ A′

j and b ∈ B′
j (and

ζ lies in the strip of j, that is, in σ(u)).
(j)

∑

j(|A
′
j | + |B′

j |) = O(|A(u)| log |A(u)| + |B(u)||A(u)|1/2+ε), for any ε > 0.

If |B(u)| = 1 we output only one bipartite graph Ã(u) × B(u) where Ã(u) consists of all a ∈ A(u)

such that ea lies fully below the unique b ∈ B(u) within σ(u).

The grand collection of complete bipartite graphs A′
j × B′

j, gathered over all nodes u of T ,
and over all first-level pairs A × B (recall that we originally denoted such a pair by Aτ × Bτ

for some trapezoid τ), is the desired output collection. It clearly satisfies properties (a)–(c).
Concerning (d), we first sum the bounds (j) over all u ∈ T , to obtain the bound

O(|A| log2 |A| + λs(|B|)|A|1/2+ε),

for a slightly larger but still arbitrarily small ε > 0, where the constant of proportionality
depends on ε and on s. Clearly, this bound also subsumes the case |B(u)| = 1.

Finally, we sum these bounds over all pairs A = Aτ , B = Bτ , in the first-level decomposition,
and make use of (1), to conclude that this sum is at most proportional to

∑

τ

O(|Aτ | log
2 |Aτ | + λs(|Bτ |)|Aτ |

1/2+ε) = O(m1+ε
v n1/2+ε

v + n1+ε
v m1/2+ε

v ),

again, for a slightly larger but still arbitrarily small ε > 0, where the constant of proportionality
depends on ε and on s. Hence (d) is also satisfied. As already noted, this completes the proof of
the theorem. ⊓⊔

Remark: An obvious open problem is to close the gap between this upper bound and the lower
bound Ω(n4/3) noted earlier.

5 Arbitrary Regions: Proof of Theorem 3

We prove the theorem using the following ‘forbidden subgraph’ argument. We first transform C
as described in Lemma 1, but continue to denote the transformed collection by C. Now we define
a graph H whose vertices are the regions in C and whose edges connect pairs of regions that
touch at a point on the boundary of the union. We claim that H does not contain a complete
bipartite graph Kr,g for some sufficiently large constants r = r(s), g = g(s), where s is the
maximum number of intersections between any two region boundaries.

Suppose to the contrary that there exist subsets R,G of C of sizes r, g, respectively, such
that for each (c, c′) ∈ R×G, c and c′ touch at only one point and that point lies on the boundary
of the union U . With no loss of generality, we may assume that C = R∪ G. We refer to sets of
R (resp. G) as “red” (resp. “green”).

Consider the arrangement A(G) and let UG denote the union of G. We claim that any c ∈ R
is fully contained in the closure of a single hole (connected component of the complement) of
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UG . Indeed, if this were false, ∂c would have to properly cross some boundary of a green region
c′, which is impossible by construction.

Consider the collection of holes of UG that contain red regions. We call them interesting

green holes. Since each red region must touch the boundary of every green set at a point that
lies on ∂UG , it follows that all interesting green holes are part of the zone in A(G) of any green
boundary, which is the collection of cells in the arrangement met by the boundary. Hence the
overall complexity, i.e., the number of vertices and edges, of all these holes is at most aλs+2(g),
for some absolute constant a (see [15]). Symmetrically, the overall complexity of interesting red
holes, defined analogously for R, is at most aλs+2(r).

We now construct a planar bipartite graph G, whose nodes are the arcs forming the bound-
aries of interesting green and red holes; each edge of G connects a green arc ζ to a red arc η
if these two arcs touch at a (regular) vertex of the overall union. It is easy to verify that G is
indeed planar, and that it has no multiple edges. Since the graph is bipartite, the number of
its edges is at most twice the number of its nodes, that is, at most 2a(λs+2(g) + λs+2(r)). On
the other hand, the number of edges of G must be rg, because every green set and every red
set touch at some (regular) vertex on ∂U . We thus obtain: rg ≤ 2a(λs+2(g) + λs+2(r)), which is
impossible if r and g are sufficiently large constants (that depend on s).

Using standard results in extremal graph theory (see [15]), it follows that the number of
regular vertices on the boundary of the union of C is O(n2−1/r). This completes the proof of the
theorem. ⊓⊔

u
v

a

b b

a u
v

Fig. 7. Both pairs u, v are
pseudo-regular

Remarks: (1) The following is a natural extension of the
concept of regular intersection: We say that the boundaries
of two Jordan regions a and b meet pseudo-regularly at u
and v if there is a connected component of a ∩ b that con-
tains u and v and no other intersection point of ∂a ∩ ∂b on
its boundary. In other words, we allow ∂a and ∂b to cross
more than twice, but require that their intersections u and
v behave ‘locally’ as regular intersections; see Figure 7. Un-

fortunately, it is possible to construct families of n Jordan regions, each pair of whose bound-
aries cross at most 6 times, such that the boundary of their union has Θ(n2) pseudo-regular

Fig. 8. Regions with at most 6
intersections between any pair
of boundaries, whose union has
Θ(n2) pseudo-regular vertices.

vertices. Such a construction is depicted in Figure 8. We start
with a grid-like arrangement of thin rectangles and deform
the horizontal rectangle near each hole to create two pseudo-
regular vertices. Thus Theorem 3 fails for pseudo-regularity.

In the lower bound construction just given, even though any
two boundaries cross at most six times, the shape of some of
the boundaries is quite complicated. We do not know whether
a similar construction can be obtained for semialgebraic Jor-
dan regions of constant description complexity,2 so the ques-
tion whether Theorem 3 holds in this case remains open.

(2) Nevertheless, if any two boundaries cross at most four times, then if two boundaries cross four
times but meet pseudo-regularly, then the four intersections come in two pairs, each of which is
a pseudo-regular pair; see Figure 7(right). It is easy to verify that Theorem 3 continues to hold

2 That is, regions that are each described by a boolean combination of a constant number of polynomial equalities
and inequalities of constant maximum degree.
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in this case, using the same proof with slight and obvious modifications. In fact, this suggests
an alternative definition of pseudo-regularity: we say that a and b intersect pseudo-regularly if
the intersection a ∩ b consists of a finite number of connected components, each with at most
two points of ∂a ∩ ∂b on it. With this modification, the proof of Theorem 3 carries through, for
any fixed s.
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