In this section, you’ll be writing several processing programs to practice nested loops and movement. We’ll also cover how to bound the y-coordinate position when using mouseY.

1. Circle all that apply. A network packet contains (at least) the following information:
 a. receiver’s address
 b. sender’s address
 c. payload (or data) of the packet
 d. the size of the payload
 e. All of the above

2. Type in the following code and run it:

```java
void setup() {
  size(500, 400);
}
void draw() {
  background(20,160,230);
  fill(230,0,0);
  rect(mouseX, mouseY, 60,40);
  line(0,200,500,200);
}
```

What is the smallest value mouseY can be? ______________
What is the largest value mouseY can be? ______________
What is mouseY at the midpoint of the canvas? ______________
If we move the box to the top of the canvas, what is mouseY? ______________
If we move the box to sit on the line, what is mouseY? ______________

\[
\text{midpoint – box height} = \quad ______________
\]

Experiment with dividing mouseY by 2, 2.5, 3, 3.5, and then 4.

(Section 6 problems are continued on the class website.)