Introduction to Computer Programming II

Adapted from slides by Dr. Saumya Debray

08: Efficiency and Complexity
EFFICIENCY MATTERS
reasoning about performance
Reasoning about efficiency

Consider two different programs that sum the integers from 1 to \(n \)

\[
\text{def sumv1}(n):
 \text{num} = 0
 \text{for } i \text{ in range}(1, n+1):
 \text{num} += i
 \text{return num}
\]

\[
\text{def sumv2}(n):
 \text{num} = \left(n \times (n+1) \right) / 2
 \text{return num}
\]
Reasoning about efficiency

How would we compare them to see which is "better"?

```python
def sumv1(n):
    num = 0
    for i in range(1, n+1):
        num += i
    return num

def sumv2(n):
    num = (n*(n+1)) / 2
    return num
```
Reasoning about efficiency

• We could compare the difference in running times:

 – Download `sumv1(n)`

 o http://www2.cs.arizona.edu/classes/cs120/fall18/NOTES/sumv1.py

 o run this for these values of n: 10,000, 100,000, 1,000,000

 – Download `sumv2(n)`

 o http://www2.cs.arizona.edu/classes/cs120/fall18/NOTES/sumv2.py

 o run this for these values of n: 10,000, 100,000, 1,000,000
Reasoning about efficiency

• Observations on $\text{sumv}_1(n)$ vs $\text{sumv}_2(n)$:
 – For sumv_1, as we increase n, the running time increases
 o increases in proportion to n
 – For sumv_2, as we increase n, the running time stays the same

• We noticed this by running the programs
• But this depends on many external factors
Reasoning about efficiency

• The time taken for a program to run
 – can depend on:
 o processor properties that have nothing to do with the program
 \((\text{e.g., CPU speed, amount of memory})\)
 o what other programs are running \((\text{i.e., system load})\)
 o which inputs we use \((\text{some inputs may be worse than others})\)

• We would like to compare different algorithms:
 – without requiring that we implement them both first
 – focusing on running time \((\text{not memory usage})\)
 – abstracting away processor-specific details
 – considering all possible inputs
Reasoning about efficiency

• Algorithms vs. programs

 – Algorithm:
 o a step-by-step list of instructions for solving a problem

 – Program:
 o an algorithm that been implemented in a given language

• We would like to compare different algorithms abstractly
Comparing algorithms

• Search for a word `my_word` in a dictionary (a book)

• A dictionary is sorted
 – Algo 1 (search from the beginning):
 start at the first word in the dictionary
 if the word is not `my_word`, then go to the next word
 continue in sequence until `my_word` is found

 – Algo 2:
 start at the middle of the dictionary
 if `my_word` is greater than the word in the middle,
 start with the middle word and continue from there to the end
 if `my_word` is less than the word in the middle,
 start with the middle word and continue from there to the beginning
EXERCISE

• Which is better, Algo 1 (search from the beginning) or Algo 2 (search from the middle)?
 What is the reason?

• Which ever algo you chose, is there ever a scenario where the other algo is better?

• When considering which is better, what measure are we using?
Comparing algorithms

• Call comparison a *primitive* operation
 – an abstract unit of computation

• We want to characterize an algorithm in terms of how many primitive operations are performed
 – best case and worst case

• We want to express this in terms of the size of the data (or size of its input)
Primitive operations

• Abstract units of computation
 – convenient for reasoning about algorithms
 – approximates typical hardware-level operations

• Includes:
 – assigning a value to a variable
 – looking up the value of a variable
 – doing a single arithmetic operation
 – comparing two numbers
 – accessing a single element of a Python list by index
 – calling a function
 – returning from a function
Primitive ops and running time

• A primitive operation typically corresponds to a small constant number of machine instructions
• No. of primitive operations executed
 \(\propto \) no. of machine instructions executed
 \(\propto \) actual running time
Example

Code

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

Primitive operations

- len(list_): 1
- range(): 1
- in: 1
- for: 2
- list_[i]: 1
- str_: 1
- ==: 1
- if: 1

Each iteration: 9 primitive ops
Primitive ops and running time

• We consider how a function's running time depends on the size of its input
 – *which input do we consider?*
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• Best-case scenario?:

• Worst-case scenario?:
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• Best-case scenario: str_ == list_[0] # first element
 – loop does not have to iterate over list_ at all
 – running time does not depend on length of list_
 – does not reflect typical behavior of the algorithm
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• Worst-case scenario: str_ == list_-1
 # last element
 – loop iterates through list_
 – running time is proportional to the length of list_
 – captures the behavior of the algorithm better
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• In reality, we get something in between
 – but "average-case" is difficult to characterize precisely
What about “average case”?

![Bar chart showing running time for different inputs (A, B, C, D, E, F, G, H, ...) with labels for best-case, average case, and worst-case time.]
Worst-case complexity

• Considers worst-case inputs
• Describes the running time of an algorithm as a function of the size of its input ("time complexity")
• Focuses on the rate at which the running time grows as the input gets large
• Typically gives a better characterization of an algorithm's performance

• This approach can also be applied to the amount of memory used by an algorithm ("space complexity")
Example

Code

```python
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
    return -1
```

Primitive operations

- `len(list_): 1`
- `range(): 1`
- `in: 1`
- `for: 2`
- `list_[i]: 1`
- `str_: 1`
- `==: 1`
- `if: 1`

Each iteration: 9 primitive ops
Example

Code

```python
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
    return -1
```

Primitive operations

- `len(list_)`: 1
- `range()`: 1
- `in`: 1
- `for`: 2
- `list_[i]`: 1
- `str_`: 1
- `==`: 1
- `if`: 1

Each iteration: 9 primitive ops

Total primitive ops executed:

1 iteration: 9 ops

∴ n iterations: 9n ops

+ return at the end: 1 op

∴ total worst-case running time for a list of length n = 9n + 1
What is the total worst-case running time of the following code fragment expressed in terms of n?

for i in range(n):
 k = 2 + 2
What is the total worst-case running time of the following code fragment expressed in terms of n?

```python
a = 5
b = 10
for i in range(n):
    x = i * b
for j in range(n):
    z += b
```
asymptotic complexity
Asymptotic complexity

• In the worst-case, lookup(str_, list_) executes 9n + 1 primitive operations given a list of length n

• To translate this to running time:
 - suppose each primitive operation takes k time units
 - then worst-case running time is $(9n + 1)k$

• But k depends on specifics of the computer, e.g.:

<table>
<thead>
<tr>
<th>Processor speed</th>
<th>k</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>slow</td>
<td>20</td>
<td>180n + 20</td>
</tr>
<tr>
<td>medium</td>
<td>10</td>
<td>90n + 10</td>
</tr>
<tr>
<td>fast</td>
<td>3</td>
<td>27n + 3</td>
</tr>
</tbody>
</table>
Asymptotic complexity

worst case running time = \(A_n + B \)

depends on how the algorithm processes data

depends on processor-specific characteristics
Asymptotic complexity

• For algorithm analysis, we focus on how the running time grows as a function of the input size n
 – usually, we do not look at the exact worst case running time
 – it's enough to know proportionalities

• E.g., for the lookup() function:
 – we say only that its running time is "proportional to the input length $n"
def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions
Example

Code

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions

Primitive operations

Worst case behavior:

primitive operations = n(9n + 5) + 2 = 9n^2 + 5n + 2
running time = k(9n^2 + 5n + 2)
Example

Code

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions

Worst case: $9n^2 + 5n + 2$

As n grows, the $9n^2$ term grows faster than $5n + 2$

\Rightarrow for large n, the n^2 term dominates

\Rightarrow running time depends primarily on n^2
Example

As n grows larger, the n^2 term dominates \Rightarrow the contribution of the other terms becomes insignificant.
Example 2: $2x^2 + 15x + 10$
Example 3: $x^3 + 100x^2 + 100x + 100$
Growth rates

• As input size grows, the fastest-growing term dominates the others
 – the contribution of the smaller terms becomes negligible
 – it suffices to consider only the highest degree (i.e., fastest growing) term

• For algorithm analysis purposes, the constant factors are not useful
 – they usually reflect implementation-specific features
 – to compare different algorithms, we focus only on proportionality
 ⇒ ignore constant coefficients
Comparing algorithms

Growth rate $\propto n$

```
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
    return -1
```

Growth rate $\propto n^2$

```
def list_positions(list1, list2):
    positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions
```
Summary so far

• Want to characterize algorithm efficiency such that:
 – does not depend on processor specifics
 – accounts for all possible inputs

 ⇒ count primitive operations
 ⇒ consider worst-case running time

• We specify the running time as a function of the size of the input
 – consider proportionality, ignore constant coefficients
 – consider only the dominant term
 o e.g., $9n^2 + 5n + 2 \approx n^2$
big-O notation
Big-O notation

• Big-O formalizes this intuitive idea:
 – consider only the dominant term
 o e.g., \(9n^2 + 5n + 2 \approx n^2 \)
 – allows us to say,
 "the algorithm runs in time proportional to \(n^2 \)"
Big-O notation

Intuition:

\[
\text{When we say...} \quad \text{...we mean}
\]

"f(n) is O(g(n))" \quad "f is growing at most as fast as g"

"big-O notation"
Big-O notation

• Captures the idea of the growth rate of functions, focusing on proportionality and ignoring constants

Definition: Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers.

Then, $f(n)$ is $O(g(n))$ if there is a real constant c and an integer constant $n_0 \geq 1$ such that

$$f(n) \leq cg(n) \quad \text{for all } n > n_0$$
Big-O notation

\[f(n) \text{ is } O(g(n)) \text{ if there is a real constant } c \text{ and an integer constant } n_0 \geq 1 \text{ such that } f(n) \leq c \cdot g(n) \text{ for all } n > n_0 \]

“Once the input gets big enough, \(cg(n) \) is (always) larger than \(f(n) \)”
Big-O notation: properties

• If $g(n)$ is growing faster than $f(n)$:
 - $f(n)$ is $O(g(n))$
 - $g(n)$ is not $O(f(n))$

• If $f(n) = a_0 + a_1n + \ldots + a_kn^k$, then:
 \[f(n) = O(n^k) \]
 - i.e., coefficients and lower-order terms can be ignored
Some common growth-rate curves

- \(O(n) \)
- \(O(\log n) \)
- \(O(n \log(n)) \)
- \(O(n^2) \)
- \(O(n^3) \)
using big-O notation
Computing big-O complexities

Given the code:

| line _1 | \ldots | O(f_1(n)) |
| line _2 | \ldots | O(f_2(n)) |
| \ldots |
| line _k | \ldots | O(f_k(n)) |

The overall complexity is \(O(\text{max}(f_1(n), f_s(n), \ldots, f_k(n)))\)

Given the code

```
loop \ldots O(f1(n)) iterations
line1 \ldots O(f2(n))
```

The overall complexity is \(O(f_1(n) \times f_2(n))\)
Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>str_ == list_[i]</code></td>
<td>O(1)</td>
</tr>
</tbody>
</table>
Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>if str_ == list_[i]:</td>
<td>O(1)</td>
</tr>
<tr>
<td>return i</td>
<td>O(1)</td>
</tr>
</tbody>
</table>
Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>for i in range(len(list_)):</td>
<td></td>
</tr>
<tr>
<td>if str_ == list_[i]:</td>
<td></td>
</tr>
<tr>
<td>return i</td>
<td></td>
</tr>
<tr>
<td>O(n) (worst-case)</td>
<td></td>
</tr>
<tr>
<td>(n = length of the list)</td>
<td></td>
</tr>
<tr>
<td>O(1)</td>
<td></td>
</tr>
</tbody>
</table>

O(n) (worst-case)
Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>def lookup(str_, list_):</td>
<td>O(n)</td>
</tr>
<tr>
<td>for i in range(len(list_)):</td>
<td>O(n)</td>
</tr>
<tr>
<td>if str_ == list_[i]:</td>
<td>O(n)</td>
</tr>
<tr>
<td>return i</td>
<td></td>
</tr>
<tr>
<td>return -1</td>
<td>O(1)</td>
</tr>
</tbody>
</table>

The function `lookup` has a time complexity of O(n) because it iterates through the list once, checking each element against the input string. The return statement has a time complexity of O(1) due to the constant time it takes to execute the return operation.
Using big-O notation

Code

for value in list1:
 idx = lookup(value, list2)

return positions

Big-O complexity

O(n^2)

O(n) (worst-case)
(n = length of list1)

O(n) (worst-case)
(n = length of list2)
Using big-O notation

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions

O(1)

O(n^2)

O(n^2)
Computing big-O complexities

Given the code:

<table>
<thead>
<tr>
<th>line_1</th>
<th>(O(f_1(n)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>line_2</td>
<td>(O(f_2(n)))</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>line_k</td>
<td>(O(f_k(n)))</td>
</tr>
</tbody>
</table>

The overall complexity is

\[O(\max(f_1(n), f_2(n), ..., f_k(n))) \]

Given the code

loop \(... \) \(O(f_1(n)) \) iterations

| line_1 | \(O(f_2(n)) \) |

The overall complexity is

\[O(f_1(n) \times f_2(n)) \]
EXERCISE

my_rfind(mylist, elt) : find the distance from the # end of mylist where elt occurs, -1 if it does not
def my_rfind(mylist, elt):
 pos = len(mylist) - 1
 while pos >= 0:
 if mylist[pos] == elt:
 return pos
 pos -= 1
 return -1

Worst-case big-O complexity = ???
EXERCISE

for each element of a list: find the biggest value between that element and the end of the list

```python
def find_biggest_after(arglist):
    pos_list = []
    for idx0 in range(len(arglist)):
        biggest = arglist[idx0]
        for idx1 in range(idx0+1, len(arglist)):
            biggest = max(arglist[idx1], biggest)
        pos_list.append(biggest)
    return pos_list
```

Worst-case big-O complexity = ???
Input size vs. run time: max()
EXERCISE

for each element of a list: find the biggest value
between that element and the end of the list

def find_biggest_after(arglist):
 pos_list = []
 for idx0 in range(len(arglist)):
 biggest = max(arglist[idx0:])) # library code
 pos_list.append(biggest)
 return pos_list

Worst-case big-O complexity = ???
WARM-UP

Do the first 2 problems in exercises.

Is analyzing worst-case running time important?

How many Web pages does Google search?

https://www.google.com/search/howsearchworks/crawling-indexing/