CSc 120
Introduction to Computer Programming II

Adapted from slides by
Dr. Saumya Debray

08: Efficiency and Complexity
EFFICIENCY MATTERS
reasoning about performance
Reasoning about efficiency

• Consider two different programs that sum the integers from 1 to n
 – Download `sumv1(n)`
 – https://www2.cs.arizona.edu/classes/cs120/spring18/NOTES/sumv1.py
 o run this for these values of n: 10,000, 100,000, 1,000,000

 – Download `sumv2(n)`
 – https://www2.cs.arizona.edu/classes/cs120/spring18/NOTES/sumv2.py
 o run this for these values of n: 10,000, 100,000, 1,000,000
Reasoning about efficiency

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sumv1(n)</td>
<td>Calculates the sum of numbers from 1 to n using a loop.</td>
</tr>
<tr>
<td>sumv2(n)</td>
<td>Calculates the sum of numbers from 1 to n using a closed-form formula.</td>
</tr>
</tbody>
</table>

```python
def sumv1(n):
    num = 0
    for i in range(1, n+1):
        num += i
    return num

def sumv2(n):
    num = (n*(n+1)) / 2
    return num
```
Reasoning about efficiency

• Observations on $\text{sumv1}(n)$ vs $\text{sumv2}(n)$:
 – For sumv1, as we increase n, the running time increases
 o increases in proportion to n
 – For sumv2, as we increase n, the running time stays the same

• We noticed this by running the programs

• Can we make comparisons using some other method?
Reasoning about efficiency

• The time taken for a program to run
 – can depend on:
 o processor properties that have nothing to do with the program
 (e.g., CPU speed, amount of memory)
 o what other programs are running (i.e., system load)
 o which inputs we use (some inputs may be worse than others)

• We would like to compare different algorithms:
 – without requiring that we implement them both first
 – focusing on running time (not memory usage)
 – abstracting away processor-specific details
 – considering all possible inputs
Reasoning about efficiency

• Algorithms vs. programs

 – Algorithm:
 o a step-by-step list of instructions for solving a problem

 – Program:
 o an algorithm that been implemented in a given language

• We would like to compare different algorithms *abstractly*
Comparing algorithms

• Search for a word `my_word` in a dictionary (a book)

• A dictionary is sorted
 – Algo 1 (search from the beginning):
 start at the first word in the dictionary
 if the word is not `my_word`, then go to the next word
 continue in sequence until `my_word` is found

 – Algo 2:
 start at the middle of the dictionary
 if `my_word` is greater than the word in the middle,
 start with the middle word and continue from there to the end
 if `my_word` is less than the word in the middle,
 start with the middle word and continue from there to the beginning
Comparing algorithms

• Which is better, Algo 1 (search from the beginning) or Algo 2?
 Algo 2 in most cases (seemingly)
 What is the reason?

• When is Algo 1 better?
 Algo 1 is better if the word is close to the beginning
 How close to the beginning?

• When considering which is better, what measure are we using?
 The number of comparisons
Comparing algorithms

• Call comparison a *primitive* operation
 – an abstract unit of computation

• We want to characterize an algorithm in terms of how many primitive operations are performed
 – best case and worst case

• We want to express this in terms of the size of the data (or size of its input)
Primitive operations

• Abstract units of computation
 – convenient for reasoning about algorithms
 – approximates typical hardware-level operations

• Includes:
 – assigning a value to a variable
 – looking up the value of a variable
 – doing a single arithmetic operation
 – comparing two numbers
 – accessing a single element of a Python list by index
 – calling a function
 – returning from a function
Primitive ops and running time

• A primitive operation typically corresponds to a small constant number of machine instructions
• No. of primitive operations executed
 \[\propto \text{no. of machine instructions executed} \]
 \[\propto \text{actual running time} \]
Example

Code

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

Primitive operations

```
len(list_) : 1
range( ) : 1
in : 1
for : 2
list_[i] : 1
str_ : 1
== : 1
if : 1
```

each iteration: 9 primitive ops
Primitive ops and running time

• We consider how a function's running time depends on the size of its input
 – which input do we consider?
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• Best-case scenario?:

• Worst-case scenario?:
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• Best-case scenario: str_ == list_[0] # first element
 – loop does not have to iterate over list_ at all
 – running time does not depend on length of list_
 – does not reflect typical behavior of the algorithm
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• Worst-case scenario: str_ == list_[-1] # last element
 – loop iterates through list_
 – running time is proportional to the length of list_
 – captures the behavior of the algorithm better
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• In reality, we get something in between
 – but "average-case" is difficult to characterize precisely
What about “average case”?
Worst-case complexity

• Considers worst-case inputs
• Describes the running time of an algorithm as a function of the size of its input ("time complexity")
• Focuses on the *rate* at which the running time grows as the input gets large
• Typically gives a better characterization of an algorithm's performance

• This approach can also be applied to the amount of memory used by an algorithm ("space complexity")
Example

Code

```python
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
    return -1
```

Primitive operations

```
len(list_) : 1
range( ) : 1
in : 1
for : 2
list_[i] : 1
str_ : 1
== : 1
if : 1
```

each iteration: 9 primitive ops
Example

Code

```python
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
    return -1
```

Primitive operations

```
len(list_) : 1
range() : 1
in : 1
for : 2
list_[i] : 1
str_ : 1
== : 1
if : 1
```

each iteration: 9 primitive ops

Total primitive ops executed:
- 1 iteration: 9 ops
- ∴ n iterations: 9n ops
- + return at the end: 1 op

∴ total worst-case running time for a list of length n = 9n + 1
EXERCISE

What is the total worst-case running time of the following code fragment expressed in terms of n?

for i in range(n):
 $k = 2 + 2$
What is the total worst-case running time of the following code fragment expressed in terms of n?

```python
a = 5
b = 10
for i in range(n):
    x = i * b
    for j in range(n):
        z += b
```
asymptotic complexity
Asymptotic complexity

• In the worst-case, lookup(str_, list_) executes 9n + 1 primitive operations given a list of length n

• To translate this to running time:
 – suppose each primitive operation takes k time units
 – then worst-case running time is $(9n + 1)k$

• But k depends on specifics of the computer, e.g.:

<table>
<thead>
<tr>
<th>Processor speed</th>
<th>k</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>slow</td>
<td>20</td>
<td>$180n + 20$</td>
</tr>
<tr>
<td>medium</td>
<td>10</td>
<td>$90n + 10$</td>
</tr>
<tr>
<td>fast</td>
<td>3</td>
<td>$27n + 3$</td>
</tr>
</tbody>
</table>
Asymptotic complexity

worst case running time = $A_n + B$

depends on processor-specific characteristics

depends on how the algorithm processes data
Asymptotic complexity

• For algorithm analysis, we focus on how the running time grows as a function of the input size n
 – usually, we do not look at the exact worst case running time
 – it's enough to know proportionalities

• E.g., for the lookup() function:
 – we say only that its running time is "proportional to the input length $n"
Example

Code

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions
Example

Code

```python
def list_positions(list1, list2):
    positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions
```

Primitive operations

- `positions = []`
 - 1
- `for value in list1:`
 - `in` : 1
 - `for` : 2
 - iterates n times
- `idx = lookup(value, list2)`
 - 9n + 1
- `positions.append(idx)`
 - 1
- `return positions`
 - 1

Worst case behavior:

- Primitive operations = \(n(9n + 5) + 2 = 9n^2 + 5n + 2 \)
- Running time = \(k(9n^2 + 5n + 2) \)
Example

Code

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions

Worst case: $9n^2 + 5n + 2$

As n grows, the $9n^2$ term grows faster than $5n+2$

\Rightarrow for large n, the n^2 term dominates

\Rightarrow running time depends primarily on n^2
Example

As n grows larger, the n^2 term dominates ⇒ the contribution of the other terms becomes insignificant
Example 2: $2x^2 + 15x + 10$
Example 3: \(x^3 + 100x^2 + 100x + 100 \)
Growth rates

• As input size grows, the fastest-growing term dominates the others
 – the contribution of the smaller terms becomes negligible
 – it suffices to consider only the highest degree (i.e., fastest growing) term

• For algorithm analysis purposes, the constant factors are not useful
 – they usually reflect implementation-specific features
 – to compare different algorithms, we focus only on proportionality
 ⇒ ignore constant coefficients
Comparing algorithms

Growth rate $\propto n$

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions
Summary so far

• Want to characterize algorithm efficiency such that:
 – does not depend on processor specifics
 – accounts for all possible inputs

 ⇒ count primitive operations
 ⇒ consider worst-case running time

• We specify the running time as a function of the size of the input
 – consider proportionality, ignore constant coefficients
 – consider only the dominant term
 o e.g., \(9n^2 + 5n + 2 \approx n^2 \)
big-O notation
Big-O notation

• Big-O is formalizes this intuitive idea:
 – consider only the dominant term
 o e.g., \(9n^2 + 5n + 2 \approx n^2\)
 – allows us to say,
 "the algorithm runs in time proportional to \(n^2\)"
Big-O notation

Intuition:

When we say... ...we mean

"f(n) is O(g(n))" "f is growing at most as fast as g"

"big-O notation"
Definition: Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers.

Then, $f(n)$ is $O(g(n))$ if there is a real constant c and an integer constant $n_0 \geq 1$ such that

$$f(n) \leq cg(n) \quad \text{for all } n > n_0$$

• Captures the idea of the growth rate of functions, focusing on proportionality and ignoring constants
Big-O notation

$f(n)$ is $O(g(n))$ if there is a real constant c and an integer constant $n_0 \geq 1$ such that $f(n) \leq c \cdot g(n)$ for all $n > n_0$

"Once the input gets big enough, $c g(n)$ is (always) larger than $f(n)$"
Big-O notation: properties

• If $g(n)$ is growing faster than $f(n)$:
 - $f(n)$ is $O(g(n))$
 - $g(n)$ is not $O(f(n))$

• If $f(n) = a_0 + a_1n + \ldots + a_kn^k$, then:
 \[f(n) = O(n^k) \]
 - i.e., coefficients and lower-order terms can be ignored
Some common growth-rate curves

- $O(n)$
- $O(n \log(n))$
- $O(n^2)$
- $O(n^3)$
- $O(\log n)$
using big-O notation
Computing big-O complexities

Given the code:

```
line_1 ... O(f_1(n))
line_2 ... O(f_2(n))
...
line_k ... O(f_k(n))
```

The overall complexity is

\[O(\max(f_1(n), f_s(n), ..., f_k(n))) \]

Given the code

```
loop ... O(f1(n)) iterations
line1   ... O(f2(n))
```

The overall complexity is

\[O(f_1(n) \times f_2(n)) \]
Using big-O notation

Code

```
str_ == list_[i]
```

Big-O complexity

O(1)
Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>if str__ == list__[i]:</td>
<td>O(1)</td>
</tr>
<tr>
<td>return i</td>
<td></td>
</tr>
</tbody>
</table>

The code snippet above has a Big-O complexity of O(1). This means that the time complexity of the operation does not change with the size of the input, making it efficient for larger datasets.
Using big-O notation

Code

```python
for i in range(len(list_)):
    if str_ == list_[i]:
        return i
```

Big-O complexity

- `O(n)` (worst-case)
- `O(n)` (n = length of the list)
- `O(1)`
Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
</table>
| def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1 | O(n) O(n) O(1) |

```python
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
    return -1
```

The function `lookup` has a time complexity of $O(n)$, where n is the length of the list. The outer loop runs n times, and the inner loop checks each element once. The overall complexity is $O(n) + O(n) = O(n)$.
Using big-O notation

Code

```python
def list_positions(list1, list2):
    positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions
```

Big-O complexity

- $O(n^2)$

 - for value in list1:
 - $O(n)$ (worst-case)
 - n = length of list1
 - $O(n)$ (worst-case)
 - n = length of list2
Using big-O notation

```
def list_positions(list1, list2):
  positions = []
  for value in list1:
    idx = lookup(value, list2)
    positions.append(idx)
  return positions
```

- `def list_positions(list1, list2):` is O(1)
- For loop is O(n²)
- LookUp function is O(n²)
- Positions append is O(1)
- Return is O(1)

Big-O complexity:

```
O(n²)  O(n²)  O(1)
```
ICA-6 WARM-UP

Do the first 2 problems.

Is analyzing worst-case running time important?

How many Web pages does Google search?

https://www.google.com/search/howsearchworks/crawling-indexing/
Computing big-O complexities

Given the code:

\begin{align*}
\text{line}_1 & \quad \ldots \quad O(f_1(n)) \\
\text{line}_2 & \quad \ldots \quad O(f_2(n)) \\
& \quad \ldots \\
\text{line}_k & \quad \ldots \quad O(f_k(n))
\end{align*}

The overall complexity is

\[O(\max(f_1(n), f_2(n), \ldots, f_k(n))) \]

Given the code

\begin{align*}
\text{loop} & \quad \ldots \quad O(f_1(n)) \text{ iterations} \\
\text{line}_1 & \quad \ldots \quad O(f_2(n))
\end{align*}

The overall complexity is

\[O(f_1(n) \times f_2(n)) \]
EXERCISE

my_rfind(mylist, elt) : find the distance from the # end of mylist where elt occurs, -1 if it does not

def my_rfind(mylist, elt):
 pos = len(mylist) - 1
 while pos >= 0:
 if mylist[pos] == elt:
 return pos
 pos -= 1
 return -1

Worst-case big-O complexity = ???
EXERCISE

for each element of a list: find the biggest value
between that element and the end of the list

def find_biggest_after(arglist):
 pos_list = []
 for idx0 in range(len(arglist)):
 biggest = arglist[idx0]
 for idx1 in range(idx0+1, len(arglist)):
 biggest = max(arglist[idx1], biggest)
 pos_list.append(biggest)
 return pos_list

Worst-case big-O complexity = ???
Input size vs. run time: max()
EXERCISE

for each element of a list: find the biggest value
between that element and the end of the list

def find_biggest_after(arglist):
 pos_list = []
 for idx0 in range(len(arglist)):
 biggest = max(arglist[idx0:]) # library code
 pos_list.append(biggest)
 return pos_list

Worst-case big-O complexity = ???