CSc 120
Introduction to Computer Programming II

08: Efficiency and Complexity

Adapted from slides by Dr. Saumya Debray
reasoning about performance
Reasoning about efficiency

Consider two different programs that sum the integers from 1 to n

```python
def sumv1(n):
    num = 0
    for i in range(1, n+1):
        num += i
    return num

def sumv2(n):
    num = (n*(n+1)) / 2
    return num
```
Reasoning about efficiency

How would we compare them to see which is "better"?

def sumv1(n):
 num = 0
 for i in range(1,n+1):
 num += i
 return num

def sumv2(n):
 num = (n*(n+1)) / 2
 return num
Reasoning about efficiency

• We could compare the difference in running times:

 - Download \texttt{sumv1(n)}

 o \url{http://www2.cs.arizona.edu/classes/cs120/summer18/notes/sumv1.py}

 o run this for these values of \(n \): 10,000, 100,000, 1,000,000

 - Download \texttt{sumv2(n)}

 o \url{http://www2.cs.arizona.edu/classes/cs120/summer18/notes/sumv2.py}

 o this for these values of \(n \): 10,000, 100,000, 1,000,000
Reasoning about efficiency

• Observations on \(\text{sumv1}(n) \) vs \(\text{sumv2}(n) \):
 - For \(\text{sumv1} \), as we increase \(n \), the running time increases
 - increases in proportion to \(n \)
 - For \(\text{sumv2} \), as we increase \(n \), the running time stays the same

• We noticed this by running the programs

• But this depends on many external factors
Reasoning about efficiency

• The time taken for a program to run
 – can depend on:
 o processor properties that have nothing to do with the program
 (e.g., CPU speed, amount of memory)
 o what other programs are running (i.e., system load)
 o which inputs we use (some inputs may be worse than others)

• We would like to compare different algorithms:
 – without requiring that we implement them both first
 – focusing on running time (not memory usage)
 – abstracting away processor-specific details
 – considering all possible inputs
Reasoning about efficiency

• Algorithms vs. programs

 – Algorithm:
 o a step-by-step list of instructions for solving a problem

 – Program:
 o an algorithm that been implemented in a given language

• We would like to compare different algorithms \textit{abstractly}
Comparing algorithms

- Search for a word `my_word` in a dictionary (a book)
- *A dictionary is sorted*
 - Algo 1 (search from the beginning):
 start at the first word in the dictionary
 if the word is not `my_word`, then go to the next word
 continue in sequence until `my_word` is found
 - Algo 2:
 start at the middle of the dictionary
 if `my_word` is greater than the word in the middle,
 start with the middle word and continue from there to the end
 if `my_word` is less than the word in the middle,
 start with the middle word and continue from there to the beginning
Comparing algorithms

• Which is better, Algo 1 (search from the beginning) or Algo 2?
 Algo 2 in most cases (seemingly)
 What is the reason?

• When is Algo 1 better?
 Algo 1 is better if the word is close to the beginning
 How close to the beginning?

• When considering which is better, what measure are we using?
 The number of comparisons
Comparing algorithms

• Call comparison a *primitive* operation
 – an abstract unit of computation

• We want to characterize an algorithm in terms of how many primitive operations are performed
 – best case and worst case

• We want to express this in terms of the size of the data (or size of its input)
Primitive operations

• Abstract units of computation
 – convenient for reasoning about algorithms
 – approximates typical hardware-level operations

• Includes:
 – assigning a value to a variable
 – looking up the value of a variable
 – doing a single arithmetic operation
 – comparing two numbers
 – accessing a single element of a Python list by index
 – calling a function
 – returning from a function
Primitive ops and running time

- A primitive operation typically corresponds to a small constant number of machine instructions
- No. of primitive operations executed
 \propto no. of machine instructions executed
 \propto actual running time
Example

Code

```python
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
    return -1
```

Primitive operations

- `len(list_)`: 1
- `range()`: 1
- `in`: 1
- `for`: 2
- `list_[i]`: 1
- `str_`: 1
- `==`: 1
- `if`: 1

Each iteration: 9 primitive ops
Primitive ops and running time

• We consider how a function's running time depends on the size of its input
 – *which input do we consider?*
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• Best-case scenario?:

• Worst-case scenario?:
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• **Best-case scenario:** str_ == list_[0] # first element
 – loop does not have to iterate over list_ at all
 – running time does not depend on length of list_
 – does not reflect typical behavior of the algorithm
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• **Worst-case scenario:** str_ == list_[-1] # last element
 – loop iterates through list_
 – running time is proportional to the length of list_
 – captures the behavior of the algorithm better
Best case vs. worst case inputs

lookup(str_, list_): returns the index where str_ occurs in list_

def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1

• In reality, we get something in between
 – but "average-case" is difficult to characterize precisely
What about “average case”?
Worst-case complexity

• Considers worst-case inputs

• Describes the running time of an algorithm as a function of the size of its input ("time complexity")

• Focuses on the rate at which the running time grows as the input gets large

• Typically gives a better characterization of an algorithm's performance

• This approach can also be applied to the amount of memory used by an algorithm ("space complexity")
Example

Code

def lookup(str_, list_):
 for i in range(len(list_>):
 if str_ == list_[i]:
 return i
 return -1

Primitive operations

- `len(list_): 1`
- `range() : 1`
- `in : 1`
- `for : 2`
- `list_[i] : 1`
- `str_ : 1`
- `== : 1`
- `if : 1`

Each iteration: 9 primitive ops
Example

Code

```python
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
    return -1
```

Total primitive ops executed:
- 1 iteration: 9 ops
- \(\therefore \) \(n \) iterations: \(9n \) ops
- + return at the end: 1 op

\(\therefore \) total worst-case running time for a list of length \(n = 9n + 1 \)

Primitive operations

- \(\text{len(list_)} : 1 \)
- \(\text{range()} : 1 \)
- \(\text{in} : 1 \)
- \(\text{for} : 2 \)
- \(\text{list_[i]} : 1 \)
- \(\text{str_} : 1 \)
- \(\text{==} : 1 \)
- \(\text{if} : 1 \)

each iteration: 9 primitive ops
EXERCISE

What is the total worst-case running time of the following code fragment expressed in terms of n?

for i in range(n):
 k = 2 + 2
What is the total worst-case running time of the following code fragment expressed in terms of n?

```python
a = 5
b = 10
for i in range(n):
    x = i * b
for j in range(n):
    z += b
```
asymptotic complexity
Asymptotic complexity

• In the worst-case, lookup(str_, list_) executes $9n + 1$ primitive operations given a list of length n

• To translate this to running time:
 - suppose each primitive operation takes k time units
 - then worst-case running time is $(9n + 1)k$

• But k depends on specifics of the computer, e.g.:

<table>
<thead>
<tr>
<th>Processor speed</th>
<th>k</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>slow</td>
<td>20</td>
<td>$180n + 20$</td>
</tr>
<tr>
<td>medium</td>
<td>10</td>
<td>$90n + 10$</td>
</tr>
<tr>
<td>fast</td>
<td>3</td>
<td>$27n + 3$</td>
</tr>
</tbody>
</table>
Asymptotic complexity

worst case running time = $A_n + B$

- depends on processor-specific characteristics
- depends on how the algorithm processes data
Asymptotic complexity

• For algorithm analysis, we focus on how the running time grows as a function of the input size n
 – usually, we do not look at the exact worst case running time
 – it's enough to know proportionalities

• E.g., for the lookup() function:
 – we say only that its running time is "proportional to the input length $n"
Example

Code

```python
def list_positions(list1, list2):
    positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions
```
Example

Code

```python
def list_positions(list1, list2):
    positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions
```

Primitive operations

- `def list_positions(list1, list2):` 1
- `positions = []` 1
- `for value in list1:` in: 1
 - `for :` iterates n times 2
 - `idx = lookup(value, list2)` 9n + 1
- `positions.append(idx)` 1
- `return positions` 1

Worst case behavior:

- Primitive operations = $n(9n + 5) + 2 = 9n^2 + 5n + 2$
- Running time = $k(9n^2 + 5n + 2)$
Example

Code

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions

Worst case: \(9n^2 + 5n + 2\)

As \(n\) grows, the \(9n^2\) term grows faster than \(5n+2\)

\[\Rightarrow \text{for large } n, \text{ the } n^2 \text{ term dominates} \]

\[\Rightarrow \text{running time depends primarily on } n^2 \]
Example

As \(n \) grows larger, the \(n^2 \) term dominates \(\Rightarrow \) the contribution of the other terms becomes insignificant.
Example 2: $2x^2 + 15x + 10$
Example 3: $x^3 + 100x^2 + 100x + 100$
Growth rates

• As input size grows, the fastest-growing term dominates the others
 – the contribution of the smaller terms becomes negligible
 – it suffices to consider only the highest degree (i.e., fastest growing) term

• For algorithm analysis purposes, the constant factors are not useful
 – they usually reflect implementation-specific features
 – to compare different algorithms, we focus only on proportionality
 ⇒ ignore constant coefficients
Comparing algorithms

Growth rate $\propto n$

```python
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
    return -1
```

Growth rate $\propto n^2$

```python
def list_positions(list1, list2):
    positions = []
    for value in list1:
        idx = lookup(value, list2)
        positions.append(idx)
    return positions
```
Summary so far

• Want to characterize algorithm efficiency such that:
 – does not depend on processor specifics
 – accounts for all possible inputs

⇒ count primitive operations
⇒ consider worst-case running time

• We specify the running time as a function of the size of the input
 – consider proportionality, ignore constant coefficients
 – consider only the dominant term
 o e.g., $9n^2 + 5n + 2 \approx n^2$
big-O notation
Big-O notation

• Big-O is formalizes this intuitive idea:
 - consider only the dominant term
 - e.g., $9n^2 + 5n + 2 \approx n^2$
 - allows us to say,
 "the algorithm runs in time proportional to n^2"
Big-O notation

Intuition:

When we say... ...we mean

"f(n) is O(g(n))" "f is growing at most as fast as g"

"big-O notation"
Big-O notation

- Captures the idea of the growth rate of functions, focusing on proportionality and ignoring constants.

Definition: Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers.

Then, $f(n) \in O(g(n))$ if there is a real constant c and an integer constant $n_0 \geq 1$ such that

$$f(n) \leq c g(n) \quad \text{for all } n > n_0$$
Big-O notation

\(f(n) \) is \(\text{O}(g(n)) \) if there is a real constant \(c \) and an integer constant \(n_0 \geq 1 \) such that \(f(n) \leq c \, g(n) \) for all \(n > n_0 \)

“Once the input gets big enough, \(cg(n) \) is (always) larger than \(f(n) \)”
Big-O notation: properties

• If $g(n)$ is growing faster than $f(n)$:
 - $f(n)$ is $O(g(n))$
 - $g(n)$ is not $O(f(n))$

• If $f(n) = a_0 + a_1n + \ldots + a_kn^k$, then:
 $$f(n) = O(n^k)$$
 - i.e., coefficients and lower-order terms can be ignored
Some common growth-rate curves

Running time vs Input size

- $O(n)$
- $O(n \log(n))$
- $O(n^2)$
- $O(n^3)$
- $O(\log n)$
using big-O notation
Computing big-O complexities

Given the code:

\[
\begin{align*}
\text{line}_1 & \quad \ldots \quad O(f_1(n)) \\
\text{line}_2 & \quad \ldots \quad O(f_2(n)) \\
\ldots & \\
\text{line}_k & \quad \ldots \quad O(f_k(n))
\end{align*}
\]

The overall complexity is

\[O(\max(f_1(n), f_s(n), \ldots, f_k(n)))\]

Given the code

\[
\begin{align*}
\text{loop} & \quad \ldots \quad O(f1(n)) \text{ iterations} \\
\text{line}_1 & \quad \ldots \quad O(f2(n))
\end{align*}
\]

The overall complexity is

\[O(f_1(n) \times f_2(n)) \]
Using big-O notation

Code

```
str_ == list_[i]
```

Big-O complexity

O(1)
Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>if str_ == list_[i]:</td>
<td>O(1)</td>
</tr>
<tr>
<td>return i</td>
<td></td>
</tr>
</tbody>
</table>

O(1)
Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>for i in range(len(list_)):</code></td>
<td>O(n)</td>
</tr>
<tr>
<td><code>if str_ == list_[i]:</code></td>
<td>O(1)</td>
</tr>
<tr>
<td>O(n) (worst-case)</td>
<td></td>
</tr>
<tr>
<td>(n = length of the list)</td>
<td></td>
</tr>
</tbody>
</table>

Given a list `list_` and a string `str_`, the code iterates through each element in the list to check if it matches the string. The time complexity is O(n) in the worst case, where n is the length of the list.
Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
</table>
| ```python
def lookup(str_, list_):
 for i in range(len(list_)):
 if str_ == list_[i]:
 return i
 return -1
``` | O(n) |
| O(1) | O(n) |
## Using big-O notation

<table>
<thead>
<tr>
<th>Code</th>
<th>Big-O complexity</th>
</tr>
</thead>
</table>
| def list_positions(list1, list2):
  posis = []
  for value in list1:
    idx = lookup(value, list2)
    posis.append(idx)
  return posis | $O(n^2)$ |

$O(n)$ (worst-case)  
$n = \text{length of list1}$

$O(n)$ (worst-case)  
$n = \text{length of list2}$
Using big-O notation

```python
def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions
```

Big-O complexity

- `O(1)`
- `O(n^2)`
ICA-6 WARM-UP

Do the first 2 problems.

Is analyzing worst-case running time important?

How many Web pages does Google search?

https://www.google.com/search/howsearchworks/crawling-indexing/
Computing big-O complexities

Given the code:

\[
\begin{align*}
\text{line}_1 & \quad \ldots \quad O(f_1(n)) \\
\text{line}_2 & \quad \ldots \quad O(f_2(n)) \\
& \ldots \\
\text{line}_k & \quad \ldots \quad O(f_k(n))
\end{align*}
\]

The overall complexity is

\[O(\max(f_1(n), f_2(n), \ldots, f_k(n)))\]

Given the code

\[
\begin{align*}
\text{loop} & \quad \ldots \quad O(f1(n)) \text{ iterations} \\
\text{line}_1 & \quad \ldots \quad O(f2(n))
\end{align*}
\]

The overall complexity is

\[O( f_1(n) \times f_2(n) )\]
EXERCISE

# my_rfind(mylist, elt) : find the distance from the # end of mylist where elt occurs, -1 if it does not

def my_rfind(mylist, elt):
    pos = len(mylist) - 1
    while pos >= 0:
        if mylist[pos] == elt:
            return pos
        pos -= 1
    return -1

Worst-case big-O complexity = ???
EXERCISE

# for each element of a list: find the biggest value
# between that element and the end of the list

def find_biggest_after(arglist):
    pos_list = []
    for idx0 in range(len(arglist)):
        biggest = arglist[idx0]
        for idx1 in range(idx0+1, len(arglist)):
            biggest = max(arglist[idx1], biggest)
        pos_list.append(biggest)
    return pos_list

Worst-case big-O complexity = ???
Input size vs. run time: max()
EXERCISE

# for each element of a list: find the biggest value
# between that element and the end of the list

def find_biggest_after(arglist):
    pos_list = []
    for idx0 in range(len(arglist)):
        biggest = max(arglist[idx0:])  # library code
        pos_list.append(biggest)
    return pos_list

Worst-case big-O complexity = ???