CSc 120
Introduction to Computer Programming II

Adapted from slides by
Dr. Saumya Debray

12: Recursion
Volunteers!

• Volunteers needed in front of the class for an activity:
 • Must be able to do simple addition
 (ex: $5 + 10 = 15$)
 • Must be able to speak
How much money is in this cup?

If the cup is empty:
 Answer “zero” to the person on your right.
 (your_answer = 0)
else if the cup is not empty:
 Take out a coin. Pass the cup to the person on your left and ask them:
 “How much money is in this cup?”
 When they answer, tell the person on your right the sum of your coin and their answer
 (your_answer = your_coin + their_answer)
Challenge

Can we express that procedure in Python?

Idea:

```python
>>> cup = [5, 10, 1, 5]
>>> how_much_money(cup)
21
```

Write Python code that models the cup passing example.
function: how_much_money

def how_much_money(cup):
 if cup == []:
 return 0
 else:
 return cup[0] + how_much_money(cup[1:])

Usage:

>>> how_much_money([5, 10, 1, 5])
21
Calls and returns

\[
\text{how_much_money}([5,10,1,5]) \\
\quad \mid \text{how_much_money}([10,1,5]) \\
\quad \quad \mid \text{how_much_money}([1,5]) \\
\quad \quad \quad \mid \text{how_much_money}([5]) \\
\quad \quad \quad \mid \text{how_much_money}([]) \\
\quad \mid \text{how_much_money} \text{ returned } 0 \\
\quad \mid \text{how_much_money} \text{ returned } 5 \\
\mid \text{how_much_money} \text{ returned } 6 \\
\mid \text{how_much_money} \text{ returned } 16 \\
\text{how_much_money} \text{ returned } 21
\]
Manual expansion of calls

>>> 5 + how_much_money([10, 1, 5])
21

>>> 5 + (10 + how_much_money([1,5]))
21

>>> 5 + (10 + (1 + how_much_money([5])))
21

>>> 5 + (10 + (1 + (5 + how_much_money([]))))
21
Recursion

A function is *recursive* if it calls itself:

```python
def how_much_money(...):
    ... how_much_money(...)
    ...
```

The call to itself is a *recursive call*.
Recursion

A solution to a problem is *recursive* when it is constructed from the solution to a simpler version of the same problem.
Recursion

A solution to a problem is *recursive* when it is constructed from the solution to a simpler version of the same problem.

```python
def how_much_money(cup):
    if cup == []:
        return 0
    else:
        return cup[0] + how_much_money(cup[1:])
```

simpler version of the problem
Recursion

• Recursive functions have two kinds of cases:
 – base case(s) :
 o do some trivial computation and return the result
 – recursive case(s) :
 o the expression of the problem is a simpler case of the same problem
 o the input is reduced or the size of the problem is reduced

• Note: the recursive call is given a smaller problem to work on
 – e.g., it makes progress towards the base case
def how_much_money(cup):
 if cup == []:
 return 0
 else:
 return cup[0] + how_much_money(cup[1:])

The convention is to handle the base case(s) first.
Problem 1

Write a recursive function to count the number of coins in a cup. *The len function is not allowed.*

Usage:

```python
>>> count_coins([10, 5, 1, 5])
4
```
Solution

def count_coins(cup):
 if cup == []:
 return 0
 else
 return 1 + count_coins(cup[1:])
def count_coins(cup):
 if cup == []:
 return 0
 else:
 return 1 + count_coins(cup[1:]),

base case: cup == []

recursive case: cup != []

recursive call is on a smaller value
Problem 2

Write a recursive function to count the number of nickels in a cup.

Usage:

```python
>>> count_nickels([10, 5, 1, 5, 1])
2
```
```python
def count_nickels(cup):
    if cup == []:
        return 0
    else:
        if cup[0] == 5:
            return 1 + count_nickels(cup[1:])
        else:
            return count_nickels(cup[1:]),
```

Solution

base case:

```python
cup == []
```

recursive case:

```python
cup != [] recursive call is on a smaller value
```
Problem 3

Write a recursive function that returns the total length of all the elements of a list of lists (a 2-d list).

Usage:

```python
>>> total_length([[1,2], [8,2,3,4], [2,2,2]])
9
```
def total_length(alist):
 if alist == []:
 return 0
 else:
 return len(alist[0]) + total_length(alist[1:])

base case:
 alist == []

recursive case:
 alist != []
Problem 4

Recall that factorial is defined by the equation:

\[n! = n \times (n-1) \times (n-2) \times (n-3) \times ... \times 2 \times 1 \]

and

\[0! = 1 \]

Write a recursive function that computes the factorial of a number.

Usage:

```python
>>> fact(4)
24
```
Solution

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

- **Base case:**
 - `n == 0`
 - return 1

- **Recursive case:**
 - `n != 0`
 - recursive call is on a smaller value
 - return `n * fact(n-1)`
EXERCISE p. 1

Write a recursive function `sumlist(L)` that returns the sum of the elements in `L`.

Usage:

```python
>>> sumlist([2,4,6,10])
22
```
Write a recursive function `string_len(s)` that returns the length of string `s`.

Usage:

```python
>>> >>> string_len("I wandered lonely as a cloud")
28
>>> >>>
```
EXERCISE p. 3

Write a recursive function join_all(alist) that takes a list alist and returns a string consisting of every element of alist concatenated together.

Usage:

```python
>>> join_all([1,2,3,4,5])
'12345'
>>> join_all(['aa','bb'])
'aabb'
```
Write a recursive function that implements join. That is, write a function \(\text{join}(\text{alist, sep}) \) that takes a list \(\text{alist} \) and creates a string consisting of every element of \(\text{alist} \) separated by the string \(\text{sep} \).

Usage:

```
>>> \text{join}(['aa', 'bb', 'cc'], '--')
'aa-bb-cc'
```
the runtime stack
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

>>> fact(4)
24
```
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n+1)

>>> fact(4)
24
```

We need the value of `n` both before and after the recursive call.

\[\therefore \text{its value has to be saved somewhere} \]

“somewhere” ≡ “stack frame”
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

>>> fact(4)
24
```

Python's runtime system* maintains a stack:
- push a "frame" when a function is called
- pop the frame when the function returns

* "runtime system" = the code that Python executes to make everything work at runtime

"frame" or "stack frame": a data structure that keeps track of variables in the function body, and their values, between the call to the function and its return
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

>>> fact(4)
24
```

Python's runtime system* maintains a **stack**:
- push a "frame" when a function is called
- pop the frame when the function returns

* "runtime system" = the code that Python executes to make everything work at runtime

sometimes called the "runtime stack"
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

>>> fact(4)
24
```
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

>>> fact(4)
24
```
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

>>> fact(4)
24
```

![Stack diagram showing recursive calls and stack frames](image)
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

>>> fact(4)
24
```
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

>>> fact(4)
24
```

Stack frame for `fact()`

![Diagram of runtime stack and stack frame for `fact()`](image)
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

>>> fact(4)
24
```

![Diagram of recursion stack](image)
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

>>> fact(4)
24
```
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

>>> fact(4)
24
```
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

>>> fact(4)
24
```

<table>
<thead>
<tr>
<th>stack frame for <code>fact()</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>value of n</td>
</tr>
<tr>
<td>value from recursive call</td>
</tr>
<tr>
<td>return value</td>
</tr>
</tbody>
</table>

```

<table>
<thead>
<tr>
<th>runtime stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>fact(4)</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>fact(3)</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>fact(2)</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>fact(1)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>fact(0)</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

```
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

>>> fact(4)
24
```

<table>
<thead>
<tr>
<th>fact(0)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>fact(1)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>fact(2)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>fact(3)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>fact(4)</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

runtime stack
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

>>> fact(4)
24
```

![Stack Frame Diagram]
How recursion works

```python
>>> def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

>>> fact(4)
24
```

<table>
<thead>
<tr>
<th>fact(0)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>fact(1)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>fact(2)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>fact(3)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>fact(4)</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Stack frame for `fact()`

Value of `n` from recursive call

Return value

Runtime stack

Stack top
The runtime stack

• The use of a runtime stack containing stack frames is not specific to recursion
 – all function and method invocations use this mechanism
 – not just in Python, but other languages as well (Java, C, C++, ...)
Problem 5

Write a recursive function to print the numbers from 1 through n, one per line.

Usage:

```python
>>> print_n(6)
1
2
3
4
5
6
```
def print_n(n):
 if n == 0:
 return
 else:
 print_n(n-1)
 print(n)
Recursion How to

To write a recursive function, figure out:

What values are involved in the computation?

- these will be the arguments to the recursive function

• **Base case(s)**
 - when does the recursion stop?
 - what is the simple value or data that can be computed and returned?

• **Recursive case(s)**
 - what is the "smaller problem" to pass to the recursive call?
 - what does a single round of computation involve?
Recursion how to: sumlist

```python
def sumlist(L):
    if len(L) = 0:
        return 0
    else:
        return L[0] + sumlist(L[1:])
```

Base case
- If the length of the list is 0, return 0.

Recursive case
- If the length is not 0, return the first element of the list plus the sum of the rest of the list.

One round of computation adds L[0] and the result of the recursive call.

Argument to recursive call is "rest of the list" after L[0] (recurses on a smaller problem).
Recursion

The recursive case can be written many ways.

Consider summing the elements in a list:

```python
def sumlist(L):
    if len(L) == 0:
        return 0
    else:
        return L[0] + sumlist(L[1:]]
```
Versions of sumlist

Version 1

```python
def sumlist(L):
    if len(L) = 0:
        return 0
    else:
        return L[0] + sumlist(L[1:])
```

- **base case**
- **recursive case**

One round of computation adds $L[0]$ and the result of the recursive call.

The argument to the recursive call is "rest of the list" after $L[0]$ (recurses on a smaller problem).
Versions of sumlist

Version 2
(variation on version 1)

def sumlist(L):
 n = len(L)
 if n == 0:
 return 0
 else:
 return sumlist(L[:n-1]) + L[n-1]

argument to recursive call is "rest of the list" up to the last element
(recurses on a smaller problem)

add the last element of L
Versions of sumlist

<table>
<thead>
<tr>
<th>Version 2</th>
<th>Version 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(variation on version 1)</td>
<td>("smaller" need not be by just 1)</td>
</tr>
</tbody>
</table>

def sumlist(L):

```python
    n = len(L)
    if n == 0:
        return 0
    else:
        return sumlist(L[:n-1]) + L[n-1]
```

def sumlist(L):

```python
    if len(L) == 0:
        return 0
    elif len(L) == 1:
        return L[0]
    else:
        return sumlist(L[:len(L)//2]) + sumlist(L[len(L)//2:])
```

- Better for parallel execution
- Argument to each recursive call is half of the current list (recurses on a smaller problem)
sumlist

def sumlist(L):
 if len(L) == 0:
 return 0
 elif len(L) == 1:
 return L[0]
 else:
 return sumlist(L[:len(L)//2]) + sumlist(L[len(L)//2:])
recursive sumlist

input list
split into two halves
add the halves (recursively)
return the sum of the sums
sumlist: example

sumlist([1, 3, 4, 6, 8])
sumlist: example

sumlist([1,3]) → sumlist([4,6,8]) → sumlist([1,3,4,6,8])
sumlist: example

sumlist([1,3,4,6,8])

sumlist([1,3]) sumlist([4,6,8])

sumlist([1]) sumlist([3])
sumlist: example

sumlist([1,3])
 ↓
 1

sumlist([1])
 ↓
 1

sumlist([3])
 ↓
 3

sumlist([4,6,8])
 ↓
 sumlist([1,3,4,6,8])

sumlist([4,6,8])
 ↓
 sumlist([4,6,8])
sumlist: example

sumlist([1,3,4,6,8])
 sumlist([1,3])
 sumlist([1]) sumlist([3])
 1 3
 4
 sumlist([4,6,8])
sumlist: example

- sumlist([1, 3, 4, 6, 8])
- sumlist([4, 6, 8])
- sumlist([6, 8])
- sumlist([1, 3])
- sumlist([1])
- sumlist([3])
- sumlist([4])

1 → 3 → 4

1 → 3 → 4

1 → 3 → 4

1 → 3 → 4

1 → 3 → 4
sumlist: example

\[
\text{sumlist}([1,3,4,6,8])
\]

\[
\text{sumlist}([4,6,8])
\]

\[
\text{sumlist}([6,8])
\]

\[
\text{sumlist}([1])
\]

\[
\text{sumlist}([3])
\]

\[
\text{sumlist}([4])
\]

\[
1 \quad 3 \quad 4 \quad 4 \quad 60
\]
sumlist: example

```
sumlist([1,3,4,6,8])
  └── sumlist([1,3])
        ├── sumlist([1])
        │    └── 1
        │        └── 1
        ├── sumlist([3])
        │    └── 3
        │        └── 3
        └── sumlist([4])
              └── 4
              └── 4

sumlist([4,6,8])
  └── sumlist([4])
        └── 4
        └── 4

sumlist([6,8])
  └── sumlist([6])
        └── 6
        └── 6

sumlist([8])
  └── 8
  └── 8
```

61
sumlist: example

sumlist([1,3,4,6,8])

\[
\begin{align*}
\text{sumlist([1,3])} & \quad \text{sumlist([4,6,8])} \\
\downarrow 1 & \quad \downarrow 4 \\
\quad \text{sumlist([1])} & \quad \quad \text{sumlist([6,8])} \\
& \quad \downarrow 3 \\
& \quad \quad \text{sumlist([3])} \\
& \quad \quad \downarrow 6 \\
& \quad \quad \text{sumlist([4])} \\
& \quad \quad \downarrow 8 \\
& \quad \quad \text{sumlist([6])} \\
& \quad \quad \text{sumlist([8])}
\end{align*}
\]
sumlist: example

- sumlist([1,3,4,6,8])
 - sumlist([1,3])
 - sumlist([1]) → 1
 - sumlist([3]) → 3
 - sumlist([3]) → 3
 - sumlist([4,6,8])
 - sumlist([4]) → 4
 - sumlist([6,8])
 - sumlist([6]) → 6
 - sumlist([8]) → 8
 - sumlist([6,8]) → 14
 - sumlist([4,6,8])
sumlist: example

- sumlist([1,3,4,6,8])
 - sumlist([1,3])
 - sumlist([1])
 - 1
 - sumlist([3])
 - 3
 - sumlist([4,6,8])
 - sumlist([4])
 - 4
 - sumlist([6,8])
 - sumlist([6])
 - 6
 - sumlist([8])
 - 8
- sumlist([6])
 - 6
- sumlist([8])
 - 8
- sumlist([4,6,8])
 - 14
- sumlist([1,3,4,6,8])
 - 18
sumlist: example

sumlist([1,3,4,6,8])

sumlist([1,3])

sumlist([1]) 1

sumlist([3]) 3

sumlist([4])

sumlist([4]) 4

sumlist([6,8])

sumlist([6])

sumlist([6]) 6

sumlist([8])

sumlist([8]) 8

1

3

4

4

6

8

14

18

22

65
recursion: example
binary search
Searching an unsorted list

• Problem: Given an unsorted list L and a value a, determine whether or not a is in L.

```
   L
0 3 81 2 14 64 12 8 29 14 5
   a
     29
```
Searching an unsorted list

- Problem: Given an unsorted list L and a value a, determine whether or not a is in L.

- Linear search: sequentially look at (possibly) all values in the list.
Searching a sorted list

- Problem: Given a sorted list \(L \) and a value \(a \), determine whether or not \(a \) is in \(L \).
Searching a sorted list

• Problem: Given a sorted list L and a value a, determine whether or not a is in L.

a

pick a value i in range(len(L)) say, $i = 4$

L

Q: Can $L[3]$ be a?

$a > L[4]$
Searching a sorted list

- Problem: Given a **sorted** list L and a value a, determine whether or not a is in L.

L sorted and $a > L[4]$ means a cannot be any of these elements.
Binary search: recursive solution

binary search - find an item in a sorted list
 if the list is empty
 the item is not found (return False)
 look at the middle of the list
 if we found the item
 then done (return True)
 else
 if the item is less than the middle
 search in the lower half of the list
 else
 search in the upper half of the list

Exercise – write the code
def bin_search(L, item):
 if L == []:
 return False
 mid = len(L) // 2
 if L[mid] == item:
 return True
 if item < L[mid]:
 return bin_search(L[0:mid], item)
 else:
 return bin_search(L[mid+1:], item)

Binary search
Binary search: complexity

- The size of the search area is halved at each round of repetition

<table>
<thead>
<tr>
<th>Comparisons</th>
<th>Approx. number of items left</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n/2</td>
</tr>
<tr>
<td>2</td>
<td>n/4</td>
</tr>
<tr>
<td>3</td>
<td>n/8</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>n/2^i</td>
</tr>
</tbody>
</table>

- The number of comparisons until we are done is i, where $n/2^i = 1$
 - solving for i gives $i = \log n$
- total no. of rounds of repetition (recursion) = $\log_2(n)$
Binary search: complexity

• The size of the search area is halved at each round of repetition (recursion)
 – total no. of rounds of repetition = $\log_2(n)$

 _or the number of comparisons is $\log_2(n)$_

• However, on each round of repetition, the work done is _not_ a fixed amount due to slicing
 – slicing is $O(n)$

• Fix that by computing the indices and passing them as parameters.
def bin_search(L, item, lo, hi):
 if lo > hi:
 return False
 if lo == hi:
 return L[lo] == item
 mid = (lo+hi)//2
 if item <= L[mid]:
 return bin_search(L, item, lo, mid)
 else:
 return bin_search(L, item, mid+1, hi)
Binary search: complexity

• The size of the search area is halved at each round of repetition (recursion)
 – total no. of rounds of repetition = \(\log_2(n) \)

• On each recursive step, the work done is a fixed amount
 – \(O(1) \)

\[\therefore \text{Overall complexity: } O(\log n) \]
recursion: example
Example: merging two sorted lists

Problem: Given two sorted lists L1 and L2, merge them into a single sorted list

Example: L1 = [11, 22, 33], L2 = [5, 10, 15]

- Output: [5, 10, 11, 15, 22, 33]
 - can't just concatenate the lists
 - can't alternate between the lists
Merging: values involved

Problem: Given two sorted lists \(L1 \) and \(L2 \), merge them into a single sorted list

1. Values involved in the repetition: ???
Merging: values involved

Problem: Given two sorted lists L1 and L2, merge them into a single sorted list

1. Values involved in the computation in each (recursive) call: L1 and L2

 So the recursive function will look something like

   ```python
   def merge(L1, L2):  # may need another argument
       ...
   ```
Merging: repetition

Problem: Given two sorted lists \(L_1 \) and \(L_2 \), merge them into a single sorted list

2. What does the computation involve in each call?
Merging: repetition

Problem: Given two sorted lists L_1 and L_2, merge them into a single sorted list.

2. What does the computation involve in each call?

move the smaller value into the merged list
Merging: repetition

Problem: Given two sorted lists L_1 and L_2, merge them into a single sorted list

2. How does the problem (or data) get smaller?

move the smaller value into the merged list
repeat on the remaining list values
Merging: base case

Problem: Given two sorted lists \(L_1 \) and \(L_2 \), merge them into a single sorted list.

3. When can’t we make the data smaller?
Merging: base case

Problem: Given two sorted lists L_1 and L_2, merge them into a single sorted list

3. When can’t we make the data smaller?
 - when either L_1 or L_2 is empty

in this case, concatenate the other list into the merged list
Merging: base case

The code looks something like:

```python
def merge(L1, L2, merged):
    if L1 == []:
        return merged + L2
    elif L2 == []:
        return merged + L1
    else:
        ....
```
Merging: base case

The code looks something like:

```python
def merge(L1, L2, merged):
    if L1 == [] or L2 == []:
        return merged + L1 + L2
    else:
        ....
```
Merging: recursive case

Problem: Given two sorted lists L_1 and L_2, merge them into a single sorted list

4. What is "the rest of the computation"?
 - "repeat on the remaining list values"
Merging: recursive case

if L1[0] < L2[0]:
 new_merged = merged + [L1[0]]
 new_L1 = L1[1:]
 new_L2 = L2
else:
 new_merged = merged + [L2[0]]
 new_L1 = L1
 new_L2 = L2[1:]
return merge(new_L1, new_L2, new_merged)
Merging: putting it all together

```python
def merge(L1, L2, merged):
    if L1 == [] or L2 == []:
        return merged + L1 + L2
    else:
        if L1[0] < L2[0]:
            new_merged = merged + [ L1[0] ]
            new_L1 = L1[1:]
            new_L2 = L2
        else:
            new_merged = merged + [ L2[0] ]
            new_L1 = L1
            new_L2 = L2[1:]
        return merge(new_L1, new_L2, new_merged)
```

```python
>>> def merge(L1, L2, merged):
    if L1 == [] or L2 == []:
        return merged + L1 + L2
    else:
        if L1[0] < L2[0]:
            new_merged = merged + [L1[0]]
            new_L1 = L1[1:]
            new_L2 = L2
        else:
            new_merged = merged + [L2[0]]
            new_L1 = L1
            new_L2 = L2[1:]
        return merge(new_L1, new_L2, new_merged)

>>> merge([11, 22, 33], [5, 10, 15, 20, 25], [])
[5, 10, 11, 15, 20, 22, 25, 33]
>>> 
```
recursion: flow of values
Recursion: flow of values

Version 1

```python
def sumlist1(L):
    if len(L) == 0:
        return 0
    else:
        return L[0] + sumlist1(L[1:])
```

Diagram showing the flow of values for the function `sumlist1`. Each recursive call is shown with its own path, and the final result is 66.
Recursion: flow of values

```python
def merge(L1, L2, merged):
    if L1 == [] or L2 == []:
        return merged + L1 + L2
    else:
        if L1[0] < L2[0]:
            new_merged = merged + [L1[0]]
            new_L1 = L1[1:]
            new_L2 = L2
        else:
            new_merged = merged + [L2[0]]
            new_L1 = L1
            new_L2 = L2[1:]
        return merge(new_L1, new_L2, new_merged)
```

values are computed and passed down as arguments into the recursive call.
Recursion: flow of values

```python
def merge(L1, L2, merged):
    if L1 == [] or L2 == []:
        return merged + L1 + L2
    else:
        if L1[0] < L2[0]:
            new_merged = merged + [L1[0]]
            new_L1 = L1[1:]
            new_L2 = L2
        else:
            new_merged = merged + [L2[0]]
            new_L1 = L1
            new_L2 = L2[1:]
        return merge(new_L1, new_L2, new_merged)
```
recursion: application
merge sort
Sorting

• Problem: Given a list L, sort the elements of L into a list sortedL

• Important problem
 – arises in a wide variety of situations
 – many different algorithms, with different assumptions and characteristics
 – we will consider just one algorithm
Algorithm: mergesort

input list

split into two halves

sort the halves recursively

merge the sorted lists
Mergesort

• Base case: \(\text{len}(L) \leq 1 \)
 – no further halving possible

• Recursive case:
 – setting up the next round of computation: splitting the list
 – smaller problem to recurse on: a list of half the size

• Each round of computation: merging the sorted lists
 – has to be done after the recursive call
def msort(L):
 if len(L) <= 1:
 return L
 else:
 split_pt = len(L)//2
 L1 = L[:split_pt]
 L2 = L[split_pt:]
 sortedL1 = msort(L1)
 sortedL2 = msort(L2)
 return merge(sortedL1, sortedL2,[])
Mergesort: example

msort([1, 3, 2, 5, 4])
Mergesort: example

\[\text{msort}([1, 3, 2, 5, 4]) \]

\[\text{msort}([1, 3]) \]

\[\text{msort}([2, 5, 4]) \]
Mergesort: example

msort([1, 3, 2, 5, 4])

msort([1, 3])
msort([2, 5, 4])

msort([1])
msort([3])
Mergesort: example

\[
\text{msort}([1, 3, 2, 5, 4]) \rightarrow \\
\text{msort}([1, 3]) \rightarrow \\
\text{msort}([1]) \rightarrow [1] \\
\text{msort}([3]) \rightarrow [3] \\
\text{msort}([2, 5, 4]) \\
\]
Mergesort: example

mergesort([1, 3, 2, 5, 4])

mergesort([1, 3])

mergesort([2, 5, 4])

mergesort([1])

mergesort([3])

[1]

[3]

merge([1], [3])

[1]

[3]
Mergesort: example

msort([1, 3, 2, 5, 4])

<table>
<thead>
<tr>
<th>msort([1, 3])</th>
<th>msort([1])</th>
<th>msort([3])</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>[1]</td>
<td>[3]</td>
</tr>
<tr>
<td>merge([1], [3])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1, 3]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

msort([2, 5, 4])
Mergesort: example

msort([1, 3, 2, 5, 4])

msort([1, 3])

msort([1])

[1]

msort([3])

[3]

merge([1], [3])

[1, 3]

msort([2, 5, 4])

[1]

[3]
Mergesort: example

\[
\begin{align*}
\text{msort}([1, 3, 2, 5, 4]) & \rightarrow \\
\text{msort}([1, 3]) & \rightarrow \\
\text{msort}([1]) & \rightarrow [1] \\
\text{msort}([3]) & \rightarrow [3] \\
\text{merge}([1], [3]) & \rightarrow [1, 3] \\
\text{msort}([2, 5, 4]) & \rightarrow \\
\text{msort}([2]) & \rightarrow \\
\text{msort}([5, 4]) & \rightarrow
\end{align*}
\]
Mergesort: example

msort([1, 3, 2, 5, 4])

- msort([1, 3])
 - msort([1])
 - [1]
 - msort([3])
 - [3]
 - merge([1], [3])
 - [1, 3]

- msort([2, 5, 4])
 - msort([2])
 - [2]
 - msort([5, 4])

Mergesort: example

msort([1, 3, 2, 5, 4])

msort([1, 3])

msort([1]) msort([3])
[1] [3]

merge([1], [3])
[1, 3]

msort([2, 5, 4])

msort([2])
[2]

msort([5, 4])

msort([5]) msort([4])
[5] [4]
Mergesort: example

msort([1, 3, 2, 5, 4])

- msort([1, 3])
 - msort([1])
 - [1]
 - msort([3])
 - [3]
 - merge([1], [3])
 - [1, 3]

- msort([2, 5, 4])
 - msort([2])
 - [2]
 - msort([5, 4])
 - msort([5])
 - [5]
 - msort([4])
 - [4]

merge([1, 3], [5])
- [1, 3, 5]
Mergesort: example

msort([1, 3, 2, 5, 4])

msort([1, 3])

msort([1])

msort([3])

[1]

[3]

merge([1], [3])

[1, 3]

msort([2, 5, 4])

msort([2])

[2]

msort([5, 4])

msort([5])

msort([4])

[5]

[4]

merge([5], [4])
Mergesort: example
Mergesort: example

\[
\text{msort}([1, 3, 2, 5, 4])
\]

\[
\text{msort}([1, 3])
\]

\[
\text{msort}([1]) \quad \text{msort}([3])
\]

\[
[1, 3]
\]

\[
\text{merge}([1], [3])
\]

\[
[1, 3]
\]

\[
\text{msort}([2])
\]

\[
[2]
\]

\[
\text{msort}([5, 4])
\]

\[
[5, 4]
\]

\[
\text{merge}([5], [4])
\]

\[
[4, 5]
\]

\[
\text{merge}([2], [4, 5])
\]

\[
[4, 5]
\]
Mergesort: example

msort([1, 3, 2, 5, 4])

msort([1, 3])
msort([2, 5, 4])

msort([1])
msort([3])
msort([2])
msort([5])
msort([4])

merge([1], [3])
merge([5], [4])
merge([2], [4, 5])

[1, 3]
[2]
[5]
[4]

[1]
[3]
[2]
[5]
[4]

merge([1, 3], [2, 5, 4])

[1, 3, 2, 5, 4]

[1, 3, 2, 5, 4]

[1, 3, 2, 5, 4]

[1, 3, 2, 5, 4]

[1, 3, 2, 5, 4]

[1, 3, 2, 5, 4]
Mergesort: example

```
msort([1, 3, 2, 5, 4])
  msort([1, 3])
    msort([1])
      [1]
    msort([3])
      [3]
    merge([1], [3])
      [1, 3]
  msort([2])
    msort([2])
      [2]
    msort([5])
      [5]
    merge([5], [4])
      [4, 5]
    merge([2], [4, 5])
      [2, 4, 5]
  msort([5, 4])
    msort([5])
      [5]
    msort([4])
      [4]
    merge([5], [4])
      [4, 5]
merge([1, 3], [2, 4, 5])
```

merge([1, 3], [2, 4, 5])
Mergesort: example

`sor([1, 3, 2, 5, 4])`

\[
\begin{align*}
&\text{msort}([1, 3]) \\
&\text{msort}([1]) \quad \text{msort}([3]) \\
&\quad \downarrow \quad \downarrow \\
&\quad [1] \quad [3] \\
&\qquad \text{merge}([1], [3]) \\
&\qquad \downarrow \\
&\qquad [1, 3] \\
&\quad \text{msort}([2]) \\
&\quad \downarrow \\
&\quad [2] \\
&\quad \text{merge}([5], [4]) \\
&\quad \downarrow \\
&\quad [4, 5] \\
&\quad \text{merge}([2], [4, 5]) \\
&\quad \downarrow \\
&\quad [2, 4, 5] \\
&\text{msort}([5, 4]) \\
&\downarrow \\
&[5] \\
&\text{msort}([5]) \\
&\downarrow \\
&[5] \\
&\text{msort}([4]) \\
&\downarrow \\
&[4] \\
&\text{msort}([2, 5, 4]) \\
&\downarrow \\
&[2, 5, 4] \\
&\text{msort}([1, 3, 2, 5, 4]) \\
&\downarrow \\
&[1, 2, 3, 4, 5]
\end{align*}
\]
Mergesort: complexity

Cost = \[\text{cost per round of repetition} \times \text{no. of rounds of repetition} \]

merging the sorted lists is \(O(n) \)*

*if slicing is removed from merge
Mergesort: complexity

\[[a_0, a_1, \ldots, a_{n-1}] \]

\[[a_0, \ldots, a_{n/2}] \quad [a_{n/2+1}, \ldots, a_{n-1}] \]

\[\vdots \]

\[[a_0, a_1, a_2, a_3] \quad \ldots \quad [a_{n-4}, a_{n-3}, a_{n-2}, a_{n-1}] \]

\[[a_0, a_1] \quad [a_2, a_3] \quad \ldots \quad [a_{n-4}, a_{n-3}] \quad [a_{n-2}, a_{n-1}] \]

\[[a_0] \quad [a_1] \quad [a_2] \quad [a_3] \quad \ldots \quad [a_{n-4}] \quad [a_{n-3}] \quad [a_{n-2}] \quad [a_{n-1}] \]

\[2^k = n \]

\[k \text{ rounds} \]

\[n \]

\[n/2 \]
Mergesort: complexity

• No. of rounds of recursion:
 – if we start with a list of size n and have k rounds of recursion, then $2^k = n$
 \[\therefore \log_2(2^k) = \log_2(n) \]
 \[\therefore k = \log_2(n) \]

• Complexity of each round of recursion: $O(n)$

\Rightarrow Worst-case complexity of mergesort: $O(n \log n)$
recursion: summary
Recursion: summary

• Recursion offers a way to express repetitive computations cleanly and succinctly

• How to:
 – what are the values used in recursive call?
 – base case: when does the recursion stop?
 – recursive case:
 o what does a single round of computation involve?
 o what is the “smaller problem” to recurse on?

• Recursion is an essential component of every good computer scientist’s toolkit