Collected Definitions for Exam #3

This is the 'official' collection of need-to-know definitions for Exam #3. I can't recall the last time I didn't ask a definition question on an exam. To help you better prepare yourself for definition questions, I've assembled this list. My pledge to you: If I ask you for a definition on the exam, the term will come from this list. Note that this is not a complete list of the definitions given in class. You should know the others, too, but I won't specifically ask you for their definitions on the exam.

Topic 7: Matrices

(Continued from the Exam #2 Topic 7 definition list. If we ask you to define a Topic 7 term on Exam #3, it will come from this list.)

- Identity matrices, denoted I_n , are $n \times n$ matrices populated with 1 down the main diagonal (upper-left to lower-right) and with 0 elsewhere.
- The n^{th} matrix power of an $m \times m$ matrix A, denoted A^n , is the matrix resulting from n-1 successive matrix products of A. $A^0 = I_m$.
- The logical matrix product of an $m \times n$ 0–1 matrix A and an $n \times l$ 0–1 matrix B is an $m \times l$ 0–1 matrix $C = A \odot B$ in which $c_{ij} = \bigvee_{k=1}^{n} (a_{ik} \wedge b_{kj})$.
- The r^{th} logical matrix power of an $m \times m$ 0–1 matrix A, denoted $A^{[r]}$, is the matrix resulting from r-1 successive logical matrix products of A. $A^{[0]} = I_m$.

Topic 8: Relations

- A (binary) relation from set X to set Y is a subset of the Cartesian Product of the domain X and the codomain Y.
- A relation R on set A is reflexive if $(a, a) \in R, \forall a \in A$.
- A relation R on set A is symmetric if, whenever $(a,b) \in R$, then $(b,a) \in R$, for $a,b \in A$.
- A relation R on set A is antisymmetric if $(x,y) \in R$ and $x \neq y$, then $(y,x) \notin R$, $\forall x,y \in A$.
- A relation R on set A is transitive if, whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for $a,b,c \in A$.
- The *inverse* of a relation R on set A, denoted R^{-1} , contains all of the ordered pairs of R with their components exchanged. (That is, $R^{-1} = \{(b, a) \mid (a, b) \in R\}$.)
- Let G be a relation from set A to set B, and let F be a relation from B to set C. The *composite* of F and G, denoted $F \circ G$, is the relation of ordered pairs $(a,c), a \in A, c \in C$, such that $b \in B$, $(a,b) \in G$, and $(b,c) \in F$.
- A relation R on set A is an equivalence relation if it is reflexive, symmetric, and transitive.
- The equivalence class of an equivalence relation R on set B, and an element $b \in B$, is $\{c \mid c \in B \land (b,c) \in R\}$ and is denoted [b]. That is, the equivalence class is the set of all elements of the base relation equivalent to a given element as defined by the relation.
- A relation R on set A is a (reflexive/weak) partial order if it is reflexive, antisymmetric, and transitive.
- A relation R on set A is *irreflexive* if, for all members of A, $(a, a) \notin R$.
- A relation R on set A is an *irreflexive* (or *strict*) partial order if it is <u>ir</u>reflexive, antisymmetric, and transitive.
- Let R be a weak partial order on set A. a and b are said to be *comparable* if $a, b \in A$ and either $a \leq b$ or $b \leq a$ (that is, either $(a, b) \in R$ or $(b, a) \in R$).
- A weak partially-ordered relation R on set A is a total order if every pair of elements $a, b \in A$ are comparable.

Topic 9: Functions

- A function from set X to set Y, denoted $f: X \to Y$, is a relation from X to Y such that f(x) is defined $\forall x \in X$ and, for each $x \in X$, there is exactly one $(x, y) \in f$.
- For each of the following, let $f: X \to Y$ be a function, and assume f(n) = p.
 - -X is the domain of f; Y is the codomain of f.
 - f maps X to Y.
 - -p is the *image* of n; n is the *pre-image* of p.
 - The range of f is the set of all images of elements of X. (Note that the range need not equal the codomain.)
- The floor of a value n, denoted |n|, is the largest integer $\leq n$.
- The *ceiling* of a value m, denoted [m], is the smallest integer $\geq m$.
- A function $f: X \to Y$ is injective (a.k.a. one-to-one) if, for each $y \in Y$, f(x) = y for at most one member of X.
- A function $f: X \to Y$ is surjective (a.k.a. onto) if f's range is Y (the range = the codomain).
- A bijective function (a.k.a. a one-to-one correspondence) is both injective and surjective.
- The *inverse* of a bijective function f, denoted f^{-1} , is the relation $\{(y,x) \mid (x,y) \in f\}$.
- Let $f: Y \to Z$ and $g: X \to Y$. The *composition* of f and g, denoted $f \circ g$, is the function h = f(g(x)), where $h: X \to Z$.
- A function $f: X \times Y \to Z$ (or f(x,y) = z) is a binary function.

Topic 10: Indirect ("Contra") Proofs of $p \to q$

There were no definitions in this topic!