Course Background

(or: Why You're Here, and What You Learned to Get Here)

Background - CSc 144 v1.1 (McCann) - p. 1/27

What Is Discrete Math?

Definition: Discrete Mathematics

Contrast this with 'the calculus,' which was developed by

Newton and Leibniz to study objects in motion. As a result:

.

- 'The Calculus' tends to focus on real values
- Discrete Mathematics tends to focus on integer values

Sample Discrete Math Topics

Topics that fall under the umbrella of discrete math include:

- Integral Functions and Relations
- Matrix Operations and Representations
- Sets
- Sequences and Summations
- And everything in CSc 244, and CSc 345, and ...

To understand those, you also need:

- First-Order Logic
- Logical Arguments
- Proof Techniques
- ... and a fair amount of pre-calculus mathematics

Background - CSc 144 v1.1 (McCann) - p. 3/27

"But Why Do I Have To Take Discrete Math?"

Discrete Structures is an ACM/IEEE core curriculum topic

• See:

https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

DM topics underlie much of Computer Science, including:

- Logic \rightarrow Knowledge Representation, Reasoning, Natural Language Processing, Computer Architecture
- Proof Techniques \rightarrow Algorithm Design, Code Verification
- Relations \rightarrow Database Systems, Sorting
- Functions \rightarrow Hashing, Programming Languages
- Recurrence Relations \rightarrow Recursive Algorithm Analysis
- Probability \rightarrow Algorithm Design, Simulation

Topics You May Need To Review

• Mathematical concepts, including, but not limited to:

- Fractions
- Rational Numbers
- Basics of Sets
- Associative, Commutative, Distributive, and Transitive Laws
- Properties of Inequalities
- Summation and Product Notation
- Integer Division (Modulo, Divides, and Congruences)
- Even and Odd Integers
- Logarithms and Exponents

The Math Review appendix (available from the class web page) can also help you review these topics.

• Fundamental programming skills in Python or Java We trust that you can review this on your own!

Background - CSc 144 v1.1 (McCann) - p. 5/27

Notations for Sets of Values

\mathbb{Z}	All integers	$\{\ldots, -2, -1, 0, 1, 2, \ldots\}$
$\mathbb{Z}^+, \mathbb{N}^+$	All positive integers	$\{1,2,3,\ldots\}$
$\mathbb{Z}^*, \mathbb{N}_0$	The non-negative integers	$\{0, 1, 2, 3, \ldots\}$
Zeven	Even integers	$\{\ldots, -4, -2, 0, 2, 4, \ldots\}$
\mathbb{Z}^{odd}	Odd integers	$\{\ldots, -3, -1, 1, 3, \ldots\}$
\mathbb{Q}	Rational numbers	a/b , $a, b \in \mathbb{Z}, b \neq 0$
$\overline{\mathbb{Q}}$	Irrational Numbers	$\{i \mid i \not\in Q\}$
\mathbb{R}	The real values	$\{\mathbb{Q}\cup\overline{\mathbb{Q}}\}$

Note: Avoid the term "natural numbers" and the plain \mathbb{N} .

Commutativity

Assume that \blacktriangle is a binary operator on a set of values S.

If $x \blacktriangle y = y \blacktriangle x$ for any elements x and y in S,

then \blacktriangle is a *commutative* operator.

Example(s):

Addition is commutative on \mathbb{R} :	
Subtraction is not commutative on $\mathbb R$:	

Background - CSc 144 v1.1 (McCann) - p. 7/27

Associativity

Assume that \blacktriangle is a binary operator on a set of values S.

If $(x \blacktriangle y) \blacktriangle z = x \blacktriangle (y \blacktriangle z)$ for any x, y, z in S,

then \blacktriangle is an *associative* operator.

Example(s):

Multiplication is associative on \mathbb{Z} :

Subtraction is not associative on \mathbb{Z} :

Distributivity (1 / 2)

Assume that \blacktriangle and \blacksquare are binary operators on a set S, and that a, b, c are all values of S.

▲ is <u>*left–distributive*</u> over ■ when $a \blacktriangle (b \blacksquare c) = (a \blacktriangle b) \blacksquare (a \blacktriangle c)$

▲ is <u>right–distributive</u> over ■ when $(b \blacksquare c) \blacktriangle a = (b \blacktriangle a) \blacksquare (c \blacktriangle a)$

Background - CSc 144 v1.1 (McCann) - p. 9/27

Distributivity (2 / 2)

Example(s):

Multiplication distributes over addition:

This knowledge can help you do larger products by hand:

Transitivity

Assume that \diamond defines a relationship on values from S.

For any x, y, z in S, \diamond is *transitive* if whenever $x \diamond y$ and

```
y \diamond z, then x \diamond z.
```

Example(s):

"Greater than" is transitive on \mathbb{R} :

In sports, "defeats" is not transitive on a set of teams:

Background - CSc 144 v1.1 (McCann) - p. 11/27

Three Fraction Reminders

① The product of fractions is the ratio of the products of the

numerators over the products of the denominators:

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

⁽²⁾ One fraction divided by another equals the product of the numerator fraction and the reciprocal of the denominator:

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$

3 Computing the sum of two fractions requires a common

denominator, then we add the numerators:

 $\frac{a}{b} + \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{d} + \frac{b}{b} \cdot \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad+bc}{bd}$

Rational and Irrational Numbers (1 / 2)

Definition: Rational Number

Example(s):

A real number that is not rational is irrational.

Example(s):

Background - CSc 144 v1.1 (McCann) - p. 13/27

Rational and Irrational Numbers (2 / 2)

Example(s):

Express $0.41\overline{6}$ as a reduced fraction.

Set Notations

- Sets are named with upper-case letters and their elements are listed within curly brackets.
 - $\circ~$ For example, let $S=\{0,5,10,15\}$
- The **universe** (\mathcal{U}) is the set of all available elements
- The symbol \in says that an element is a member of a set
 - $\circ \ 15 \in S \text{ is true}$
- The symbol ∉ says that an element is not a member of a set
 8 ∉ S is true
- The cardinality of a set is the quantity of elements within it $\circ \ |S| = 4$
- The empty set (\varnothing or $\{\}$) contains no elements, and so $|\varnothing| = 0$.

Background - CSc 144 v1.1 (McCann) - p. 15/27

Basic Set Operators (1 / 2)

- 1. Union (U): $A \cup B$ contains all elements of both set A and set B
- 2. Intersection (\cap): $C \cap D$ contains only the elements present in both sets C and D
- 3. Difference (-): E F contains only the elements of set E that are **not** also in set F

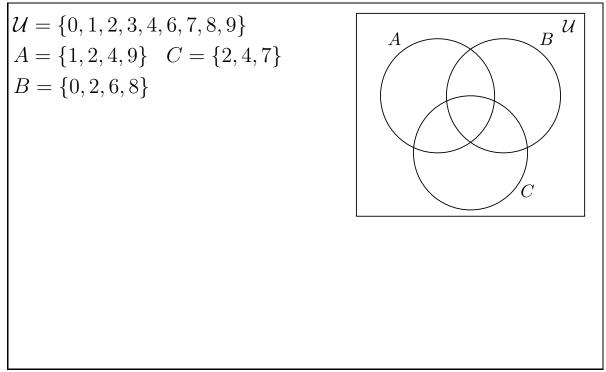
(Note: Take out the "not," and you've got a definition for \cap)

4. Complement $(\overline{\Box})$: Given a set G, $\overline{G} = \mathcal{U} - G$, the set of available items, where \mathcal{U} is the *universe*.

Note: $X - Y = X \cap \overline{Y}$

Basic Set Operators (2 / 2)

Example(s):



Background - CSc 144 v1.1 (McCann) - p. 17/27

Summation and Product Notation (1 / 2)

$$\sum_{i=1}^{5} 2i = 2(1) + 2(2) + 2(3) + 2(4) + 2(5) = 30$$

where:

- Σ is the _____.
- *i* is the _____.
- 1 is the _____.
- 5 is the _____.
- 2*i* is the _____

Summation and Product Notation (2 / 2)

Switch Σ to Π (capital Pi) for multiplication:

Example(s):

Use parentheses to eliminate confusion:

Example(s):

Background – CSc 144 v1.1 (McCann) – p. 19/27

Nested Summations and Products

Much like nested $\ensuremath{\texttt{FOR}}$ loops.

Example(s):

Modulo and Divides (1 / 2)

Integer Division (\setminus) produces quotients;

Modulo (%) produces remainders

Example(s):

Background - CSc 144 v1.1 (McCann) - p. 21/27

Modulo and Divides (2 / 2)

.

Definition: Divides

Example(s):

Congruences

Another set symbol: " $a \in B$ " means a is an element of set B.

Definition: Congruent Modulo m

(b is called the *base*, r is the *residue* or *remainder*, and m is the *modulus*)

Example(s):

Background - CSc 144 v1.1 (McCann) - p. 23/27

Laws of Exponents and Logarithms (1 / 3)

1.
$$w^{x+y} = w^x w^y$$

2.
$$(w^x)^y = w^{xy}$$

3.
$$v^{x}w^{x} = (vw)^{x}$$

4.
$$\frac{w^x}{w^y} = w^{x-y}$$

5.
$$\frac{v^x}{w^x} = \left(\frac{v}{w}\right)^x$$

Laws of Exponents and Logarithms (2 / 3)

The connection between exponents and logarithms:

If
$$b^y = x$$
, then $\log_b x = y$.

For each of the following laws, a, b > 0 and $a, b \neq 1$:

1.
$$\log_a x = \frac{\log_b x}{\log_b a}$$

2. If $m > n > 0$, then $\log_b m > \log_b$
3. $b^{\log_b x} = x$
4. $\log_b(x^y) = y \cdot \log_b x$
5. $\log_b(xy) = \log_b x + \log_b y$
6. $\log_b(\frac{x}{y}) = \log_b x - \log_b y$

Background - CSc 144 v1.1 (McCann) - p. 25/27

n

Laws of Exponents and Logarithms (3 / 3)

Example(s):

Fully evaluate: $\log_2 (2^3)^5$

Remember!

The math review topics are used in this class, and direct questions about them will be asked on Quiz #1, Exam #1, and the Final Exam.

If you are not confident in your knowledge of them:

- Read Appendix A in "Kneel Before \mathbb{Z}^{odd} ,"
- Attend TA office hours, and
- Review and self-test the topics on your own!

Background - CSc 144 v1.1 (McCann) - p. 27/27