Direct Proofs of $p \to q$

Direct Proofs - CSc 144 v1.1 (McCann) - p. 1/22

Handful O' Definitions (1 / 2)

Definition: Conjecture

Definition: Theorem

Definition: Proof

. . .

Definition: Lemma

Definition: Corollary

Example(s):

Direct Proofs - CSc 144 v1.1 (McCann) - p. 3/22

Why do People Fear Proofs?

- 1. Proofs don't come from an assembly line.
 - ► Need knowledge, persistence, and creativity
- 2. Creating proofs seems like magic.
 - But they are systematic in many ways
- 3. Proofs are hard to read and understand.
 - Only if the writer makes them so
- 4. Institutionalized Fear.
 - Many teachers avoid them in classes

Constructing a proof? Remember:

- 1. There are several proof techniques for a reason.
 - ► One may be easier to use than the others
- 2. Knowledge of mathematics is important.
 - ► Remember our Math Review?
- 3. There are "tricks" to know.
 - ► Ex: Dividing an even # in half leaves no remainder
- 4. Practice helps ... a lot!
 - Just as it does for most everything else
- 5. Dead ends are expected.
 - ► Proofs in books are the final, polished versions

Direct Proofs - CSc 144 v1.1 (McCann) - p. 5/22

Speaking of Even Numbers ...

Here are a few ways to say that $n \in \mathbb{Z}$ is even:

- n/2 is an integer
- n % 2 = 0
- n is twice some integer (e.g., $n = 2k, k \in \mathbb{Z}$)

Similarly, $d \in \mathbb{Z}$ is odd when:

Types Of Proof In This Class

- 1. Direct Proof
 - ► The most common variety
- 2. Proof by Contraposition
 - ► Like Direct, but with a twist
- 3. Proof by Contradiction
 - ► A dark road on a foggy night

Direct Proofs - CSc 144 v1.1 (McCann) - p. 7/22

Direct Proofs

Our First Conjecture

Conjecture: If n is even, then n^2 is also even, $n \in \mathbb{Z}$.

Direct Proofs - CSc 144 v1.1 (McCann) - p. 9/22

Proof-Writing Miscellanea

- Remember: A conjecture isn't a theorem until proven.
- Don't lose sight of your destination.
- When writing proofs in this class:
 - 1. Always start with "Proof (style):"
 - 2. Stating your allowed assumptions can help.
 - 3. Define all introduced variables.
 - 4. End proofs with "Therefore, " and the conjecture.

[Outside of this class: "Q.E.D." (quod erat demonstrandum,

Latin for "this was to be demonstrated.")]

A Conjecture About Rational Numbers

Conjecture: If $r, s \in \mathbb{Q}$, then $\frac{r}{s} \in \mathbb{Q}$.

Direct Proofs - CSc 144 v1.1 (McCann) - p. 11/22

A Conjecture About Inequalities

Conjecture: If 0 < a < b, then $a^2 < b^2$, $a, b \in \mathbb{R}$.

"Proof By Cases"

Question: How would you prove that $\forall x C(x)$ is true,

where $x \in \{6, 28, 496\}$?

Direct Proofs - CSc 144 v1.1 (McCann) - p. 13/22

A Direct Proof Employing Cases

Conjecture: $s \rightarrow r \equiv \neg r \rightarrow \neg s$ Proof (direct): Consider all possible combinations of values of r and s: $s \quad s \to r \quad \neg r \to \neg s$ rCase 1: T T Т т Case 2: T F Τ Т Case 3: F T **F** F Case 4: | F F | Т Т Therefore, $s \to r \equiv \neg r \to \neg s$. (Yes, this truth table is a direct proof by cases.)

A More Traditional Direct Proof With Cases

Conjecture: 3x(x+1) is even, $x \in \mathbb{Z}$.

Direct Proofs - CSc 144 v1.1 (McCann) - p. 15/22

A More Interesting Direct Proof With Cases

Conjecture: $x^2 \% 4 \in \{0, 1\}, x \in \mathbb{Z}$.

Poor Arguments \longrightarrow Poor Proofs (1 / 2)

Conjecture: 1 < 0.

Proof or Goof?:

Consider x such that 0 < x < 1. Take the base–10 logarithm of both sides of x < 1: $log_{10}x < log_{10}1$. By definition, $log_{10}1 = 0$. Divide both sides by $log_{10}x$: $\frac{log_{10}x}{log_{10}x} < \frac{0}{log_{10}x}$, which reduces to 1 < 0.

Therefore, 1 < 0.

Direct Proofs - CSc 144 v1.1 (McCann) - p. 17/22

Poor Arguments \longrightarrow Poor Proofs (2 / 2)

Conjecture: For all $n \in \mathbb{Z}^{odd}$, $(n^2 - 1)\% 4 = 0$.

Proof or Goof?:

Let x = 1. $1^2 - 1 = 0$. 0%4 = 0. Let x = 3. $3^2 - 1 = 8$. 8%4 = 0. Let x = 5. $5^2 - 1 = 24$. 24%4 = 0. This shows no sign of failing to give a result of 0.

Therefore, for all $n \in \mathbb{Z}^{odd}$, $(n^2 - 1)\% 4 = 0$.

Disproving Conjectures

Direct proofs show that a conjecture is true. How can we show that a conjucture is false?

There are two disproof approaches; each is best for a specific form of conjecture.

- If the conjecture is universally-quantified ("for all"):
- If the conjecture is existentially-quantified ("there exists"):

Direct Proofs - CSc 144 v1.1 (McCann) - p. 19/22

Disproving "For All" Conjectures (1 / 2)

Let's start with an example from a math review concept.

Conjecture: Subtraction distributes over multiplication.

Put another way:
$$a - (b * c) \stackrel{?}{=} (a - b) * (a - c).$$

Disproving "For All" Conjectures (2 / 2)

Here's a slightly more challenging example.

Conjecture: No integer n exists such that the sum of its

divisors equals 2n.

Direct Proofs - CSc 144 v1.1 (McCann) - p. 21/22

Disproving "There Exists" Conjectures

These aren't as common, but we can handle them, too.

Conjecture: Someone in this room was born on Venus.

This conjecture is probably false; Venus is inhospitable!