Topic 9:

Functions

Functions - CSc 144 v1.1 (McCann) - p. 1/19

Functions as Relations (1 / 2)

Consider: $f(x) = x + 1, x \in \mathbb{Z}$

Definition: Function

Functions as Relations (2 / 2)

Functions - CSc 144 v1.1 (McCann) - p. 3/19

Function Terms (1 / 2)

Let $f: X \to Y$ be a function. $f(n) = p \ [\ (n,p) \in f \].$

- ullet X is the _____ of f
- ullet Y is the _____ of f
- ullet f X to Y
- ullet p is the _____ of n
- ullet n is the _____ of p
- ullet f's _____ is the set of all images of X's elements

Note: A function's range need not equal its codomain.

Function Terms (2 / 2)

Functions - CSc 144 v1.1 (McCann) - p. 5/19

Digraph Representation (1 / 2)

Example(s):

$$g = \{ (a,b) \mid b = a/2 \}, \ a \in \{0,2,4,8\}, \\ b \in \{0,1,2,3,4,5\}$$

Digraph Representation (2 / 2)

Example(s):	
	Functions – CSc 144 v1.1 (McCann) – p. 7/19
Two Functions You Need To Know	v (1 / 4)
	<u>/ (1 / 4)</u>
1. Floor $(\lfloor x \rfloor)$	<u>/ (1 / 4)</u>
	<u>(1 / 4)</u>
1. Floor $(\lfloor x \rfloor)$	<i>(</i> (1 / 4)
1. Floor $(\lfloor x \rfloor)$	<i>y</i> (1 / 4)
1. Floor $(\lfloor x \rfloor)$ Definition: Floor Function	<i>(</i> (1 / 4)
1. Floor $(\lfloor x \rfloor)$ Definition: Floor Function	v (1 / 4)
1. Floor $(\lfloor x \rfloor)$ Definition: Floor Function	<u>(1/4)</u>
1. Floor $(\lfloor x \rfloor)$ Definition: Floor Function	<i>y</i> (1 / 4)
1. Floor $(\lfloor x \rfloor)$ Definition: Floor Function	v (1 / 4)

Two Functions You Need To Know (2 / 4)

1. Floor $(\lfloor x \rfloor)$ (cont.)

Using Floor for Rounding to the Nearest Integer

Functions - CSc 144 v1.1 (McCann) - p. 9/19

Two Functions You Need To Know (3 / 4)

2. Ceiling $(\lceil x \rceil)$	
Definition: Ceiling Function	
Example(s):	

Two Functions You Need To Know (4 / 4)

2. Ceiling $(\lceil x \rceil)$ (cont.)

Example(s):

Functions - CSc 144 v1.1 (McCann) - p. 11/19

Example: Type A UPC Code Check Digits

The check digit equals the image of this function:

s = Sum of digits in positions 1, 3, 5, 7, 9, & 11

t = Sum of digits in positions 2, 4, 6, 8, & 10

u = 3s + t; the check digit is (10 - u%10)%10.

Using the above sample:

$$s = 39$$
, $t = 24$, and $u = 3(39) + 24 = 141$.

The check digit = (10 - 141%10)%10 = 9.

Graphs Of Functions (1 / 2)

Important Distinction: Continuous vs. Discontinuous Functions

Consider: $f = \{(x, x+1) \mid x \in \dots\}$

Functions - CSc 144 v1.1 (McCann) - p. 13/19

Graphs Of Functions (2 / 2)

How should the graph of our long-distance calling plan function look?

$$\text{Cost(length)} = \left\{ \begin{array}{ll} 50 \text{ cents} & \text{if length} \leq 10 \text{ minutes} \\ \\ 50 + 5 \cdot \lceil \text{length} - 10 \rceil \text{ cents} & \text{Otherwise} \end{array} \right.$$

Categories of Functions: Injective

Definitio	n: Injective Functions	(a.k.a. One-to-one)
Example	e(s):	
		Functions – CSc 144 v1.1 (McCann) – p. 15/19
Catego	ories of Functions	: Surjective
Definitio	n: Surjective Functions	(a.k.a. Onto)
Example	e(s):	

Categories of Functions: Bijective

Definition: Bijective Functions (a.k.a. One-to-one Correspondence)		
Example(s):		

Functions - CSc 144 v1.1 (McCann) - p. 17/19

Odds and Ends

Definition: Functional Composition

Let $f:Y\to Z$ and $g:X\to Y$. The composition of f and g, denoted $f\circ g$, is the function h=f(g(x)), where $h:X\to Z$.

Definition: Inverse Functions

Beyond Unary Functions

Definition: Binary Functions		
Example(s):		

Functions - CSc 144 v1.1 (McCann) - p. 19/19