
Topic 9:

Functions

Functions – CSc 144 v1.1 (McCann) – p. 1/19

Functions as Relations (1 / 2)

Consider: f(x) = x+ 1, x ∈ Z

Definition: Function
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Functions as Relations (2 / 2)

Example(s):
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Function Terms (1 / 2)

Let f : X → Y be a function. f(n) = p [ (n, p) ∈ f ].

• X is the of f

• Y is the of f

• f X to Y

• p is the of n

• n is the of p

• f ’s is the set of all images of X ’s elements

Note: A function’s range need not equal its codomain.
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Function Terms (2 / 2)

Example(s):
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Digraph Representation (1 / 2)

Example(s):

g = { (a, b) | b = a/2 }, a ∈ {0, 2, 4, 8},

b ∈ {0, 1, 2, 3, 4, 5}
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Digraph Representation (2 / 2)

Example(s):
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Two Functions You Need To Know (1 / 4)

1. Floor (⌊x⌋)

Definition: Floor Function

Example(s):
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Two Functions You Need To Know (2 / 4)

1. Floor (⌊x⌋) (cont.)

Using Floor for Rounding to the Nearest Integer
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Two Functions You Need To Know (3 / 4)

2. Ceiling (⌈x⌉)

Definition: Ceiling Function

Example(s):
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Two Functions You Need To Know (4 / 4)

2. Ceiling (⌈x⌉) (cont.)

Example(s):
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Example: Type A UPC Code Check Digits

The check digit equals the image of this function:

s = Sum of digits in positions 1, 3, 5, 7, 9, & 11

t = Sum of digits in positions 2, 4, 6, 8, & 10

u = 3s+ t; the check digit is (10− u%10)%10.

Using the above sample:

s = 39, t = 24, and u = 3(39) + 24 = 141.

The check digit = (10− 141%10)%10 = 9.

Image Credit: www.nasaexplores.com
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Graphs Of Functions (1 / 2)

Important Distinction: Continuous vs. Discontinuous Functions

Consider: f = {(x, x+ 1) | x ∈ . . . }
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Graphs Of Functions (2 / 2)

How should the graph of our long-distance calling plan function look?

Cost(length) =







50 cents if length ≤ 10 minutes

50 + 5 · ⌈length − 10⌉ cents Otherwise
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Categories of Functions: Injective

Definition: Injective Functions

Example(s):

(a.k.a. One-to-one)
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Categories of Functions: Surjective

Definition: Surjective Functions

Example(s):

(a.k.a. Onto)
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Categories of Functions: Bijective

Definition: Bijective Functions

Example(s):

(a.k.a. One-to-one Correspondence)
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Odds and Ends

Definition: Functional Composition

Definition: Inverse Functions

Let f : Y → Z and g : X → Y . The composition of f

and g, denoted f ◦ g, is the function h = f(g(x)), where

h : X → Z .
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Beyond Unary Functions

Definition: Binary Functions

Example(s):
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