Topic 12:

Sequences and Strings

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 1/21

Definition: Sequence [1st Attempt]	
Notation:	
Example(s):	

Rules

Recall:	$\sum_{i=1}^{n} 2i$			
Example(s):	i=1			
Two Notations	for Infinite Sequence	es:		
			Sequences & Strings – CSc 144 v1.1 (McC	Cann) – p. 3/21
Sequences	s and Function	าร		
	s and Function equence [Final Vers			
Definition: Se				
Definition: Se				
Definition: Se				
Definition: Se				

Arithmetic and Geometric Sequences

Definition: Arithmetic Sequence (a.k.a. Arithmetic Progression)

Definition: Geometric Sequence (a.k.a. Geometric Progression)

Example(s):

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 5/21

Arithmetic Series

The sum of the terms of an arithmetic sequence (a.k.a.

arithmetic series): $s_n = a_1 + \ldots + a_n = \frac{1}{2}n(a_1 + a_n)$

Here's why: First, note that $a_n = a_1 + (n-1)d$.

Next, here are two expressions for s_n :

$$s_n = a_1 + (a_1 + d) + (a_1 + 2d) + \dots + (a_1 + (n-1)d)$$

$$s_n = (a_n - (n-1)d) + (a_n - (n-2)d) + \dots + (a_n - d) + a_n$$

Sum these expressions, and the d terms cancel, leaving:

$$2s_n = na_1 + na_n$$
, or $s_n = \frac{1}{2}n(a_1 + a_n)$.

Geometric Series

The sum of the terms of a geometric sequence also has an expression: $s_n=g_1+\ldots+g_n=\frac{g_1(1-r^n)}{1-r}$, assuming that $r\neq 1$. (If $r=1,\,s_n=n\cdot g_1$.) Here's how to get it:

$$s_n = g_1 + g_1 r + g_1 r^2 + \dots + g_1 r^{n-1}$$

$$r \cdot s_n = g_1 r + g_1 r^2 + g_1 r^3 + \dots + g_1 r^n$$

$$s_n - r \cdot s_n = g_1 - g_1 r^n$$

$$s_n (1 - r) = g_1 (1 - r^n)$$

$$s_n = \frac{g_1 (1 - r^n)}{1 - r}$$

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 7/21

Increasing Sequences

Definition: Increasing Sequence	
Definition: Non-Decreasing Sequence	
Definition: Strictly Increasing Sequence	

Decreasing Sequences

Definition: Decreasing Sequence	
Definition: Non-Increasing Sequence	
Definition: Strictly Decreasing Sequence	

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 9/21

Examples: Increasing/Decreasing Sequences

Subsequences

Definition: Subsequence	
Example(s):	
Sequences & Strin	ngs – CSc 144 v1.1 (McCann) – p. 11/21
Need to Identify a Sequence?	
	ces
A great resource for sequences:	ces
A great resource for sequences: The Online Encyclopedia of Integer Sequence (http://oeis.org/)	ces
A great resource for sequences: The Online Encyclopedia of Integer Sequence (http://oeis.org/)	ces
	ces
A great resource for sequences: The Online Encyclopedia of Integer Sequence (http://oeis.org/)	ces
A great resource for sequences: The Online Encyclopedia of Integer Sequence (http://oeis.org/)	ces

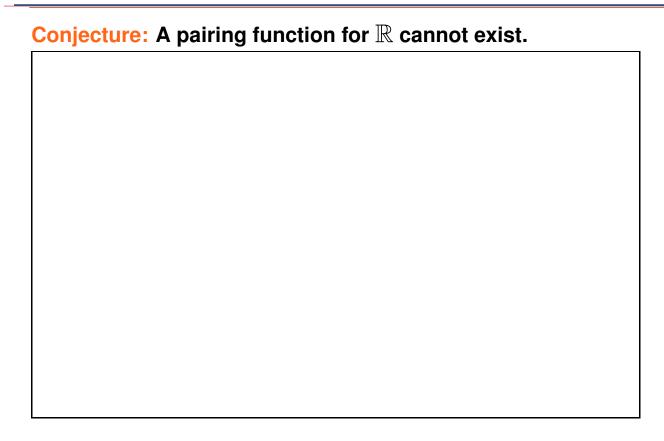
Definition: String	
Example(s):	

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 13/21

Strings (2 / 2)

Notation:

- ullet Lambda (λ) represents the empty (null) string
- ullet xy means strings x and y are concatenated
- Superscripts denote repetition of concatenation
- |x| represents the length of string x
- A^* is the set of strings that can be formed using elements of an alphabet A.
 - $\circ A^*$ is an infinite set
 - $\circ \lambda \in A^*$


Set Cardinality Revisited (1 / 5)

An observation about set cardinality:	
Definition: Finite	\neg
Sequences & Strings – CSc 144 v1.1 (McCann) – p. 1	5/21
Set Cardinality Revisited (2 / 5)	
Definition: Countably Infinite (a.k.a. Denumerably Infinite)	
Definition: Countable	

Set Cardinality Revisited (3 / 5)

Example(s):	
	Sequences & Strings – CSc 144 v1.1 (McCann) – p. 17/21
Set Cardinality Revis	sited (4 / 5)
	rational numbers countable?
Set Cardinality Revis Question: Are the positive	

Set Cardinality Revisited (5 / 5)

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 19/21

Now You Can Understand More Cartoons! (1/2)

Background: Elephant jokes became popular form of absurdist humor in the U.S. in the 1960s. For example:

Q: How many elephants can fit in a Jeep?

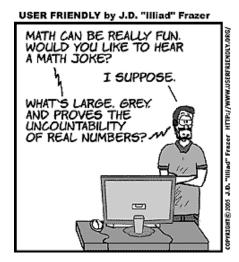
A: Four – Two in the front and two in the back.

Q: How many bison can fit in a Jeep?

A: None – it's full of elephants.

Q: How do you know when there are two elephants in your closet?

A: You hear giggling when the door is closed.


Q: How do you know when there are three elephants in your closet?

A: You can't close the door.

Q: How do you know when there are four elephants in your closet?

A: There's an empty Jeep in the driveway.

Now You Can Understand More Cartoons! (2/2)

http://www.userfriendly.org/cartoons/archives/05jun/uf008006.gif

Sequences & Strings - CSc 144 v1.1 (McCann) - p. 21/21