Collected Definitions for Exam \#3

This is the 'official' collection of need-to-know definitions for Exam \#3. I can't recall the last time I didn't ask a definition question on an exam. To help you better prepare yourself for definition questions, I've assembled this list. My pledge to you: If I ask you for a definition on the exam, the term will come from this list. Note that this is not a complete list of the definitions given in class. You should know the others, too, but I won't specifically ask you for their definitions on the exam.

Topic 7: Matrices (Continued from the Exam \#2 Topic 7 definition list. If we ask you to define a

 Topic 7 term on Exam \#3, it will come from this list.)- Identity matrices, denoted I_{n}, are $n \times n$ matrices populated with 1 down the main diagonal (upper-left to lower-right) and with 0 elsewhere.
- The $n^{t h}$ matrix power of an $m \times m$ matrix A, denoted A^{n}, is the matrix resulting from $n-1$ successive matrix products of $A . A^{0}=I_{m}$.
- The logical matrix product of an $m \times n 0-1$ matrix A and an $n \times l 0-1$ matrix B is an $m \times l 0-1$ matrix $C=A \odot B$ in which $c_{i j}=\bigvee_{k=1}^{n}\left(a_{i k} \wedge b_{k j}\right)$.
- The $r^{t h}$ logical matrix power of an $m \times m 0-1$ matrix A, denoted $A^{[r]}$, is the matrix resulting from $r-1$ successive logical matrix products of $A . A^{[0]}=I_{m}$.

Topic 8: Relations

- A (binary) relation from set X to set Y is a subset of the Cartesian Product of the domain X and the codomain Y.
- A relation R on set A is reflexive if $(a, a) \in R, \forall a \in A$.
- A relation R on set A is symmetric if, whenever $(a, b) \in R$, then $(b, a) \in R$, for $a, b \in A$.
- A relation R on set A is antisymmetric if $(x, y) \in R$ and $x \neq y$, then $(y, x) \notin R, \forall x, y \in A$.
- A relation R on set A is transitive if, whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for $a, b, c \in A$.
- The inverse of a relation R on set A, denoted R^{-1}, contains all of the ordered pairs of R with their components exchanged. (That is, $R^{-1}=\{(b, a) \mid(a, b) \in R\}$.)
- Let G be a relation from set A to set B, and let F be a relation from B to set C. The composite of F and G, denoted $F \circ G$, is the relation of ordered pairs $(a, c), a \in A, c \in C$, such that $b \in B,(a, b) \in G$, and $(b, c) \in F$.
- A relation R on set A is an equivalence relation if it is reflexive, symmetric, and transitive.
- The equivalence class of an equivalence relation R on set B, and an element $b \in B$, is $\{c \mid c \in B \wedge(b, c) \in$ $R\}$ and is denoted $[b]$. That is, the equivalence class is the set of all elements of the base relation equivalent to a given element as defined by the relation.
- A relation R on set A is a (reflexive/weak) partial order if it is reflexive, antisymmetric, and transitive.
- A relation R on set A is irreflexive if, for all members of $A,(a, a) \notin R$.
- A relation R on set A is an irreflexive (or strict) partial order if it is irreflexive, antisymmetric, and transitive.
- Let R be a weak partial order on set $A . a$ and b are said to be comparable if $a, b \in A$ and either $a \preceq b$ or $b \preceq a$ (that is, either $(a, b) \in R$ or $(b, a) \in R)$.
- A weak partially-ordered relation R on set A is a total order if every pair of elements $a, b \in A$ are comparable.

Topic 9: Functions

- A function from set X to set Y, denoted $f: X \rightarrow Y$, is a relation from X to Y such that $f(x)$ is defined $\forall x \in X$ and, for each $x \in X$, there is exactly one $(x, y) \in f$.
- For each of the following, let $f: X \rightarrow Y$ be a function, and assume $f(n)=p$.
$-X$ is the domain of $f ; Y$ is the codomain of f.
- f maps X to Y.
- p is the image of $n ; n$ is the pre-image of p.
- The range of f is the set of all images of elements of X. (Note that the range need not equal the codomain.)
- The floor of a value n, denoted $\lfloor n\rfloor$, is the largest integer $\leq n$.
- The ceiling of a value m, denoted $\lceil m\rceil$, is the smallest integer $\geq m$.
- A function $f: X \rightarrow Y$ is injective (a.k.a. one-to-one) if, for each $y \in Y, f(x)=y$ for at most one member of X.
- A function $f: X \rightarrow Y$ is surjective (a.k.a. onto) if f 's range is Y (the range $=$ the codomain).
- A bijective function (a.k.a. a one-to-one correspondence) is both injective and surjective.
- The inverse of a bijective function f, denoted f^{-1}, is the relation $\{(y, x) \mid(x, y) \in f\}$.
- Let $f: Y \rightarrow Z$ and $g: X \rightarrow Y$. The composition of f and g, denoted $f \circ g$, is the function $h=f(g(x))$, where $h: X \rightarrow Z$.
- A function $f: X \times Y \rightarrow Z$ (or $f(x, y)=z$) is a binary function.

$$
\text { Topic 10: Indirect ("Contra") Proofs of } p \rightarrow q
$$

There were no definitions in this topic!

