(McCann)

Collected Definitions Since Exam \#3

Here are the definitions that we've covered since the material for the last midterm exam. I'm not going to re-print all of the definitions for the whole semester - that would be a lot of paper. If you lost a previous exam's definition handout, you can print another from the class web page or D2L.

Topic 11: Integers

- Let i and j be positive integers. j is a factor of i when $i \% j=0$.
- A positive integer p is prime if $p \geq 2$ and the only factors of p are 1 and p.
- A positive integer p is composite if $p \geq 2$ and p is not prime.
- The prime factorization of a composite integer p is the expression of p as the product of two or more primes.
- The Division 'Algorithm': Let n, s, q, and r be the dividend, divisor, quotient, and remainder, respectively, of an integer division. If $n \in \mathbb{Z}, s \in \mathbb{Z}^{+}$, and $0 \leq r<s$, then q and r are unique.
- Let x and y be integers such that $x \neq 0$ and $y \neq 0$. The Greatest Common Divisor (GCD) of x and y is the largest integer i such that $i \mid x$ and $i \mid y$. That is, $\operatorname{gcd}(\mathrm{x}, \mathrm{y})=\mathrm{i}$.
- If the GCD of a and b is 1 , then a and b are relatively prime.
- When the members of a set of integers are all relatively prime to one another, they are pairwise relatively prime.
- Let x and y be positive integers. The Least Common Multiple (LCM) of x and y is the smallest integer s such that $x \mid s$ and $y \mid s$. That is, $1 \mathrm{~cm}(\mathrm{x}, \mathrm{y})=\mathrm{s}$.
- If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$, then a and b are congruent modulo $m($ written $a \equiv b(\bmod m))$ iff $a \% m=b \% m$ (or, iff $m \mid(a-b))$. (This is just a different phrasing of the definition given in Topic 1. Either is correct.)

Topic 12: Sequences and Strings

- A sequence is the ordered range of a function from a set of integers to a set S.
- In an arithmetic sequence (a.k.a. arithmetic progression) $a, a_{n+1}-a_{n}$ is constant. This constant is called the common difference of the sequence.
- In a geometric sequence (a.k.a. geometric progression) g, $\frac{g_{n+1}}{g_{n}}$ is constant. This constant is called the common ratio of the sequence.
- An increasing (a.k.a. non-decreasing) sequence i is ordered such that $i_{n} \leq i_{n+1}$.
- A strictly increasing sequence i is ordered such that $i_{n}<i_{n+1}$.
- A non-increasing (a.k.a. decreasing) sequence i is ordered such that $i_{n} \geq i_{n+1}$.
- A strictly decreasing sequence i is ordered such that $i_{n}>i_{n+1}$.
- Sequence x is a subsequence of sequence y when the elements of x are found within y in the same relative order.
- A string is a contiguous finite sequence of zero or more elements drawn from a set called the alphabet.
- A set is finite if there exists a bijective mapping between it and a set of cardinality $n, n \in \mathbb{Z}^{*}$.
- A set is countably infinite (a.k.a. denumerably infinite) if there exists a bijective mapping between the set and either \mathbb{Z}^{*} or \mathbb{Z}^{+}.
- A set is countable if it is either finite or countably infinite. If neither, the set is uncountable.

