

Logic - CSc 144 v1.1 (McCann) - p. 1/53

What Is Logic?

Definition: Philosophical Logic

Definition: Mathematical Logic

Propositional Logic

Propositional Logic is part of Mathematical Logic. Versions include:

- *First Order Logic* (FOL, a.k.a. *First Order Predicate Calculus* (FOPC)) includes simple term variables and quantifications.
- *Second Order Logic* allows its variables to represent more complex structures (in particular, predicates).
- Modal Logic adds support for modalities; that is, concepts such as possibility and necessity.

.

Logic - CSc 144 v1.1 (McCann) - p. 3/53

Well-Formed Formulae

Definition: Well-Formed Formula (wff)

Why Are We Studying Logic?

A few of the many reasons:

- Logic is the foundation for computer operation.
- Logical conditions are common in programs:
 - Selection:

```
if (score <= max) { ... }
```

• Iteration:

```
while (i<limit && list[i]!=sentinel) ...
```

• All manner of structures in computing have properties that need to be proven (and proofs that need to be understood).

• Examples: Trees, Graphs, Recursive Algorithms, ...

- Even programs can be proven correct!
- Computational linguistics must represent and reason about human language, and language represents thought (and thus also logic).

Logic - CSc 144 v1.1 (McCann) - p. 5/53

Simple Propositions (1 / 2)

Definition: Proposition

Definition: Simple Proposition

Simple Propositions (2 / 2)

Example(s):

Logic - CSc 144 v1.1 (McCann) - p. 7/53

Proposition Labels

To save writing, it is traditional to label propositions with

lower-case letters called proposition labels or statement

letters.

Compound Propositions

Definition: Compound Proposition

And with what do we combine them?

Logic - CSc 144 v1.1 (McCann) - p. 9/53

Conjunctions (1 / 2)

Remember ABC's "Schoolhouse Rock" education series?

"Conjunction Junction" (1973)

(Music/Lyrics by Bob Dorough; Performed by Jack Sheldon)

Conjunctions (2 / 2)

Conjunctions are:

- compound propositions formed in English with "and" & "but",
- formed in logic with the caret symbol (" \wedge "), and
- true only when both participating propositions are true.

Example(s):

Logic - CSc 144 v1.1 (McCann) - p. 11/53

Disjunctions (1 / 3)

Consider this compound proposition:

Under which circumstances is that claim true? Possibilities:

- 1. The first proposition is true.
- 2. The second proposition is true.
- 3. Both of the propositions are true.

If all three are acceptable, the disjunction is

().

Consider the same example and possibilities:

3 is the number of sides of a triangle or the number of times this class meets per week.

Possibilities:

- 1. The first proposition is true.
- 2. The second proposition is true.
- 3. Both of the propositions are true.

If the third possibility is not acceptable, the disjunction is

().

Logic - CSc 144 v1.1 (McCann) - p. 13/53

Disjunctions (3 / 3)

Negation

Negating a proposition simply flips its value.

Common negation notations: $\neg x \quad \overline{x} \quad \sim x \quad x'$

Example(s):

Notes:

Logic - CSc 144 v1.1 (McCann) - p. 15/53

Truth Tables (1 / 2)

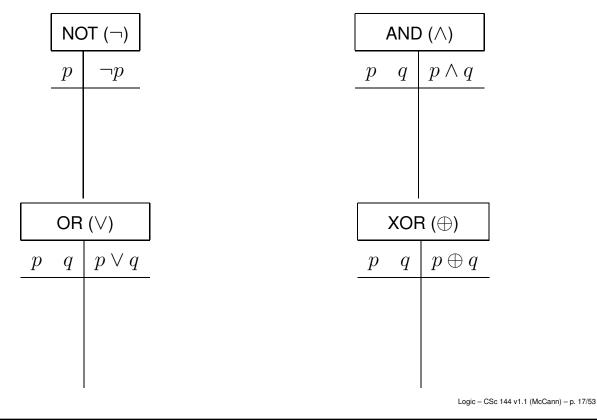
Truth tables aid in the evaluation of compound propositions.

Structure of a Truth Table:

$$p$$
 q $p \land q$ $(p \land q) \lor p$ TTTTTFFTFTFFFFFFFFFF

Truth Tables (2 / 2)

Truth Tables of $\land,\lor,\oplus,$ and $\neg:$



Precedence of Logical Operators

Total agreement is hard to come by:

		Rosen 8/e	Gersting 5/e	Hein 2/e	Epp 1/e
I	Precedence	p. 11	p. 6	p. 351	p. 24
	Highest	_	,		\sim
		\wedge	\land,\lor	\wedge	\land,\lor
	\uparrow	V	\rightarrow	\vee	$ ightarrow, \leftrightarrow$
		\rightarrow	\leftrightarrow	\rightarrow	
	Lowest	\leftrightarrow			

(Note: We'll cover \rightarrow and \leftrightarrow soon.)

In this class:

Operator Associativity

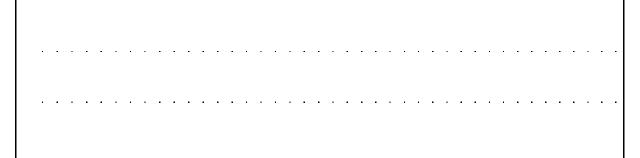
Consider evaluating: a = b = -2 * 3 * 7; in Python

Example(s):

Logic - CSc 144 v1.1 (McCann) - p. 19/53

Equivalence of Propositions

Definition: Logically Equivalent



Natural Language Stmts \rightarrow Propositions (1 / 4)

Review: Is There isn't a cloud in the sky a proposition?

Question: Is the following sentence a proposition?

Logic - CSc 144 v1.1 (McCann) - p. 21/53

Natural Language Stmts \rightarrow Propositions (2 / 4)

Step 1: Identify the simple propositions.

Either Walter deposits his mortgage payment or else he will lose his house and move in with Donna.

Step 2: Assign easy-to-remember statement labels.

Natural Language Stmts \rightarrow Propositions (3 / 4)

Step 3: Identify the logical operators.

Either Walter deposits his mortgage payment or else he will lose his house and move in with Donna.

Step 4: Construct the matching logical expression.

Logic - CSc 144 v1.1 (McCann) - p. 23/53

Natural Language Stmts \rightarrow Propositions (4 / 4)

- So ... what's the point? Three examples:
 - Expressing Program Conditions
 - Natural Language Understanding
 - Proof Setup

Three Categories of Propositions (1 / 2)

Definition: Tautology		
Definition: Contradiction		

Definition: Contingency

Logic - CSc 144 v1.1 (McCann) - p. 25/53

Three Categories of Propositions (2 / 2)

Example(s): Which of those is $d \oplus (\neg k \land m)$?

Aside: Logical Bit Operations in Python/Java

Operator	Name	Example (Dec.)	Example (Bin.)
\sim	Complement	$\sim 12 = -13$	$\sim 00001100 = 11110011$
			1100
&	AND	12 & 10 = 8	& 1010
			1000
			1100
	OR	12 10 = 14	1010
			1110
			1100
\wedge	XOR	$12 \wedge 10 = 6$	\wedge 1010
			0110
>>	Shift Right	33 >> 1 = 16	00100001 >> 1 = 00010000
<<	Shift Left	33 << 2 = 132	00100001 << 2 = 10000100

Logic - CSc 144 v1.1 (McCann) - p. 27/53

Example: Default Linux File Permissions

\$ ls -1

-rw-rw-r-- 1 mccann mccann 3561 Oct 28 1929 stocktosell

Example:

Definition: Conditional Proposition

Logic - CSc 144 v1.1 (McCann) - p. 29/53

Conditional Propositions (2 / 3)

In "if p, then q", p and q are known by various names:

Common forms of "if p, then q" (Rosen 8/e, p. 7):

- \triangleright if p, then q
- \triangleright if p, q
- $\triangleright \quad p \text{ implies } q$
- $\triangleright p \text{ only if } q$
- $\triangleright \quad p \text{ is sufficient for } q$
- \triangleright a necessary condition for p is q
- $\triangleright \quad q \text{ unless } \neg p$

- $\triangleright q \text{ if } p$
- $\triangleright q$ when p
- $\triangleright \quad q \text{ whenever } p$
- $\triangleright \quad q \text{ follows from } p$
- $\triangleright \quad q \text{ is necessary for } p$
- $\triangleright \quad \text{a sufficient condition for } q \text{ is } p$
- $\triangleright \quad q \text{ provided that } p$

Conditional Propositions (3 / 3)

Example(s):

Logic - CSc 144 v1.1 (McCann) - p. 31/53

Truth of Conditional Propositions (1 / 2)

When should this be considered 'true'?

If you make it through *voir dire*, you will serve on the jury.

The possibilities:

- 1. Antecedent true, Consequent true; statement is:
- 2. Antecedent true, Consequent false; statement is: .
- 3. Antecedent false, Consequent true; statement is: .
- 4. Antecedent false, Consequent false; statement is: .

Truth of Conditional Propositions (2 / 2)

Not satisfied? Maybe this Python if statement will help:

if y < x : temp = x x = y y = temp

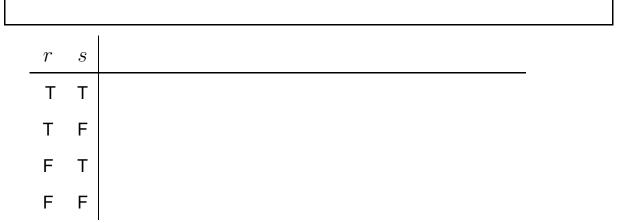
Definition: Vacuously True

Logic - CSc 144 v1.1 (McCann) - p. 33/53

Inverse, Converse, and Contrapositive

Definition: Inverse

Definition: Converse



Contraposition

Definition: Contrapositive

r	s
Т	Т
Т	F
F	Т
F	F

Logic - CSc 144 v1.1 (McCann) - p. 35/53

Examples: English Translation (1 / 2)

Logic - CSc 144 v1.1 (McCann) - p. 37/53

Example: English \rightarrow Logic

Logic - CSc 144 v1.1 (McCann) - p. 39/53

Political Example: "Push" Polling

"What would you think of Elizabeth Colbert Busch if she had done jail time?"

> Asked in telephone calls by Survey Sampling International in the 2013 South Carolina 1st Congressional District special election

Biconditional Propositions and *iff* (1 / 2)

What is the meaning of:

A triangle is equilateral if and only if all three angles are equal.

Logic - CSc 144 v1.1 (McCann) - p. 41/53

Biconditional Propositions and *iff* (2 / 2)

Definition: Biconditional Proposition



Biconditionals and Logical Equivalence

Definition: Logically Equivalent (2)

Example(s):

Logic - CSc 144 v1.1 (McCann) - p. 43/53

De Morgan's Laws

Example: De Morgan's Laws and Programming

Checking to see if a 0–100 numeric score is not a 'B':

Logic - CSc 144 v1.1 (McCann) - p. 45/53

Common Logical Equivalences (1 / 3)

<u>Table I</u>: Some Equivalences using AND (\land) and OR (\lor):

- (a) $p \wedge p \equiv p$, $p \vee p \equiv p$
- (b) $p \lor \mathbf{T} \equiv \mathbf{T}, \quad p \land \mathbf{F} \equiv \mathbf{F}$ (c) $p \land \mathbf{T} \equiv p, \quad p \lor \mathbf{F} \equiv p$
- (d) $p \wedge q \equiv q \wedge p$
- $p \lor q \equiv q \lor p$
- (e) $\begin{array}{c} (p \wedge q) \wedge r \equiv p \wedge (q \wedge r) \\ (p \vee q) \vee r \equiv p \vee (q \vee r) \end{array}$
- (f) $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- (g) $p \land (p \lor q) \equiv p$ $p \lor (p \land q) \equiv p$

Idempotent Laws Domination Laws Identity Laws Commutative Laws Associative Laws Distributive Laws Absorption Laws

Table II: Some More Equivalences (adding ¬):

(a) $\neg (\neg p) \equiv p$ (b) $p \lor \neg p \equiv \mathbf{T}, p \land \neg p \equiv \mathbf{F}$

 $\neg (p \land q) \equiv \neg p \lor \neg q$

 $\neg (p \lor q) \equiv \neg p \land \neg q$

(C)

Double Negation Negation Laws De Morgan's Laws

Common Logical Equivalences (2 / 3)

<u>Table III</u>: Still More Equivalences (adding \rightarrow):

(a)	$p \to q \equiv \neg p \lor q$	Law of Implication
(b)	$p \to q \equiv \neg q \to \neg p$	Law of the Contrapositive
(c)	$\mathbf{T} \to p \equiv p$	"Law of the True Antecedent"
(d)	$p \to \mathbf{F} \equiv \neg p$	"Law of the False Consequent"
(e)	$p ightarrow p \equiv {f T}$	Self-implication (a.k.a. Reflexivity)
(f)	$p \to q \equiv (p \land \neg q) \to \mathbf{F}$	Reductio Ad Absurdum
(g)	$\neg p \to q \equiv p \lor q$	
(h)	$\neg(p ightarrow q) \equiv p \land \neg q$	
(i)	$\neg(p \to \neg q) \equiv p \land q$	
(j)	$(p \to q) \lor (q \to p) \equiv \mathbf{T}$	Totality
(k)	$(p \wedge q) \rightarrow r \equiv p \rightarrow (q \rightarrow r)$	Exportation Law (a.k.a. Currying)
(I)	$(p \wedge q) \rightarrow r \equiv (p \rightarrow r) \vee (q \rightarrow r)$	
(m)	$(p \lor q) \to r \equiv (p \to r) \land (q \to r)$	
(n)	$p \to (q \wedge r) \equiv (p \to q) \wedge (p \to r)$	
(o)	$p \to (q \lor r) \equiv (p \to q) \lor (p \to r)$	
(p)	$p \to (q \to r) \equiv q \to (p \to r)$	Commutativity of Antecedents
		•

Logic - CSc 144 v1.1 (McCann) - p. 47/53

Common Logical Equivalences (3 / 3)

<u>Table IV</u>: Yet More Equivalences (adding \oplus and \leftrightarrow):

(a)
$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

(b)
$$p \leftrightarrow q \equiv (p \wedge q) \lor (\neg p \wedge \neg q)$$

(c)
$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

(d)
$$p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$$

(e)
$$p \oplus q \equiv \neg (p \leftrightarrow q)$$

(f)
$$p \oplus q \equiv p \leftrightarrow \neg q \equiv \neg p \leftrightarrow q$$

Definition of Biimplication

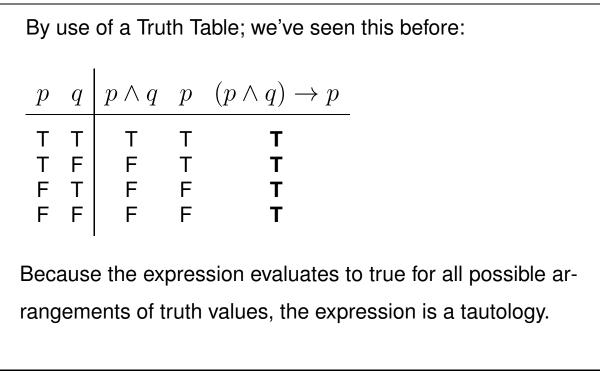
Definition of Exclusive Or

Remember: You **do not** need to memorize these tables ...

... But you **do** need to know how to use them!

Applications of Logical Equivalences (1 / 5)

Question: Is $(p \land q) \rightarrow p$ a tautology? (1)



Logic - CSc 144 v1.1 (McCann) - p. 49/53

Applications of Logical Equivalences (2 / 5)

Question: Is $(p \land q) \rightarrow p$ a tautology? (2)

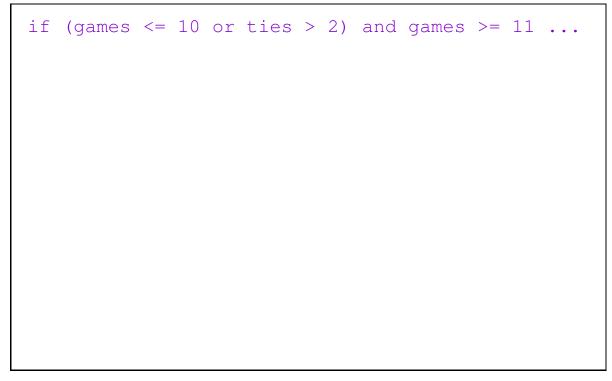
Applications of Logical Equivalences (3 / 5)

Question: Is $(p \land q) \rightarrow p$ a tautology? (3)

Logic - CSc 144 v1.1 (McCann) - p. 51/53

Applications of Logical Equivalences (4 / 5)

Example(s): Assume that games and ties are integers.



Applications of Logical Equivalences (5 / 5)

Question: Are $(p \wedge q) \vee (p \wedge r)$ and $p \wedge \overline{(\overline{q} \wedge \overline{r})}$

logically equivalent?

Logic - CSc 144 v1.1 (McCann) - p. 53/53