Quantification

Propositions With Variables (1 / 2)

Propositions are static; variables are not allowed. But ...
Definition: Predicate (a.k.a. Propositional Function)

Example(s):

Propositions With Variables (2 / 2)

Definition: Domain (a.k.a. Universe) of Discourse
\square

Example(s):

Quantification

Idea: Establish truth of predicates over sets of values.
Two common generalizations:

Note: Do not use the book's unusual \exists ! x notation.

Evaluating Quantified Predicates (1 / 2)

1. Universally Quantified Predicates

Example(s):

Evaluating Quantified Predicates (2 / 2)

2. Existentially Quantified Predicates

Example(s):

Evaluating Mixed Quantifications (1 / 2)

First: Distinguishing $\exists x \forall y S(x, y)$ from $\forall i \exists k T(i, k)$:

Evaluating Mixed Quantifications (2 / 2)

Example(s):

Example: Universal Quantification (1/5)

Consider this conversational English statement:
All of McCann's students are geniuses.

How can we express that statement in logic notation?

Example: Universal Quantification (2 / 5)

Attempt \#2: All of McCann's students are geniuses. \rightarrow Logic

Example: Universal Quantification (3 / 5)

Attempt \#3: All of McCann's students are geniuses. \rightarrow Logic
Let $P(x)$: Student x is a genius, $x \in$ People

Example: Universal Quantification (4 / 5)

Attempt \#4: All of McCann's students are geniuses. \rightarrow Logic
Let $P(x)$: Student x is a genius, $x \in$ People
Let $M(x): x$ is enrolled in one of McCann's classes, $x \in$ People

Example: Universal Quantification (5 / 5)

Attempt \#5: All of McCann's students are geniuses. \rightarrow Logic
Let $P(x)$: Student x is a genius, $x \in$ People

Let $M(x): x$ is enrolled in one of McCann's classes, $x \in$ People

Implicit Quantification

The "all" can be implicit in the English statement.

Example(s):

Example: Existential Quantification

Consider this conversational English statement:
At least one towel is dirty.

How can we express that statement in logic notation?

Another Example: Existential Quantification

Express this more specific statement in logic:
Some of the blue guest towels are dirty.
Let $D(x): x$ is dirty, $x \in$ Towels

Yet Another Example: Quantification

Now express this statement in logic:
Every last one of the blue guest towels are dirty!
Let $B(x): x$ is blue, $x \in$ Towels
Let $G(x)$: x is used by guests, $x \in$ Towels
Let $D(x): x$ is dirty, $x \in$ Towels

Free vs. Bound Variables
Definition: Bound Variable

Definition: Free (a.k.a. Unbound) Variable

Other examples of 'binding' in CS:

Negations of Quantified Expressions

Remember De Morgan's Laws for propositions? Well, ...
Definition: Generalized De Morgan's Laws
\square

Demonstration: $\overline{\forall x P(x)} \equiv \exists x \overline{P(x)}(1 / 2)$

Let $S(x): x<4, x \in \mathbb{Z}$
The expression $\forall x S(x), x \in\{1,2,3\}$ is true.
Equivalently, $\overline{\forall x S(x)}$ is false.

$$
\begin{aligned}
\forall x S(x) & \equiv S(1) \wedge S(2) \wedge S(3) \quad \text { so } \ldots \\
\overline{\forall x S(x)} & \equiv \overline{S(1) \wedge S(2) \wedge S(3)} \\
& \equiv \overline{S(1)} \vee \overline{S(2)} \vee \overline{S(3)} \quad[\text { De Morgan, 2x] }
\end{aligned}
$$

(Remember: $\overline{S(1)} \vee \overline{S(2)} \vee \overline{S(3)}$ is still false.)

Demonstration: $\overline{\forall x P(x)} \equiv \exists x \overline{P(x)}(2 / 2)$
For $\overline{S(1)} \vee \overline{S(2)} \vee \overline{S(3)}$ to be false, each term must be false; that is, no $\overline{S(x)}$ is true (or all $\overline{S(x)}$ are false). It follows that the expression $\exists x \overline{S(x)}$ must be false, completing the demonstration.

Example(s):

Expressing "Exactly one ..." Statements (1 / 3)

Consider this conversational (\& correct!) English statement:
Only one citizen of North Dakota is a member of the U.S. House of Representatives.

And consider this awkward but useful rewording:

Expressing "Exactly one ..." Statements (2 / 3)

That rewording is useful because it can be directly expressed logically:

Expressing "Exactly one ..." Statements (3 / 3)

A lingering problem:
The domain ("Citizens of North Dakota") is too specific.
Solution: Add a predicate . . . but what, and where?

Expressing "Exactly two ..." Statements (1 / 3)

Key observation:

Question: Can you say this in ‘awkward English'?

Exactly two citizens of North Dakota are U.S. Senators.

Expressing "Exactly two ..." Statements (2 / 3)

Consider the two halves separately. Given:

$$
S(x): x \text { is a U.S. Senator, } x \in \text { People }
$$

1. "At least two citizens of North Dakota are U.S. Senators"
2. "At most two citizens of North Dakota are U.S. Senators"

Expressing "Exactly two . . " Statements (3 / 3)

Finally, AND together

$$
\exists x \exists y(S(x) \wedge S(y) \wedge(x \neq y))
$$

and

$$
\begin{aligned}
& \forall x \forall y \forall z((S(x) \wedge S(y) \wedge S(z)) \\
& \quad \rightarrow(x=y \vee y=z \vee x=z))
\end{aligned}
$$

