Arguments *

* The Logical Kind, Not The Talk Radio Kind.

Arguments - CSc 144 v1.1 (McCann) - p. 1/24

Monty Python's "The Argument Clinic"

Featuring:

Michael Palin	as	"Man"
Rita Davies	as	"Receptionist"
Graham Chapman	as	"Mr. Barnard"
John Cleese	as	"Mr. Vibrating"
Eric Idle	as	"Complainer"
Terry Jones	as	"Spreaders"

Definition: Argument

Inductive and Deductive Reasoning (1 / 3)

Definition: Inductive Argument

Definition: Deductive Argument

Arguments - CSc 144 v1.1 (McCann) - p. 3/24

Inductive and Deductive Reasoning (2 / 3)

Example(s):

Inductive and Deductive Reasoning (3 / 3)

What type of argument is this?

3 is a prime number, 5 is a prime number, and 7 is a prime number. Therefore, all positive odd integers above 1 are prime numbers.

Arguments - CSc 144 v1.1 (McCann) - p. 5/24

Structure of a Deductive Argument

 $(p_1 \wedge p_2 \wedge \ldots \wedge p_n) \rightarrow q$

Definition: Valid Argument

Example(s):

Arguments - CSc 144 v1.1 (McCann) - p. 7/24

Valid and Sound Arguments (2 / 2)

Example(s):

Definition: Sound Argument

Some Rules of Inference (1 / 2)

Learn these!

- 1. Addition
- 2. Simplification
- 3. Conjunction
- 4. Modus Ponens

Arguments - CSc 144 v1.1 (McCann) - p. 9/24

Some Rules of Inference (2 / 2)

Learn these, too!

- 5. Modus Tollens
- 6. Hypothetical Syllogism
- 7. Disjunctive Syllogism
- 8. Resolution

Examples of Valid Arguments (1 / 4)

#1: You accidently drop a pen. You know that the pen will

fall if it is dropped. How do you know that the pen will fall?

Arguments - CSc 144 v1.1 (McCann) - p. 11/24

Examples of Valid Arguments (2 / 4)

#2: If 191 is divisible by 7, then 191^2 is divisible by 49. 191 is divisible by 7, so 191^2 is divisible by 49. Is this argument valid?

Examples of Valid Arguments (3 / 4)

#3: If you email me a love note, I'll send you flowers. If you don't,

I'll study Discrete Math. If I study Discrete Math, I'll do well on the quiz.

Can we conclude that, if I don't send you flowers, I'll do well on the quiz?

Arguments - CSc 144 v1.1 (McCann) - p. 13/24

Examples of Valid Arguments (4 / 4)

#3:	(cont.)
-----	---------

р. q:	I send you flowers	$p \to q$ $\overline{p} \to r$	
r:	I study Discrete Math	$r \rightarrow s$	
<i>s</i> :	I do well on the quiz	$\therefore \overline{q} \to s$???

Rules of Inference for Predicates (1 / 3)

Four common rules that you need to know:

1. Universal Instantiation

 $\forall x \; P(x), x \in D \; / \mathrel{\therefore} P(d) \; \text{if} \; d \in D$

2. Universal Generalization

$$P(d) \text{ for any } d \in D \ / \ \therefore \forall x \ P(x), x \in D$$

3. Existential Instantiation

 $\exists x \; P(x), x \in D \; / \mathrel{\therefore} P(d) \; \text{for some} \; d \in D$

4. Existential Generalization

 $P(d) \text{ for some } d \in D \ / \ \therefore \ \exists x \ P(x), x \in D$

Arguments - CSc 144 v1.1 (McCann) - p. 15/24

Rules of Inference for Predicates (2 / 3)

Example(s):

Everyone taking CSc 144 has had a programming class. Hugo is in CSc 144. Has he had a programming class?

Rules of Inference for Predicates (3 / 3)

Here's a more general example using the same setup:

Someone's taking CSc 144. Everyone in CSc 144 has had a programming class. Does there exist someone who both had a programming class and is taking CSc 144?

(1)
$$\exists x \ C(x)$$
 (Given)

(2) $\forall x \ (C(x) \rightarrow P(x))$ (Given)

(7) $\therefore \exists x (P(x) \land C(x))$

Arguments - CSc 144 v1.1 (McCann) - p. 17/24

Fallacies (1 / 2)

Definition: Fallacy

Three classic types:

1. Affirming the Conclusion (or ... Consequent)

2. Denying the Hypothesis (or ... Antecedent)

3. Begging the Question (a.k.a. Circular Reasoning)

Arguments - CSc 144 v1.1 (McCann) - p. 19/24

Fallacies for Fun

1. Fallacy of Interrogation

2. 'No True Scotsman' Fallacy

The remaining slides in this topic are some that I no longer cover in class. I won't ask about them on a quiz or an exam, but they could be referenced on a homework or in SIs.

Arguments - CSc 144 v1.1 (McCann) - p. 21/24

Specious Reasoning: The Bear Patrol (1 / 3)

- Homer: Ah, not a bear in sight. The Bear Patrol must be working like a charm!
 - Lisa: That's specious reasoning, Dad. [...] By your logic, I could claim that this rock keeps tigers away!

- Homer: Oh ... and how does it work?
 - Lisa: It doesn't work. [...] It's just a stupid rock. [...] But I don't see any tigers around here, do you?
- Homer: Lisa, I want to buy your rock.

From: The Simpsons, "Much Apu About Nothing"

(Season 7, Episode 151, Production Code 3F20)

Specious Reasoning: The Bear Patrol (2 / 3)

Definition: Specious Reasoning

An unsupported or improperly constructed argument. (That is, an unsound or invalid argument.)

Question: Where is the error in Homer's logic?

Arguments - CSc 144 v1.1 (McCann) - p. 23/24

Specious Reasoning: The Bear Patrol (3 / 3)

Question: Where is the error in Homer's logic? (cont.)

