Topic 10:

Indirect ("Contra") Proofs of $p \to q$

Indirect Proofs - CSc 144 v1.1 (McCann) - p. 1/12

Review of Direct Proofs

To prove a conjecture of the form $p \to q$ by using a Direct Proof, we:

Assume that p is true, and Show that q's truth logically follows.

Reminders:

- If p is actually true, the proof is a sound argument.
- ullet If p is only assumed true, the argument is merely valid.

"Indirect" Proofs

We can replace $p\to q$ with logically equivalent forms to create additional "indirect" proof techniques.

Example(s):		

Indirect Proofs - CSc 144 v1.1 (McCann) - p. 3/12

Proof by Contraposition

(a.k.a. Proof of the Contrapositive)

Example #1: Proof by Contraposition

Conjecture: If $ac \leq bc$, then $c \leq 0$, when $a > b$.	

Indirect Proofs - CSc 144 v1.1 (McCann) - p. 5/12

Example #2: Proof by Contraposition

Conjecture: If n^2 is even, then n is even.	

Proof by Contradiction

(a.k.a. Reductio ad Absurdum)

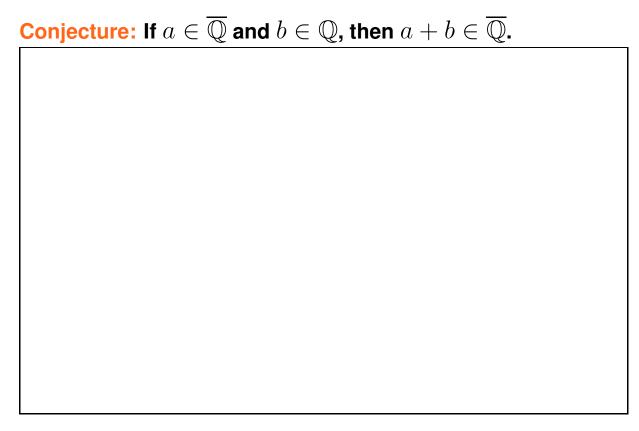
Recall the Law of Implication: $p \to q \equiv \neg p \lor q$

Indirect Proofs - CSc 144 v1.1 (McCann) - p. 7/12

Example #1: Proof by Contradiction

Conjecture: If $3(n-6)$ is odd, then n is odd.	

Example #2: Proof by Contradiction



Indirect Proofs - CSc 144 v1.1 (McCann) - p. 9/12

Example #3: Proof by Contradiction (1 / 2)

Conjecture: The sum of the squares of two odd integers is never a perfect square. (Or: If $n=a^2+b^2$, then n is not a perfect square, where $a,b\in\mathbb{Z}^{odd}$.)

Example #3: Proof by 0	Contradiction (2 / 2)
	Indirect Proofs – CSc 144 v1.1 (McCann) – p. 11/12
How To Prove Biconditi	
	onal Expressions
	onal Expressions
	onal Expressions
(i.e., (onal Expressions
	onal Expressions
(i.e., (onal Expressions
(i.e., (onal Expressions
(i.e., (onal Expressions