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Indirect (“Contra”) Proof Examples

Introduction: Here are three conjectures that have straightforward proofs using both proof by contraposition
and proof by contradiction. The solutions can be found starting on the next page. But try to prove them
yourself first, and only then look at the answers!

Review of the proof techniques:

� In a direct proof of a conjecture of the form p → q, we assume that p is true, and show that q is true.

� In a proof by contraposition (a.k.a., a proof of the contrapositive), we perform a direct proof on the
contrapositive of the conjecture. This works because p → q ≡ ¬q → ¬p. That is: To prove the truth of
p → q, we assume that ¬q is true, and show that ¬p is true.

� In a proof by contradiction, we assume that both p and ¬q are true, and reason until we reach a
contradiction. This method works because ¬(p → q) ≡ p ∧ ¬q; if we assume that p ∧ ¬q is true, and we
use logically valid reasoning to reach a contradiction, then the logical error must be with the starting
assumption. If p ∧ ¬q is not true, then its negation, which is equivalent to p → q, must be true.

The Conjectures

1. Consider this conjecture: If (n− 2)(n+ 1) is odd, then n is even.

(a) Prove this conjecture using a proof by contraposition.

(b) Prove this conjecture using a proof by contradiction.

2. Consider this conjecture: If 9 ∤ (a+ b+ c), then a, b, and c are not consecutive multiples of three.

(a) Prove this conjecture using a proof by contraposition.

(b) Prove this conjecture using a proof by contradiction.

(“a ∤ b” means the same thing as “not a | b.” If you don’t remember what a | b represents, see Appendix
A in “Kneel Before Zodd” or page 252 in the 8th edition of Rosen.)

3. Consider this conjecture: Whenever r3 is irrational,
√
r3 is irrational, assuming that r ∈ R+.

(a) Prove this conjecture using a proof by contraposition.

(b) Prove this conjecture using a proof by contradiction.

(Remember: A rational number can be expressed as the ratio of two integers.)
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The Proofs

1. Consider this conjecture: If (n− 2)(n+ 1) is odd, then n is even.

(a) Prove this conjecture using a proof by contraposition.

Thinking Before Doing: First, let’s identify the pieces within the conjecture. The structure
is a basic “if – then,” which tells us that “(n − 2)(n + 1) is odd” is the antecedent and
that “n is even” is the consequent. To form the contrapositive, we need to negate both
pieces and swap them. Thus, the new antecedent is “n is odd,” and the new consequent is
“(n− 2)(n+1) is even.” All that remains is to assume the truth of the new antecedent and
use it to show the true of the new consequent.

Proof (by contraposition):

Assume that n is odd, and show that (n− 2)(n+ 1) is even.

As n is odd, we know it to be one more than an even. Let n = 2k + 1, where
k ∈ Z.

To show that (n − 2)(n + 1) is even, we start by replacing each n with 2k + 1:
(n − 2)(n + 1) = ((2k + 1) − 2)((2k + 1) + 1). Next, we simplify the expression:
((2k + 1) − 2)((2k + 1) + 1) = (2k − 1)(2k + 2). We can factor a 2 from 2k + 2:
(2k − 1)(2k + 2) = (2)(2k − 1)(k + 1). Because our expression is twice an integer, and our
expression is equal to (n− 2)(n+ 1), we have shown that (n− 2)(n+ 1) is even.

Therefore, if (n− 2)(n+ 1) is odd, then n is even.

(b) Prove this conjecture using a proof by contradiction.

Thinking Before Doing: For a proof by contradiction, we assume that the original antecedent
is true and also that the original consequent is false. That is, we assume that (n− 2)(n+1)
is odd, and that n is also odd. Our mission is “find a contradiction,” so we start reasoning
and hope that we find one! (We don’t have to hope too hard; we know the conjecture is
true, so we will find a contradiction if we keep our eyes open for it.)

Proof (by contradiction):

Assume that both (n− 2)(n+ 1) and n are odd.

As n is odd, it is one more than an even. Let n = 2k + 1, where k ∈ Z.

Taking a cue from our assumptions, let’s see where playing with (n − 2)(n + 1) leads us.
We start by replacing each n with 2k + 1: (n − 2)(n+ 1) = ((2k + 1) − 2)((2k + 1) + 1) =
(2k−1)(2k+2). Factoring out a 2 from 2k+2 shows that (2k−1)(2k+2) = 2(2k−1)(k+1).
Because this represents twice an integer, and is equal to (n− 2)(n+1), we have shown that
(n− 2)(n+ 1) is even.

But that cannot be true! We started by assuming that (n − 2)(n + 1) is odd, but
have now shown that it must be even. It cannot be both; this is a contradiction.

Therefore, if (n− 2)(n+ 1) is odd, then n is even.
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2. Consider this conjecture: If 9 ∤ (a+ b+ c), then a, b, and c are not consecutive multiples of three.

(a) Prove this conjecture using a proof by contraposition.

Thinking Before Doing: Step 1: Understand the problem! The antecedent (9 ∤ (a+ b + c))
says that 9 does does not divide the sum evenly. Put another way, the sum is not a multiple
of 9. The consequent says that all three values are multiples of three (that is, members of
the sequence . . . , -3, 0, 3, . . . ) and they are consecutive, meaning that they are next to
each other in that sequence. Two examples are -3, 0, 3 and 15, 18, 21.

Because we are doing a proof by contraposition, we need to negate and swap the
antecedent and consequent before starting the proof.

Proof (by contraposition):

Assume that a, b, and c are consecutive multiples of three, and show that 9 | (a+ b+ c).

Let a = 3k, where k ∈ Z, be the smallest of the three consecutive multiples of
three, and c be the largest. That makes b the next multiple of three after a, and so must
be three more than a: b = 3k + 3. It follows that c = 3k + 6.

a + b + c = (3k) + (3k + 3) + (3k + 6) = 9k + 9 = 9(k + 1), showing that a + b + c

is evenly divisible by 9, or that 9 | (a+ b+ c).

Therefore, if 9 ∤ (a+ b+ c), then a, b, and c are not consecutive multiples of three.

(b) Prove this conjecture using a proof by contradiction.

Thinking Before Doing: See the above proof for the explanations of the meanings of the
parts of the conjecture. Because we are doing a proof by contradiction, we assume the
original antecedent, plus the negation of the original consequent, and reason about them
until we discover a contradiction.

Proof (by contradiction):

Assume that a, b, and c are consecutive multiples of three, and assume that 9 ∤ (a+ b+ c).

Let a = 3k, b = 3k+3, and c = 3k+6, where k ∈ Z. a+ b+ c = (3k)+ (3k+3)+ (3k+6) =
9k + 9 = 9(k + 1), showing that a+ b+ c is evenly divisible by 9, or that 9 | (a+ b+ c).

This contradicts the other half of our assumed information, that 9 ∤ (a + b + c).
(No value is, and is not, evenly divisible by 9.)

Therefore, if 9 ∤ (a+ b+ c), then a, b, and c are not consecutive multiples of three.
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3. Consider this conjecture:

(a) Prove this conjecture using a proof by contraposition. Whenever r3 is irrational,
√
r3 is irrational,

assuming that r ∈ R+.

Thinking Before Doing: Reflexivity and irreflexivity are not opposites, but rational and
irrational are! (Isn’t English a fun language?) This fact makes proof by contraposition a
good choice for this conjecture, because it’s much easier to work with something rational
than something irrational. Here, we’ll get to assume that

√
r3 is rational, and will need to

show that r3 is rational. The key will be to construct a representation for
√
r3 that is a

fraction, and stick with fractional representations from that point forward, because to show
that r3 is rational, we’ll need to end up with a fractional representation for it, too. Looking
ahead, we’ll have to eliminate the square root, but that’s not a problem:

√
x · √x = x.

Proof (by contraposition):

Assume that
√
r3 is rational, show that r3 is rational.

As
√
r3 is rational, we can represent it as the ratio of two integers:

√
r3 = n

d
, where

n, d ∈ Z, and d 6= 0. We can ‘extract’ r3 from
√
r3 by squaring

√
r3: (

√
r3)2 = r3, but also

(
√
r3)2 = (n

d
)2. By transitivity of equality, r3 = (n

d
)2.

Remembering how to multiply fractions, we learn that r3 = (n
d
)2 = n

d
· n

d
= n·n

d·d
= n

2

d2 . As
r3 can be expressed as a ratio of integers, it is rational.

Therefore, whenever r3 is irrational,
√
r3 is irrational.

(b) Prove this conjecture using a proof by contradiction.

Thinking Before Doing: As always when doing a proof by contradiction, we assume the truth
of the antecedent (in this case, r3 is irrational) and of the negation of the consequent (the

negation of “
√
r3 is irrational” is “

√
r3 is rational”), and reason until we find a contradiction.

As above, we’ll reason using fractions, in hopes of finding a rational representation of r3 to
contradict our assumption of irrationality.

Proof (by contradiction):

Assume that r3 is irrational and that
√
r3 is rational, and show a contradiction.

As
√
r3 is rational, we can represent it as the ratio of two integers:

√
r3 = n

d
, where

n, d ∈ Z, and d 6= 0. Squaring
√
r3 gives us a useful representation of r3: (

√
r3)2 = (n

d
)2 = r3.

r3 = (n
d
)2 = n

d
· n

d
= n·n

d·d
= n

2

d2 . As r3 can be expressed as the ratio of the integers
n2 and d2, it is rational. This is a contradiction of our assumption that r3 is irrational.

Therefore, whenever r3 is irrational,
√
r3 is irrational.


