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Direct Proof Examples

1. Conjecture: n2 − 3 is even if n is odd, n ∈ Z.

Discussion: The first thing to do is identify the hypothesis and the conclusion. Why? Because in a
direct proof, we are allowed to assume the hypothesis, giving us a piece of information that we can use
as a starting point for our argument. Knowing the conclusion gives us a goal to work toward.

In this conjecture, the “if” is placed in the middle. We know that the hypothesis follows the “if” (unless
the form is “only if”), and so:

� The Hypothesis: n is odd.

� The Conclusion: n2 − 3 is even.

As is usually the case in a conjecture for which the direct proof method is suitable, we have a basic piece
of information to start from, and a more complex destination. In this case, we need to build from n to
n2 − 3 and see if the resulting expression tells us anything about evenness.

One convenient way to think about the relationship between odd and even numbers is that every odd
number is one more than an even number. Thus, we can say that n = 2k+1, where k is an integer. Why
2k? Because we can keep the domain general (integers) and still capture the idea that we have a value
that’s one more than an even integer (because twice any integer is even).

To build toward n2 − 3, we first need to square our new expression for n: n2 = (2k+1)2 = 4k2 +4k+1.

Almost there: After subtracting three, we see that n2 − 3 = 4k2 + 4k − 2. But what does that tell us
about the evenness of n2 − 3? Perhaps not much in that form, but what if we factor a ‘2’ out of each
term? 4k2 + 4k − 2 = 2(2k2 + 2k − 1). Just above, we used the idea that doubling an integer produces
an even number. Here we see that n2− 3 is also the doubling of an integer. This means that n2− 3 must
be even, completing our argument.

Of course, this sort of multi-paragraph description isn’t the form we want to use to write our proof; it is
far too wordy. Instead, write your proofs as I’ve demonstrated in class. Here’s the proof in that form:

Proof (Direct): Assume that n is odd.
Let n = 2k+1, k ∈ Z. n2−3 = (2k+1)2−3 = (4k2+4k+1)−3 = 4k2+4k−2 = 2(2k2+2k−1).
As 2(2k2 + 2k − 1) is of the form 2j where j ∈ Z, we know that n2 − 3 is even.
Therefore, n2 − 3 is even if n is odd.

The following would be even better, as it makes the math much easier to follow:

Proof (Direct): Assume that n is odd. Let n = 2k + 1, k ∈ Z.

n2 − 3 = (2k + 1)2 − 3
= (4k2 + 4k + 1)− 3
= 4k2 + 4k − 2
= 2(2k2 + 2k − 1)

As 2(2k2 + 2k − 1) is of the form 2j where j ∈ Z, we know that n2 − 3 is even.

Therefore, n2 − 3 is even if n is odd.

Remember, stating the assumption(s) at the start is something we think is a good idea, but stating them
is not required. The “Proof (Direct)” at the start, the correct and easy-to-follow argument in the middle,
and the “Therefore” followed by a restatement of the conjecture at the end are all required.



2. Conjecture: c2 + c > 2c, ∀c ≥ 6

Discussion: Inequalities such as this are also candidates for direct proofs, though other proof techniques
(e.g., induction) are also appropriate.

At first glance, the conjecture appears to have two problems: It is not in an “if – then” form, and c

has no stated domain. Neither is a problem in practice. Because this is an algebraic problem without a
domain, the assumption is that the domain is all real numbers. We make this assumption because it is
the most reasonable one to use; if the author of the conjecture had wanted a more restrictive domain,
s/he would have stated it. Similarly, when conjectures involve odds and evens, we often don’t state that
the domain is Z, because that is the most reasonable general assumption in that situation.

To adjust the form, we observe that we can restate the conjecture as “if c ≥ 6, then c2+ c > 2c” without
changing the problem. Now the hypothesis and conclusion are clear:

� The Hypothesis: c ≥ 6.

� The Conclusion: c2 + c > 2c.

In the previous example, we started with the given information and built toward the conclusion. In this
case it will be easier to start by simplifying the conclusion. Specifically, we can subtract c from both
sides to produce the equivalent inequality c2 > c.

We can then divide both sides by c, but first remember that dividing both sizes of an inequality by a
negative value would change the direction of the inequality. In this case, we are given that c will be no
less than 6; thus, c will always be positive, and dividing by c won’t change the direction. After division,
the resulting inequality is c > 1.

What does that mean? It means that c2 + c > 2c is true when c > 1, because they are equivalent
expressions. We already know that c ≥ 6, which means that the conjecture must be true.

Here’s the final argument:

Proof (Direct): Assume that c ≥ 6.

Subtracting c from both sides of c2 + c > 2c gives c2 > c. Because c is always posi-
tive, dividing both sides of c2 > c by c produces c > 1. We are given that c ≥ 6, which tells
us that c will always be greater than one.

Therefore, c2 + c > 2c, ∀c ≥ 6.

As this example shows, direct proofs do not need to begin with the assumptions; they can start in other
ways, such as with finding equivalent expressions for the conclusion and working to a point at which
the assumptions are useful for continuing the argument or concluding it – both are demonstrated in this
proof.


