Description of Course
Basic machine organization; elementary hardware concepts; interrupts. Machine operations and instructions; assembly language concepts and programming.

Course Prerequisites or Co-requisites
Prerequisite: 210
Students are expected to have familiarity with either C or Java (preferably both).

Instructor and Contact Information
Instructor: Russell Lewis
Russell Lewis
Office: Gould/Simpson 829
Tel: n/a
Email: russelll@cs.arizona.edu

TAs:
TBD
Office: TBD
Email: TBD

Office Hours
(Exact office hours subject to change, consult the class webpage for up-to-date information.)

Websites
Class Homepage: https://lecturer-russ.appspot.com/classes/cs252/fall18/
Piazza: https://piazza.com/arizona/fall2018/csc252/
D2L: https://d2l.arizona.edu/d2l/home/687473
Recordings on Panopto: Access through “Content” tab on D2L

Course Format and Teaching Methods
We will be using an online textbook through zyBooks. Sections from the textbook will be assigned each week; you will need to read them before class on the first lecture day. (We will be checking, and giving you a grade for completion.)

In class, we will be mixing lecture with regular class activities. Most days, you will have a series of activities that you will work on in groups; I plan to alternate group work with lecturing. We will be checking to see if you complete these activities; while you don’t have to get them perfect, you are required to work diligently and arrive at the best answer you can.

Course Objectives and Expected Learning Outcomes
By the end of the semester, the student will:

- Be capable of writing short programs in MIPS assembly. Key elements include:
 - Understanding common instructions
- Use of appropriate registers
- Constructing loops and if/else statements
- Traversing simple data structures such as arrays and strings
- Declaration of storage, variables, and constants
- Declaring functions; calling functions; passing parameters and return values; performing stack management as both caller and callee

- Understand the inner workings of a simple CPU, including:
 - Implementing simple logic statements in gates
 - Combinational and stateful logic
 - Adders and basic ALU implementation
 - Basic issues of logic optimization: path length/gate count minimization
 - Overall CPU design, implementing a few basic RISC instructions
 - Pipelining: reason for use, basic techniques, common issues
 - Cache implementation, memory hierarchies, and their implications for performance

Absence and Class Participation Policy

The UA’s policy concerning Class Attendance, Participation, and Administrative Drops is available at http://catalog.arizona.edu/policy/class-attendance-participation-and-administrative-drop

The UA policy regarding absences for any sincerely held religious belief, observance or practice will be accommodated where reasonable: http://policy.arizona.edu/human-resources/religious-accommodation-policy.

Absences preapproved by the UA Dean of Students (or dean’s designee) will be honored. See https://deanofstudents.arizona.edu/absences

Participating in the course and attending lectures and other course events are vital to the learning process. As such, attendance is required at all lectures and discussion section meetings. Students who miss class due to illness or emergency are required to bring documentation from their healthcare provider or other relevant, professional third parties. Failure to submit third-party documentation will result in unexcused absences.

Makeup Policy for Students Who Register Late

Students who register for class late will be allowed to make up missed assignments; all missed assignments will be due at the same time as the third homework/project. Students will not be allowed to register for the class more than two weeks after it begins, save in truly exceptional circumstances.

Course Communications

The primary path for outside-lecture communications will be Piazza. If a student has an issue which cannot reasonably be resolved through Piazza (inappropriate to discuss publicly, private issue, etc.), then the student may email the staff alias, or the instructor.

Required Texts or Readings

[Required] Online textbook through learn.zybooks.com. Details will be provided during the first week of class. The textbook will be the online version of:

Patterson and Hennessy, Computer Organization and Design, 5th Ed. Morgan Kaufmann.

Required or Special Materials (if any)

None

Required Extracurricular Activities (if any)

None
Assignments and Examinations: Schedule/Due Dates

Projects

This class will have programming projects, due most weeks. The following schedule gives approximate due dates for each one. The schedule below is approximate; as I assign the projects, it may occasionally be necessary to adjust due dates. Likewise, the topics mentioned are my current plans, and are subject to change. It is possible that I might assign fewer projects than listed below; however, I will not assign more.

Projects will be due at 5pm.

<table>
<thead>
<tr>
<th>Project</th>
<th>Due Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation Project 1</td>
<td>Wed, 5 Sep</td>
<td>Basics of Binary</td>
</tr>
<tr>
<td>Assembly Project 1</td>
<td>Wed, 12 Sep</td>
<td>Introduction to MIPS</td>
</tr>
<tr>
<td>Simulation Project 2</td>
<td>Wed, 19 Sep</td>
<td>Logic Networks</td>
</tr>
<tr>
<td>Assembly Project 2</td>
<td>Wed, 3 Oct</td>
<td>TBD</td>
</tr>
<tr>
<td>--- skipping a week due to Grace Hopper Conference ---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assembly Project 3</td>
<td>Wed, 10 Oct</td>
<td>TBD</td>
</tr>
<tr>
<td>Simulation Project 3</td>
<td>Wed, 17 Oct</td>
<td>TBD</td>
</tr>
<tr>
<td>Assembly Project 4</td>
<td>Wed, 24 Oct</td>
<td>Single-Cycle CPU</td>
</tr>
<tr>
<td>Simulation Project 4</td>
<td>Wed, 31 Oct</td>
<td>TBD</td>
</tr>
<tr>
<td>Assembly Project 5</td>
<td>Wed, 7 Nov</td>
<td>Pipelined CPU</td>
</tr>
<tr>
<td>Assembly Project 5</td>
<td>Wed, 14 Nov</td>
<td>TBD</td>
</tr>
<tr>
<td>Assembly Project 6</td>
<td>Wed, 21 Nov</td>
<td>TBD</td>
</tr>
<tr>
<td>--- Nothing due on the week of Thanksgiving ---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation Project 6</td>
<td>Wed, 5 Dec</td>
<td>Cache</td>
</tr>
</tbody>
</table>

Late Days

Each student will be allocated 3 “Late Days,” which may be used through the semester. No individual assignment may be more than 24 hours late. Projects turned in more than 24 hours late - or additional late assignments after the first three - will not be accepted. The last assignment will not be eligible for any late days; additionally, I reserve the right to forbid late days on other assignments.

Additionally, this course does not allow re-submission of work after the due date (or Late Day) has passed.

Late Days may be used for either Assembly Projects or Simulation Projects. They can not be used for any other grade item.

Tests

This class will have 6 short tests. Each will be given during lecture, and take less than the full class period (25 minutes); after the test is complete, we will do some more lecture.

Tests will be given on the following days:

Test 1	Thu, 6 Sep
Test 2	Thu, 20 Sep
Test 3	Thu, 4 Oct
Test 4	Thu, 18 Oct
Test 5	Thu, 1 Nov
Test 6 Thu, 15 Nov

Homeworks

Each Test will have a corresponding Homework, which is due at the beginning of class on the Test day. The Homework will be turned in on paper; we will inspect them to make sure that the students completed the assigned problems, but will not grade them for correctness.

Homeworks are intended as test preparation; as such, students are encouraged to work in groups. However, every student must turn in their own paper copy of the homework; shared papers will not be accepted.

zyBook Readings and Quizzes

Most weeks, a few sections from the zyBook textbook will be assigned. The website automatically checks completion of these sections; the sections must all be completed by the beginning of the first lecture that week. We will collect completion information from the website, and will give points based on that information.

Final

The final exam will be at:

Fri, 7 Dec, 1-3 pm

Final Examination or Project

A final exam will be given (see times listed above); the times are set by the University. The Final will be given in the normal classroom.

University Final Exam Regulations:
https://www.registrar.arizona.edu/courses/final-examination-regulations-and-information,

University Final Exam Schedule:
http://www.registrar.arizona.edu/schedules finals.htm

Grading Scale and Policies

Grading Scale

I will use a simple grade cutoff scheme. This means that if you earn the number of points listed for a given grade, you are guaranteed that grade. At the end of the semester, I reserve the right to lower these cutoffs, meaning that it might be easier to earn a good grade (but it is unusual for me to do so). However, I guarantee that I will not raise these cutoffs (making it harder to earn a good grade).

- 90% A
- 80% B
- 70% C
- 60% D

Point Distribution

Points will be distributed as follows:

- 5% zyBooks Readings
- 35% Assembly Projects
- 10% Simulation Projects
- 5% Homeworks (paper - exam prep)
- 30% Tests (in class)
- 15% Final Exam

Within each category, points are distributed evenly; that is, every Test is worth the same as every other (except the Final), every Assembly Project is worth the same as every other, and every Simulation Project is worth the same as every other. Thus, the exact value of each item
will depend on the number of each item that is assigned.

Grading Schedule

Projects will be graded, typically, within 7 days of the due date. If exceptions have to be made occasionally, staff will inform the students about the delay and the reason for it.

Tests will be graded within 10 days.

University Policies

University policy regarding grades and grading systems is available at http://catalog.arizona.edu/policy/grades-and-grading-system

Requests for incomplete (I) or withdrawal (W) must be made in accordance with University policies, which are available at http://catalog.arizona.edu/policy/grades-and-grading-system#incomplete and http://catalog.arizona.edu/policy/grades-and-grading-system#Withdrawal, respectively.

Dispute of Grade Policy:

If you have an issue with how a quiz, project, or exam was graded, you must submit a request for a regrade (through email) to within 7 days of when the item was returned to you.

Honors Credit

Unfortunately, I are not able to offer Honors Credit for this course this semester.

Scheduled Topics/Activities

For a list of assignment and test dates, please see the “Assignments and Examinations: Schedule/Due Dates” section above.

The lectures will cover the following material. Note that this schedule is approximate, and may need to be modified slightly during the semester.

Students are responsible for all material covered in lecture (as well as the required reading), even if the actual lectures deviate from this overview.

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>21,23 Aug</td>
<td>Introduction, binary integers and addition</td>
</tr>
<tr>
<td>Week 2</td>
<td>28,30 Aug</td>
<td>2’s complement and overflow; MIPS introduction</td>
</tr>
<tr>
<td>Week 3</td>
<td>4,6 Sep</td>
<td>Logic gates and adders</td>
</tr>
<tr>
<td>Week 4</td>
<td>11,13 Sep</td>
<td>MIPS: loops and arrays</td>
</tr>
<tr>
<td>Week 5</td>
<td>18,20 Sep</td>
<td>ALUs</td>
</tr>
<tr>
<td>Week 6</td>
<td>25,27 Sep</td>
<td>Carry lookahead adders; multipliers</td>
</tr>
<tr>
<td>Week 7</td>
<td>2,4 Oct</td>
<td>MIPS: functions (basics)</td>
</tr>
<tr>
<td>Week 8</td>
<td>9,11 Oct</td>
<td>Simple CPU overview</td>
</tr>
<tr>
<td>Week 9</td>
<td>16,18 Oct</td>
<td>Instruction formats, simple CPU details</td>
</tr>
<tr>
<td>Week 10</td>
<td>23,25 Oct</td>
<td>Pipelining, part 1</td>
</tr>
<tr>
<td>Week 11</td>
<td>30 Oct, 1 Nov</td>
<td>MIPS: recursion</td>
</tr>
<tr>
<td>Week 12</td>
<td>6,8 Nov</td>
<td>Pipelining, part 2: Hazards and forwarding</td>
</tr>
<tr>
<td>Week 13</td>
<td>13,15 Nov</td>
<td>Caches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-- Veteran’s Day Monday (doesn’t affect our schedule)</td>
</tr>
<tr>
<td>Week 14</td>
<td>20 Nov</td>
<td>Floating point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-- no class Thursday (Thanksgiving)</td>
</tr>
<tr>
<td>Week 15</td>
<td>27,29 Nov</td>
<td>TBD</td>
</tr>
<tr>
<td>Week 16</td>
<td>4 Dec</td>
<td>TBD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-- last week of class, no class Thursday</td>
</tr>
</tbody>
</table>

Department of Computer Science Code of Conduct

The Department of Computer Science is committed to providing and maintaining a supportive educational environment for all. We strive to be welcoming and inclusive, respect privacy and
confidentiality, behave respectfully and courteously, and practice intellectual honesty. Disruptive behaviors (such as physical or emotional harassment, dismissive attitudes, and abuse of department resources) will not be tolerated. The complete Code of Conduct is available on our department web site. We expect that you will adhere to this code, as well as the UA Student Code of Conduct, while you are a member of this class.

Classroom Behavior Policy
To foster a positive learning environment, students and instructors have a shared responsibility. We want a safe, welcoming, and inclusive environment where all of us feel comfortable with each other and where we can challenge ourselves to succeed. To that end, our focus is on the tasks at hand and not on extraneous activities (e.g., texting, chatting, reading a newspaper, making phone calls, web surfing, etc.).

Students are asked to refrain from disruptive conversations with people sitting around them during lecture. Students observed engaging in disruptive activity will be asked to cease this behavior. Those who continue to disrupt the class will be asked to leave lecture or discussion and may be reported to the Dean of Students.

The use of personal electronics such as laptops, iPads, and other such mobile devices is distracting to the other students and the instructor. Their use can degrade the learning environment. Therefore, students are not permitted to use these devices during the class period.

Threatening Behavior Policy
The UA Threatening Behavior by Students Policy prohibits threats of physical harm to any member of the University community, including to oneself. See http://policy.arizona.edu/education-and-student-affairs/threatening-behavior-students.

Accessibility and Accommodations
At the University of Arizona we strive to make learning experiences as accessible as possible. If you anticipate or experience physical or academic barriers based on disability or pregnancy, you are welcome to let me know so that we can discuss options. You are also encouraged to contact Disability Resources (520-621-3268) to explore reasonable accommodation.

Please be aware that the accessible table and chairs in this room should remain available for students who find that standard classroom seating is not usable.

Code of Academic Integrity
Students are encouraged to share intellectual views and discuss freely the principles and applications of course materials. However, graded work/exercises must be the product of independent effort unless otherwise instructed. Students are expected to adhere to the UA Code of Academic Integrity as described in the UA General Catalog. See http://deanofstudents.arizona.edu/academic-integrity/students/academic-integrity.

The University Libraries have some excellent tips for avoiding plagiarism, available at http://new.library.arizona.edu/research/citing/plagiarism.

Selling class notes and/or other course materials to other students or to a third party for resale is not permitted without the instructor’s express written consent. Violations to this and other course rules are subject to the Code of Academic Integrity and may result in course sanctions. Additionally, students who use D2L or UA e-mail to sell or buy these copyrighted materials are subject to Code of Conduct Violations for misuse of student e-mail addresses. This conduct may also constitute copyright infringement.

UA Nondiscrimination and Anti-harassment Policy
The University is committed to creating and maintaining an environment free of discrimination; see http://policy.arizona.edu/human-resources/nondiscrimination-and-anti-harassment-policy.

Our classroom is a place where everyone is encouraged to express well-formed opinions and
their reasons for those opinions. We also want to create a tolerant and open environment where such opinions can be expressed without resorting to bullying or discrimination of others.

Additional Resources for Students

UA Academic policies and procedures are available at http://catalog.arizona.edu/policies

Student Assistance and Advocacy information is available at http://deanofstudents.arizona.edu/student-assistance/students/student-assistance

Confidentiality of Student Records

Subject to Change Statement

Information contained in the course syllabus, other than the grade and absence policy, may be subject to change with advance notice, as deemed appropriate by the instructor.