1 Master Method

Solve the following recurrences with the Master Method, if possible. Be clear to show the value of the constants a, b. Also identify exactly which case you are using. If a logarithm can be easily simplified (such as $\log_2 4 = 2$), do so; if not (such as $\log_5 7$), you may either convert it to a decimal value, or keep it in logarithm form.

If the recurrence cannot be solved by the Master Method, state why.

(a)
\[T(n) = 4T\left(\frac{n}{2}\right) + n \]

Solution:

\[
\begin{align*}
a &= 4 \\
b &= 2 \\
\log_b a &= \log_2 4 = 2 \\
f(n) &= n \\
T(n) &= \Theta(n^2)
\end{align*}
\]

This is Case 1, because $f(n) = O(n^{2-\epsilon})$.

(b)
\[T(n) = 3T\left(\frac{n}{3}\right) + n^3 \]

Solution:

\[
\begin{align*}
a &= 3 \\
b &= 3 \\
\log_b a &= \log_3 3 = 1 \\
f(n) &= n^3 \\
T(n) &= \Theta(n^3)
\end{align*}
\]

This is Case 3, because $f(n) = \Omega(n^{1+\epsilon})$.

\[T(n) = \Theta(n^3) \]
(c)

\[T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} \]

Solution:

\[
\begin{align*}
a &= 2 \\
b &= 4 \\
\log_b a &= \log_4 2 = \frac{1}{2} \\
f(n) &= \sqrt{n}
\end{align*}
\]

This is Case 2, because \(f(n) = \Theta(n^{1/2}) \).

\[T(n) = \Theta(\sqrt{n \log n}) \]

(d)

\[T(n) = 4T\left(\frac{9n}{10}\right) + n^2 \]

Solution:

\[
\begin{align*}
a &= 4 \\
b &= \frac{10}{9} \\
\log_b a &= \log_{10/9} 4
\end{align*}
\]

(This is something large.)

\[f(n) = n^2 \]

(I don’t know what \(\log_{10/9} 4 \) is, but I know that it’s more than 2!)

This is Case 1, because \(f(n) = O(n^{\log_{10/9} 4 - \epsilon}) \).

\[T(n) = \Theta(n^{\log_{10/9} 4}) \]

(e)

\[T(n) = 4T\left(\frac{10n}{9}\right) + n^2 \]

Solution:

\[
\begin{align*}
a &= 4 \\
b &= \frac{9}{10}
\end{align*}
\]

This cannot be solved by the Master Method, because \(b < 1 \).
(f)
\[T(n) = 2T\left(\frac{n}{2}\right) + n \lg n \]

Solution:
\[
\begin{align*}
 a &= 2 \\
 b &= 2 \\
 \log_b a &= \log_2 2 = 1 \\
 f(n) &= n \lg n \\
\end{align*}
\]

This cannot be solved by the Master Method, because \(f(n) = n \lg n \) is not \textit{polynomially} different than \(n \).

(g)
\[T(n) = 7T\left(\frac{n}{8}\right) + n^2 \lg n \]

Solution:
\[
\begin{align*}
 a &= 7 \\
 b &= 8 \\
 \log_b a &= \log_8 7 \\
\end{align*}
\]

(This is less than one)

\[f(n) = n^2 \lg n \]

This is Case 3, because \(f(n) = \Omega(n^{\log_8 7 + \epsilon}) \).

\[T(n) = \Theta(n^2 \lg n) \]

(h)
\[T(n) = 8T\left(\frac{n}{2}\right) + n^2 \lg n \]

Solution:
\[
\begin{align*}
 a &= 8 \\
 b &= 2 \\
 \log_b a &= \log_2 8 = 3 \\
 f(n) &= n^2 \lg n \\
\end{align*}
\]

This is Case 1, because \(f(n) = O(n^{3-\epsilon}) \).

\[T(n) = \Theta(n^3) \]
\(T(n) = 2T\left(\frac{n}{2}\right) + \lg n \)

Solution:

\[
\begin{align*}
 a &= 2 \\
 b &= 2 \\
 \log_b a &= \log_2 2 = 1 \\
 f(n) &= \lg n
\end{align*}
\]

This is Case 1, because \(f(n) = O(n^{1-\epsilon}) \).

\(T(n) = \Theta(n) \)