
Topic 1:

Review Material

(or: Let’s Spackle Some Knowledge Holes!)

Review – CSc 345 v1.0 (McCann) – p. 1/33

What is This, and What is Missing?

Review – CSc 345 v1.0 (McCann) – p. 2/33

What are these Data Structures?

Review – CSc 345 v1.0 (McCann) – p. 3/33

Singly–Linked List (SLL) Review (1 / 2)

Review – CSc 345 v1.0 (McCann) – p. 4/33

Singly–Linked List (SLL) Review (2 / 2)

What are some common SLL operations?

Review – CSc 345 v1.0 (McCann) – p. 5/33

SLLs: Tail Reference or no Tail Reference?

When would a Tail reference be helpful? Or annoying?

Head Tail

Review – CSc 345 v1.0 (McCann) – p. 6/33

Circularly–Linked Lists (CLLs)

Idea: Allow easy travel from last node to first.

Head

Review – CSc 345 v1.0 (McCann) – p. 7/33

CLLs: Are Tail References Helpful?

Append

Head Tail

Prepend

Head Tail

Review – CSc 345 v1.0 (McCann) – p. 8/33

Doubly–Linked Lists (DLLs)

An extra reference per node allows two–way travel.

Head

Review – CSc 345 v1.0 (McCann) – p. 9/33

MultiLists

Here, each node is part of two distinct lists of the same data.

Intel Alpha

CAT

APE

RAT

MAN

Review – CSc 345 v1.0 (McCann) – p. 10/33

Orthogonal Lists

1 2 3 4

1

2

3

Boxes

Games

Review – CSc 345 v1.0 (McCann) – p. 11/33

1D Array Storage

Array elements are stored contiguously in memory.

Example(s):

Review – CSc 345 v1.0 (McCann) – p. 12/33

Where in Memory is aray[index]? (1 / 3)

We need to know a few things first:

64 68 72 76 80

aray

aray[0] aray[1] aray[2] aray[3] aray[4]

•

•

•

Review – CSc 345 v1.0 (McCann) – p. 13/33

Where in Memory is aray[index]? (2 / 3)

To reach index i’s element, we have to ‘jump’ over i elements.

64 68 72 76 80

aray

aray[0] aray[1] aray[2] aray[3] aray[4]

Recall: esize = 4, base = 64, index = 3

Review – CSc 345 v1.0 (McCann) – p. 14/33

Where in Memory is aray[index]? (3 / 3)

OK, great,

address = base + index * esize

but . . . so what?

Review – CSc 345 v1.0 (McCann) – p. 15/33

2D Array Allocation in Java

There are more options than you might guess. Two of them:

Review – CSc 345 v1.0 (McCann) – p. 16/33

2D Array Storage (1 / 5)

How can we store a 2D structure in 1D memory? Two options:

0

1

2

0 1 2 3

6 0 8 2

1 5 3 6

9 4 7 1

Review – CSc 345 v1.0 (McCann) – p. 17/33

2D Array Storage (2 / 5)

Consider locating 4 in our 2D array:

0

1

2

0 1 2 3

RMO:

CMO:4

4

4

Our 2D array address calculation is in two parts:

Review – CSc 345 v1.0 (McCann) – p. 18/33

2D Array Storage (3 / 5)

For our 1D calculation, we needed:

• base address • esize • index

What information do we need for the 2D calculation?

Review – CSc 345 v1.0 (McCann) – p. 19/33

2D Array Storage (4 / 5)

Equation time! (I’ll do RMO; you can do CMO on your own.)

twod 4

Review – CSc 345 v1.0 (McCann) – p. 20/33

2D Array Storage (5 / 5)

Example(s):

Review – CSc 345 v1.0 (McCann) – p. 21/33

What About 3D Arrays?

The same basic idea, just one more dimension!

Think about slicing pre–croutons

from a loaf of bread. =⇒

Review – CSc 345 v1.0 (McCann) – p. 22/33

nD Arrays in OO Languages (1 / 3)

In object–oriented (OO) languages, arrays are objects.

A 1D array object is a contiguous collection of references to data objects.

Review – CSc 345 v1.0 (McCann) – p. 23/33

nD Arrays in OO Languages (2 / 3)

Because each row is a distinct object, they can . . .

Review – CSc 345 v1.0 (McCann) – p. 24/33

nD Arrays in OO Languages (3 / 3)

How do we declare & allocate such arrays in Java?

0

1

2

3

0 1 2 3 4

0

1

2

3
0 1 2 3

0 1

0 1 2 3 4

0 1 2

Review – CSc 345 v1.0 (McCann) – p. 25/33

Recursion Review

Want to solve a problem recursively? Try to answer both of

these questions:

1.

2.

Review – CSc 345 v1.0 (McCann) – p. 26/33

Simple Recursion Example #1 (1 / 2)

Task: Print the content of an SLL front to rear.

Q1: What’s somewhat simpler than printing an SLL of n

items front to rear?

Q2: How does that help print the list of n items front to rear?

Review – CSc 345 v1.0 (McCann) – p. 27/33

Simple Recursion Example #1 (2 / 2)

Let’s turn our answers into a pseudocode algorithm:

Review – CSc 345 v1.0 (McCann) – p. 28/33

Simple Recursion Example #2 (1 / 2)

Task: Print the content of an SLL rear to front.

Q1: What’s somewhat simpler than printing an SLL of n

items rear to front?

Q2: How does that help print the list of n items rear to front?

Review – CSc 345 v1.0 (McCann) – p. 29/33

Simple Recursion Example #2 (2 / 2)

There’s just one change from the ‘front to rear’ version:

1 subprogram printLL (given: head) returns nothing

2 if head is null:

3 return

4 else:

5 call printLL with head’s successor

6 print head’s data

7 end if

8 end subprogram

Review – CSc 345 v1.0 (McCann) – p. 30/33

Simple Recursion Example #3 (1 / 3)

Task: Totally unlink a DLL.

Before After

Head Tail Head Tail

Q1: What’s somewhat simpler than unlinking a DLL of n items?

Q2: How does that help unlink the DLL of n items?

Review – CSc 345 v1.0 (McCann) – p. 31/33

Simple Recursion Example #3 (2 / 3)

In pseudocode:

Review – CSc 345 v1.0 (McCann) – p. 32/33

Simple Recursion Example #3 (3 / 3)

We need to set Head and Tail to null . . . but when and where?

Pseudocode:

Review – CSc 345 v1.0 (McCann) – p. 33/33

	Topic 1:
	What is This, and What is Missing?
	What are these Data Structures?
	Singly--Linked List (SLL)
Review (1 / 2)
	Singly--Linked List (SLL)
Review (2 / 2)
	SLLs: Tail Reference or no Tail Reference?
	Circularly--Linked Lists (CLLs)
	CLLs: Are Tail References Helpful?
	Doubly--Linked Lists (DLLs)
	MultiLists
	Orthogonal Lists
	1D Array Storage
	Where in Memory is 	exttt {large Purple aray[index]}? (1 / 3)
	Where in Memory is 	exttt {large Purple aray[index]}? (2 / 3)
	Where in Memory is 	exttt {large Purple aray[index]}? (3 / 3)
	2D Array Allocation in Java
	2D Array Storage (1 / 5)
	2D Array Storage (2 / 5)
	2D Array Storage (3 / 5)
	2D Array Storage (4 / 5)
	2D Array Storage (5 / 5)
	What About 3D Arrays?
	nD Arrays in OO Languages (1 / 3)
	nD Arrays in OO Languages (2 / 3)
	nD Arrays in OO Languages (3 / 3)
	Recursion Review
	Simple Recursion Example #1 (1 / 2)
	Simple Recursion Example #1 (2 / 2)
	Simple Recursion Example #2 (1 / 2)
	Simple Recursion Example #2 (2 / 2)
	Simple Recursion Example #3 (1 / 3)
	Simple Recursion Example #3 (2 / 3)
	Simple Recursion Example #3 (3 / 3)

