
Topic 2:

Algorithm Analysis

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 1/89

What are Some Algorithms You’ve Learned?

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 2/89

Desirable Algorithm Characteristics

A good algorithm . . .

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 3/89

How Can We Measure Problem Size?

Definition: Instance Characteristic

Example(s):

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 4/89

Measuring the Speed of an Algorithm

Why? To compare its speed to that of other algorithms.

Two approaches:

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 5/89

Step–Counting (a.k.a. Operation Counting)

A simple, imprecise (but illuminating) technique. The approach:

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 6/89

Example: The mean of an array’s values (1 / 4)

Here’s the first algorithm we will be step–counting:

1 double sum = 0;

2 for (int i=0; i<n; i++) {

3 sum = sum + list[i];

4 }

5 mean = sum / n;

First question: What is/are the instance characteristic(s)?

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 7/89

Detour: How to Step–Count a For Loop (1 / 2)

First, imagine we initialize an operation counter (o = 0;).

Second, imagine we augment the code with o++;

statements to count the loop’s operations:

for (initialization ; condition ; increment) {

loop body

}

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 8/89

Detour: How to Step–Count a For Loop (2 / 2)

Summary: To step–count a for loop, count:

• The initialization expression before the loop

• True evaluations of the loop condition within the loop body

• False evaluation of the loop condition after the loop

• The increment expression within the loop body

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 9/89

Example: The mean of an array’s values (2 / 4)

(1) Augment the algorithm with operation counts, and

(2) Estimate executions of selections and iterations

double sum = 0;

for (int i=0; i<n; i++) {

sum = sum + list[i];

}

mean = sum / n;

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 10/89

Example: The mean of an array’s values (3 / 4)

(3) Remove/Ignore the algorithm’s statements

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 11/89

Example: The mean of an array’s values (4 / 4)

(4) Produce a step–count expression in terms of the

algorithm’s instance characteristics(s)

o++;

o++;

iterate n times:

o++;

o++; o++; o++; o++;

o++;

o++;

o++; o++;

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 12/89

How to Step–Count an If Statement

if (condition) {

body

}

Three possible approaches:

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 13/89

How to Step–Count an If–Else Statement

if (condition) {

‘then’ part

} else {

‘else’ part

}

Per execution, we do either

the ‘then’ part or the ‘else’ part,

but not both.

Being pessimistic, we . . .

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 14/89

Example: Min & Max of an array’s values (1 / n)

. . . pessimistically!

Here’s Version 1:

1 double min, max;

2 min = max = list[0];

3

4 for (int i=1; i<n; i++) {

5 if (list[i] < min)

6 min = list[i];

7 if (list[i] > max)

8 max = list[i];

9 }

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 15/89

Example: Min & Max of an array’s values (2 / n)

Here’s one possible pessimistic step–counting result:

o++; o++; o++; o++;

o++;

iterate n-1 times:

o++;

o++; o++; o++; o++;

o++; o++;

o++;

o++;

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 16/89

Example: Min & Max of an array’s values (3 / n)

Version 2: What if we partition pairs of values?

2 5 9 6 . . .

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 17/89

Example: Min & Max of an array’s values (4 / n)

Code for Version 2:

1 int low = 0, high = n;

2 int i;

3

4 for (i=0; i<n-1; i+=2) {

5 if (list[i] < list[i+1]) {

6 candidates[low++] = list[i];

7 candidates[high--] = list[i+1];

8 } else {

9 candidates[low++] = list[i+1];

10 candidates[high--] = list[i];

11 }

12 }

13

14 if (i == n-1) {

15 candidates[low++] = list[i];

16 candidates[high--] = list[i];

17 }

19 min = candidates[0];

20 for (int j=1; j<low; j++) {

21 if (candidates[j] < min)

22 min = candidates[j];

23 }

24

25 max = candidates[high+1];

26 for (int k=high+2; k<n+1; k++) {

27 if (candidates[k] > max)

28 max = candidates[k];

29 }

30

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 18/89

Example: Min & Max of an array’s values (5 / n)

Saving time, here’s a summary of Version 2’s step–counting:

3 Lines 1–4 (before 1st loop)

+ 18(n/2) Lines 4–12 (partition loop)

+ 18 Lines 13–20 (between loops)

+ 6(n+1)/2 Lines 20–23 (min loop)

+ 7 Lines 24–26 (between loops)

+ 7(n+1)/2 Lines 26–29 (max loop)

+ 2 Line 30 (after max loop)

≈ 15.5n + 36.5 # of steps in terms of n

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 19/89

Example: Min & Max of an array’s values (6 / n)

Version 3: Combine partitioning and min–max finding.

1 min = max = list[0];

2

3 for (int i=1; i<n-1; i+=2) {

4 if (list[i] < list[i+1]) {

5 if (list[i] < min)

6 min = list[i];

7 if (list[i+1] > max)

8 max = list[i+1];

9 } else {

10 if (list[i+1] < min)

11 min = list[i+1];

12 if (list[i] > max)

13 max = list[i];

14 }

15 }

16

17 if (i == n-1) { // handle extra single value

18 if (list[i] < min)

19 min = list[i];

20 if (list[i] > max)

21 max = list[i];

22 }

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 20/89

Example: Min & Max of an array’s values (7 / n)

Summary of Version 3’s pessimistic step–counting:

5 Lines 1–3 (before the loop)

+ 14(n-1)/2 Lines 3–15 (the loop)

+ 10 Lines 16–22 (after the loop)

≈ 7n + 8 # of steps in terms of n

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 21/89

Key Comparisons: Focused Step–Counting

Step–counting can be slightly tedious.

Instead, we can count only operations of special interest.

Definition: Key Comparison

Example(s):

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 22/89

Key Comparisons in the Min/Max Algorithms

Adding approximate key comparisons to our results:

Version Operations Key Comparisons

1 8n - 2 ≈ 2n

2 15.5n + 36.5 ≈ 3
2 n

3 7n + 8 ≈ 3
2 n

Key comparisons can differ from overall step–counts.

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 23/89

Code Profiling (1 / 4)

Definition: Code Profiling

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 24/89

Code Profiling (2 / 4)

To generate jfr data from a program, execute your Java

program with these flags:

• -XX:+UnlockDiagnosticVMOptions

• -XX:+DebugNonSafepoints

• -XX:StartFlightRecording=duration=[S]s,filename=[N].jfr

where [S] is the measurement duration in seconds, and

[N] is the file name of the jfr recording output file.

Example:

$ java -XX:+UnlockDiagnosticVMOptions -XX:+DebugNonSafepoints

-XX:StartFlightRecording=duration=60s,filename=fr.jfr T02n03

1000000

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 25/89

Code Profiling (3 / 4)

Here’s some jmc profiling output from T02n03.java:

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 26/89

Code Profiling (4 / 4)

Notes:

• jfr’s sampling frequency isn’t high; the results are coarse

• Commercial profilers are more sophisticated

◦ E.g., can do statement–level profiling

• Instrumenting code does slow it down; amount varies

• Most popular languages have available profilers

◦ You may learn about tools such as gprof,

valgrind, and gcov in CSc 352

• All of these require writing code to be analyzed!

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 27/89

Another Option: Execution Timing

We can ‘click a stopwatch’ before and after code executes:

start = System.nanoTime();

// call or place your code here

seconds = (System.nanoTime() - start) / 1_000_000_000;

So why not just do this? Some challenges:

• Wall–clock time vs. actual CPU time

• nanosecond precision, maybe not nanosecond resolution

• Many programs are are very long–running

• Code profilers do more than executing profiling

• Still have to write the code!

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 28/89

Questions about an Algorithm (1 / 2)

What do we want to know about an algorithm’s efficiency

before we adopt it?

• Will it find correct answers in a reasonable amount of time?

• Is it better than this other algorithm we’re considering? (If so,

under which circumstances?)

• How much RAM does this algorithm need?

• How much slower will it be if the problem size doubles?

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 29/89

Questions about an Algorithm (2 / 2)

Now that we know what we want to know . . .

• Can we answer those questions without having to code the

algorithm and test it on sample data?

• How can I communicate those answers to other people?

• Can I do that communication clearly with math?

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 30/89

Asymptotic Analysis

Remember our step–counting results? Functions of n!

Definition: Asymptotic Analysis

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 31/89

“Big–O” Notation (1 / 3)

from P. Bachmann’s “Analytische Zahlentheorie,” 1892.

“Ordnung” is German for “order.”

The idea: Have an approximate function growth rate notation.

Example(s):

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 32/89

“Big–O” Notation (1 / 4)

Definition: “Big–O” Notation

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 33/89

“Big–O” Notation (2 / 4)

Looking at a plot of the functions really helps!

n

“work”

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 34/89

“Big–O” Notation (3 / 4)

Example(s): Show that 7n+ 8 is O(n).

We need constants c > 0 and n0 ≥ 1 such that f(n) ≤ c · g(n) for

every integer n ≥ n0.

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 35/89

“Big–O” Notation (4 / 4)

Conjecture: 7n+ 8 ≤ 8n,∀n ≥ 8

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 36/89

Worried that n isn’t an upper–bound to 7n + 8?

Don’t be! Here’s why:

• The definition says that 8n is the upper–bound, not n.

• And then, only when n ≤ 8 (that is, when n is large).

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 37/89

Worried that 7n + 8 is O(n2), too?

7n+ 8

8n

n2

8

64

0 5 10 15 20

0

100

200

300

400

n

(Linear Scale)

f(x)

You should be . . . and you shouldn’t be!

You should be concerned, because:

You shouldn’t be concerned, because:

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 38/89

Common Algorithm Function Classes (1 / 2)

Function Common Name Example Algorithm

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 39/89

Common Algorithm Function Classes (2 / 2)

Notes on the table:

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 40/89

A Helpful “Big–O” Theorem (1 / 3)

Conjecture: If f(n) = amn
m + am−1n

m−1 + · · · + a1n+ a0,

then f(n) is O(nm).

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 41/89

A Helpful “Big–O” Theorem (2 / 3)

Conjecture: (proof continues!)

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 42/89

A Helpful “Big–O” Theorem (3 / 3)

A concrete example will help that theorem make sense.

Example(s):

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 43/89

Flashback to the Min/Max Algorithms

Recall their step–counting functions:

Version 1: f(n) = 8n− 2

Version 2: f(n) = 15.5n− 36.5

Version 3: f(n) = 7n+ 8

What can we say about them in terms of Big–O?

The point:

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 44/89

Beyond Big–O

Some issues with Big–O:

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 45/89

O(), o(); what begins with ‘O’? (1 / 3)

Apologies to Theodor S. Geisel

Starting Idea: If we create an upper–bound that must be

loose, Big–O is free to be used as a tight upper–bound.

Definition: Little–o (o())

Let f : Z+ → R
+ and g : Z+ → R

+.

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 46/89

O(), o(); what begins with ‘O’? (2 / 3)

Example(s):

Is 7n+ 8 ∈ o(n)?

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 47/89

O(), o(); what begins with ‘O’? (3 / 3)

Let’s try an asymptotically greater upper–bound.

Example(s):

Is 7n+ 8 ∈ o(n2)?

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 48/89

What about Lower Bounds?

Easy! We can create mirror–images (sort of) of O() and o().

n

time /

space

o()

O()

f(n)

Ω()

ω()

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 49/89

Big–Omega (Ω())

Big–Omega is the ‘mirror–image’ of Big–O.

Definition: Big–Omega (Ω())

Let f : Z
+ → R

+ and g : Z
+ → R

+. We say that

f(n) is Ω(g(n)) if there exists a real constant c > 0 and

there exists an integer constant n0 ≥ 1 such that f(n) ≥

c · g(n) for every integer n ≥ n0.

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 50/89

Little–Omega (ω())

Little–Omega is the ‘mirror–image’ of Little–O.

Definition: Little–omega (ω())

Let f : Z+ → R
+ and g : Z+ → R

+. We say that f(n)

is ω(g(n)) if for any real constant c > 0, there exists an

integer constant n0 ≥ 1 such that f(n) > c · g(n) for

every integer n ≥ n0.

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 51/89

Big–Theta (Θ): The Big Squeeze

To ensure that we know how f(n) behaves, we need to

guarantee that our upper– and lower–bound are both tight.

Definition: Big–Theta (Θ)

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 52/89

“But why do people still use Big–O?”

Two reasons:

• We use Big–O as a tight upper–bound, and so its g() is

the same as Big–Theta’s g()

• Big–O is challenging enough to explain; the concept of

Big–Omega is also needed to define Big–Theta.

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 53/89

Big–O and Friends: Comparison / Summary

Definition ? c > 0 ? n0 ≥ 1 f(n) ? c · g(n)

o() ∀ ∃ <

O() ∃ ∃ ≤

Θ()

Ω() ∃ ∃ ≥

ω() ∀ ∃ >

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 54/89

Some Properties of Asymptoticity (1 / 2)

First two (well, really three):

Symmetry of Θ:

f(n) ∈ Θ(g(n)) iff g(n) ∈ Θ(f(n))

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 55/89

Some Properties of Asymptoticity (2 / 2)

Last two:

Example(s):

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 56/89

Analyzing Subdivided Algorithms

Algorithms are often multi–part. We can analyze the parts

separately, but how do we combine those results?

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 57/89

Explaining Big–O et al. Using Limits (1 / 3)

A wee bit of calculus background:

(1) Derivatives of Polynomials

If f(n) = c · nr, then f ′(n) = c · r · nr−1

Example(s):

(2) L’Hôpital’s Rule

If the limits of f(n) and g(n) are ∈ {−∞, 0,∞}, and

lim
n→∞

f(n)
g(n) exists, then lim

n→∞

f(n)
g(n) = lim

n→∞

f ′(n)
g′(n) .

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 58/89

Explaining Big–O et al. Using Limits (2 / 3)

Defining Big–O with limits:

If lim
n→∞

f(n)
g(n) = c, where 0 ≤ c < ∞, then f(n) ∈ O(g(n)).

Example(s):

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 59/89

Explaining Big–O et al. Using Limits (3 / 3)

There are similar definitions for the rest:

O(): If lim
n→∞

f(n)
g(n) =c, where 0≤c<∞, then f(n)∈O(g(n)).

o(): If lim
n→∞

f(n)
g(n) = 0, then f(n) ∈ o(g(n)).

Ω(): If lim
n→∞

f(n)
g(n) =c, where 0<c ≤ ∞, then f(n)∈Ω(g(n)).

ω(): If lim
n→∞

f(n)
g(n) = ∞, then f(n) ∈ ω(g(n)).

Θ(): If lim
n→∞

f(n)
g(n) =c, where 0<c<∞, then f(n)∈Θ(g(n)).

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 60/89

Analysis of Recursive Algorithms

Step–Counting doesn’t work well with recursion . . . but

recurrence relations do!

Example(s):

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 61/89

Recurrence Relations in Algorithm Analysis

We have seen that polynomials describe the work

performed by iterative algorithms.

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 62/89

Solving RRs Using “Find the Pattern” (1 / 4)

Consider the classic: Computing factorials recursively.

1 public long factorial (long n)

2 {

3 if (n == 0) return 1;

4 else return (n * factorial(n - 1));

5 }

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 63/89

Solving RRs Using “Find the Pattern” (2 / 4)

Time to find the pattern!

F (0) = c

F (n) = F (n− 1) + k

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 64/89

Solving RRs Using “Find the Pattern” (3 / 4)

Next step: Generalize the expression sequence (find the

pattern!).

F (n) = F (n− 1) + k

F (n) = F (n− 2) + 2k

F (n) = F (n− 3) + 3k

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 65/89

Solving RRs Using “Find the Pattern” (4 / 4)

Recall: F (0) = c

Question: In F (n) = F (n−a)+ak, how large can a become?

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 66/89

But . . . Were Our Assumptions Correct?

Conjecture: The solution to the recurrenceF (n) = F (n−1)+k

(with initial condition F (0) = c) is F (n) = c+ kn.

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 67/89

Summary of the “Find the Pattern” Process

1. Determine the work required for the base and general

cases of the given recursive algorithm.

2. Generate a few more equivalent recurrences for the

work required in the general case.

3. Find the pattern within those expressions.

4. Create an equivalent closed–form (non–recurrence)

expression in terms of the instance characteristic(s).

5. Prove that your closed–form expression is correct.

6. Determine the order of the algorithm.

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 68/89

Recursively Find the Max Value in a List (1 / 7)

Given an array or list of values, what is the largest value?

14 26 53 23 12 36 41 17 10 42 19 39

Instead of linear search, let’s use this algorithm:

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 69/89

Recursively Find the Max Value in a List (2 / 7)

That algorithm works . . . but how much work does it perform?

Step 1 Determine the base and general cases.

The smallest useful list contains one value. Work required:

For a list of n items, the work required is:

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 70/89

Aside: “Yeah, about that n/2 assumption . . . ”

If the list size is odd,
n
2 isn’t an integer!

The true recurrence relation for this algorithm is:

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 71/89

Recursively Find the Max Value in a List (3 / 7)

Step 2 Generate more equivalent recurrences.

T (1) = c

T (n) = 2T (n/2) + k

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 72/89

Recursively Find the Max Value in a List (4 / 7)

Step 3 Find the pattern! Our recurrences are:

T (n) = 2T (n/2) + k

T (n) = 4T (n/4) + 3k

T (n) = 8T (n/8) + 7k

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 73/89

Recursively Find the Max Value in a List (5 / 7)

Step 4 Create a equivalent closed–form expression.

T (n) = 2iT (n/2i) + (2i − 1)k,where i ∈ Z
+.

What must the relationship be between n and i to reach T (1)?

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 74/89

Recursively Find the Max Value in a List (6 / 7)

Step 5 Prove that the closed–form expression is correct.

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 75/89

Recursively Find the Max Value in a List (7 / 7)

Step 6 Determine the order of the algorithm.

T (n) = (c+ k)n− k

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 76/89

Some Great Theorem Names

• The Fundamental Theorem of Arithmetic

• Fermat’s Last Theorem

• Lickorish twist theorem

• The Squeeze Theorem (a.k.a. The ‘Two Cops and a

Drunk’ Theorem)

• The Ham Sandwich Theorem

• The Hairy Ball Theorem

But next for us, it’s . . .

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 77/89

The Master Theorem (1 / 3)

(a.k.a. The Master Method)

Given a recurrence of the form T (n) = a · T (n/b) + c · nd, where

• T (n) is an increasing function,

• n = bk, where k ∈ Z and k > 0,

• a is a real and ≥ 1,

• b is an integer and > 1,

• c is a real and > 0, and

• d is a real and ≥ 0, then

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 78/89

The Master Theorem (2 / 3)

Example(s):

Consider the recurrence T (n) = 2T (n/2) + n.

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 79/89

The Master Theorem (3 / 3)

Remember our ‘max value’ recurrence? T (n) = 2T (n/2) + k

Does it fit the form of the Master Theorem?

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 80/89

The Maximum Contiguous Subsequence Sum Problem (1 / 9)

(see Jon Bentley’s “Programming Pearls”)

Given integers a1, a2, . . . , an, find the maximum value of
j∑

k=i

ak, where 0 ≤ i, j ≤ n. If all values in the sequence

are negative, the sum is 0 (subsequences may be empty).

Example(s):

What is the MCSS of the list [−6, 4, 2,−3, 4,−4, 5,−3, 2]?

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 81/89

The Maximum Contiguous Subsequence Sum Problem (2 / 9)

Algorithm #1: Exhaustive Search (credit: Ulf Grenander)

Idea: Compute sums of all possible subranges i..j.

1 public static int maxSubsequenceSumV1 (int[] list, int n)

2 {

3 int thisSum, maxSum = 0;

4

5 for (int i=0; i<n; i++) {

6 for (int j=i; j<n; j++) {

7 thisSum = 0;

8 for (int k=i; k<=j; k++) {

9 thisSum += list[k];

10 }

11 if (thisSum > maxSum) maxSum = thisSum;

12 }

13 }

14 return maxSum;

15 }

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 82/89

The Maximum Contiguous Subsequence Sum Problem (3 / 9)

Analysis of Algorithm #1: Abbreviated step–counting!

Each loop can execute a maximum of n times. More precisely:

n−1∑

i=0

n−1∑

j=i

j∑

k=i

1 =
n−1∑

i=0

n−1∑

j=i

(j − i+ 1)

=
n−1∑

i=0

(n−i+1)(n−i)
2

=
n3+3n2+2n

6

∈ O(n3)

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 83/89

The Maximum Contiguous Subsequence Sum Problem (4 / 9)

Algorithm #2: Smarter Exhaustive Search (credit: Ulf Grenander)

Idea: Consider each lower endpoint (i) just once.

1 public static int maxSubsequenceSumV2 (int[] list, int n)

2 {

3 int thisSum, maxSum = 0;

4

5 for (int i=0; i<n; i++) {

6 thisSum = 0;

7 for (int j=i; j<n; j++) {

8 thisSum += list[j];

9 if (thisSum > maxSum) maxSum = thisSum;

10 }

11 }

12 return maxSum;

13 }

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 84/89

The Maximum Contiguous Subsequence Sum Problem (5 / 9)

Analysis of Algorithm #2: Let’s show the details this time.

Our nested–sum step–counting expression is:
n−1∑

i=0

n−1∑

j=i

1

n−1∑

j=i

1 = [(n− 1)− i] + 1 = n− i

n−1∑

i=0

(n− i) = n+ (n− 1) + · · ·+ (n− (n− 1))

=
n∑

k=1

k

=
n(n+1)

2

∈ O(n2)

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 85/89

The Maximum Contiguous Subsequence Sum Problem (6 / 9)

Algorithm #3: Divide and Conquer (credit: Michael Shamos)

Example(s):

Consider splitting the list in half:

[−6, 4, 2,−3, 4] and [−4, 5,−3, 2].

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 86/89

The Maximum Contiguous Subsequence Sum Problem (7 / 9)

Analysis of Algorithm #3: Do we need the code? Nope!

T (1) = 1

T (n) = 2T (n/2) + n the straddle case is linear

= 2kT (n/2k) + kn where k = log2 n

= nT (1) + n log2 n

∈ O(n log2 n)

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 87/89

The Maximum Contiguous Subsequence Sum Problem (8 / 9)

Algorithm #4: Work Smarter, Not Harder! (credit: Jay Kadane)

Idea: Extend the fixed–endpoint straddling idea to discard

subsequences that have a non–positive sum.

Example(s):

Consider our list again: [−6, 4, 2,−3, 4,−4, 5,−3, 2].

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 88/89

The Maximum Contiguous Subsequence Sum Problem (9 / 9)

Analysis of Algorithm #4:

This is very obviously linear, but let’s look at the sum

anyway:

n−1∑

j=0

1 = [(n− 1)− 0] + 1 = n ∈ O(n)

Algorithm Analysis – CSc 345 v1.0 (McCann) – p. 89/89

	Topic 2:
	What are Some Algorithms You've Learned?
	Desirable Algorithm Characteristics
	How Can We Measure Problem Size?
	Measuring the Speed of an Algorithm
	Step--Counting (a.k.a. Operation Counting)
	{yellow Example:} The mean of an array's values (1 / 4)
	{Orange Detour:} How to Step--Count a For Loop (1 / 2)
	{Orange Detour:} How to Step--Count a For Loop (2 / 2)
	Example: The mean of an array's values (2 / 4)
	Example: The mean of an array's values (3 / 4)
	Example: The mean of an array's values (4 / 4)
	How to Step--Count an If Statement
	How to Step--Count an If--Else Statement
	{yellow Example:} Min & Max of an array's values (1 / n)
	Example: Min & Max of an array's values (2 / n)
	Example: Min & Max of an array's values (3 / n)
	Example: Min & Max of an array's values (4 / n)
	Example: Min & Max of an array's values (5 / n)
	Example: Min & Max of an array's values (6 / n)
	Example: Min & Max of an array's values (7 / n)
	Key Comparisons: Focused Step--Counting
	Key Comparisons in the Min/Max Algorithms
	Code Profiling (1 / 4)
	Code Profiling (2 / 4)
	Code Profiling (3 / 4)
	Code Profiling (4 / 4)
	Another Option: Execution Timing
	Questions about an Algorithm (1 / 2)
	Questions about an Algorithm (2 / 2)
	Asymptotic Analysis
	``Big--O'' Notation (1 / 3)
	``Big--O'' Notation (1 / 4)
	``Big--O'' Notation (2 / 4)
	``Big--O'' Notation (3 / 4)
	``Big--O'' Notation (4 / 4)
	Worried that n isn't an upper--bound to {large $7n+8$}?
	Worried that $7n+8$ is $O(n^2)$,
too?
	Common Algorithm Function Classes (1 / 2)
	Common Algorithm Function Classes (2 / 2)
	A Helpful ``Big--O'' Theorem (1 / 3)
	A Helpful ``Big--O'' Theorem (2 / 3)
	A Helpful ``Big--O'' Theorem (3 / 3)
	Flashback to the Min/Max Algorithms
	Beyond Big--O
	$O(), o()$;
what begins with `O'? (1 / 3)
	$O(), o()$;
what begins with `O'? (2 / 3)
	$O(), o()$;
what begins with `O'? (3 / 3)
	What about Lower Bounds?
	Big--Omega ($Omega ()$
)
	Little--Omega ($omega ()$
)
	Big--Theta ($Theta $):
The Big Squeeze
	``But why do people still use Big--O?''
	Big--O and Friends: Comparison / Summary
	Some Properties of Asymptoticity (1 / 2)
	Some Properties of Asymptoticity (2 / 2)
	Analyzing Subdivided Algorithms
	Explaining Big--O et al. Using Limits (1 / 3)
	Explaining Big--O et al. Using Limits (2 / 3)
	Explaining Big--O et al. Using Limits (3 / 3)
	Analysis of Recursive Algorithms
	Recurrence Relations in Algorithm Analysis
	Solving RRs Using ``Find the Pattern'' (1 / 4)
	Solving RRs Using ``Find the Pattern'' (2 / 4)
	Solving RRs Using ``Find the Pattern'' (3 / 4)
	Solving RRs Using ``Find the Pattern'' (4 / 4)
	But ldots Were Our Assumptions Correct?
	Summary of the ``Find the Pattern'' Process
	Recursively Find the Max Value in a List (1 / 7)
	Recursively Find the Max Value in a List (2 / 7)
		extcolor {Purple}{Aside:} ``Yeah, about that $n / 2$ assumption ldots ''
	Recursively Find the Max Value in a List (3 / 7)
	Recursively Find the Max Value in a List (4 / 7)
	Recursively Find the Max Value in a List (5 / 7)
	Recursively Find the Max Value in a List (6 / 7)
	Recursively Find the Max Value in a List (7 / 7)
	Some Great Theorem Names
	The Master Theorem (1 / 3)
	The Master Theorem (2 / 3)
	The Master Theorem (3 / 3)
	
ormalsize The Maximum Contiguous Subsequence Sum Problem (1 / 9)
	
ormalsize The Maximum Contiguous Subsequence Sum Problem (2 / 9)
	
ormalsize The Maximum Contiguous Subsequence Sum Problem (3 / 9)
	
ormalsize The Maximum Contiguous Subsequence Sum Problem (4 / 9)
	
ormalsize The Maximum Contiguous Subsequence Sum Problem (5 / 9)
	
ormalsize The Maximum Contiguous Subsequence Sum Problem (6 / 9)
	
ormalsize The Maximum Contiguous Subsequence Sum Problem (7 / 9)
	
ormalsize The Maximum Contiguous Subsequence Sum Problem (8 / 9)
	
ormalsize The Maximum Contiguous Subsequence Sum Problem (9 / 9)

