CSc 345 — Analysis of Discrete Structures (McCann)

Problems for Practice: Recurrence Relations

Sample Problem For the following recurrence relation, find a closed–form equivalent expression and prove that it is equivalent.

 $L(1) = 3$ $L(n) = L(\frac{n}{2}) + 1$ where *n* is a positive integral power of 2

Step 1: Find a closed–form equivalent expression (in this case, by use of the "Find the Pattern" approach).

 $L(1) = 3$ $L(n) = L(\frac{n}{2}) + 1$ $L(\frac{n}{2}) = L(\frac{n}{4}) + 1$ Express $L(n)$ in terms of $L(\frac{n}{4})$ $L(n) = (L(\frac{n}{4})+1)+1$ $L(n) = L(\frac{n}{4}) + 2$ $L(\frac{n}{4}) = L(\frac{n}{8}) + 1$ Express $L(n)$ in terms of $L(\frac{n}{8})$ $L(n) = (L(\frac{8}{8}) + 1) + 2$ $L(n) = L(\frac{n}{8}) + 3$ $L(\frac{n}{8}) = L(\frac{n}{16}) + 1$ Once more, just to be sure of the patterns $L(n) = (L(\frac{n}{16}) + 1) + 3$ $L(n) = L(\frac{n}{16}) + 4$ $L(n) = L(\frac{n}{2^a}) + a$ In general, for any postive integer a Let $2^a = n$, or $a = log_2 n$. $L(n) = L(\frac{n}{n}) + log_2 n$ $L(n) = L(1) + log_2 n$

 $L(n) = log_2 n + 3$ Final closed–form expression, which is $O(log_2 n)$.

Step 2: Prove, by induction on n, that this closed–form expression is equivalent to the given recurrence relation.

Theorem: $L(n) = log_2 n + 3$, where *n* is a positive integral power of 2.

Proof (by induction on n):

Basis: $L(1) = log_2 1 + 3 = 0 + 3 = 3$. Correct.

Inductive: If $L(n) = log_2 n + 3$, then $L(2n) = log_2 2n + 3$

$$
L(2n) = L(n) + 1
$$
 By the given recurrence relation
\n
$$
= \log_2 n + 3 + 1
$$
 Application of the inductive hypothesis
\n
$$
= (1 + \log_2 n) + 3
$$
 Commutativity of Addition
\n
$$
= (\log_2 2 + \log_2 n) + 3
$$

$$
\log_2 x = 1
$$

\n
$$
L(2n) = \log_2 2n + 3
$$

$$
\log_2 a + \log_2 b = \log_2(ab)
$$

Therefore, $L(n) = log_2 n + 3$, where *n* is a positive integral power of 2.

Now Try These For each of the following recurrence relations, find a closed–form equivalent expression, determine its tight $O($) approximation, and prove that it produces the same sequence of values as does the recurrence relation.

- 1. $S(0) = 6$
 $S(n) = S(n-1) + 2$ Easy 2. $T(1) = 2$
 $T(n) = 2T(n-1)+4$ A bit harder 3. $Q(1) = c$
 $Q(n) = Q(\frac{n}{2})$ Harder still
- 4. For which of these can the Master Theorem be used to find a $O()$ approximation? For it/them, use the Master Theorem to confirm the $O($) of your solution.

Looking for the solutions? I won't be posting them, because I want you to actually do them yourself (rather than just looking at the answer). If you'd like confirmation, I encourage you to share your results on Piazza, compare your work with a classmate, review them in a study group, etc.