
CSc 345 — Analysis of Discrete Structures
Fall 2024 (McCann)

http://cs.arizona.edu/classes/cs345/fall24/

Program #2: Bones Battle

Due Date: October 17 th, 2024, at the beginning of class

Overview: In 2006 a Flash1 game called Dice Wars appeared. When it caught my attention, I had two
thoughts: (1) ‘This could make a good 345 assignment,’ and (2) ‘This game cheats!’ I wrote a version in Java
that doesn’t cheat. In this assignment, you’ll be writing most of the ‘behind the scenes’ code for our version,
called “Bones Battle.”

You can think of Bones Battle as a simplified version of the board game Risk. Our version has two to five
players, distinguished by name and color. All but one of the players is played by the computer, with the
human controlling the fifth (green) player. The game board is a connected arrangement of colored squares
(territories), each labeled with an initial quantity of 6–sided dice. A turn consists of 0 or more attacks, each
from a square with 2 or more dice to an adjacent (sharing a side) opponent’s square. If the roll of the attacker’s
dice total more than the opponent’s total, the attacked square’s ownership transfers to the attacker and all
but one of the attacking dice are moved to it. Otherwise, the attacking square loses all but one of its dice.
These totals are briefly displayed on the attacking/defending squares. Totals in white mean that the attacker
won, while magenta means the defender prevailed. When a turn is complete, the computer determines the
quantity of squares in the largest connected cluster of squares owned by the player. A number of dice equal to
this quantity is added randomly to the player’s squares, to a maximum of eight per square.

When a computer–controlled player is playing, the human player merely observes the action described above.
When it’s the human player’s turn, they begin an attack by clicking a legal attacking square (its color darkens
to reflect the selection). Next, they click the adjacent opponent square to be attacked. From there, the
computer will complete the attack. When the player is finished selecting attacks, they click ‘Next’ and the
next computer player takes its turn.

We are supplying a playable version of Bones Battle as a JAR (Java ARchive) file, so that you can play it
before you start the assignment. See the ‘Want to Learn More?’ section, below, for details.

1An old web multimedia software platform.

http://cs.arizona.edu/classes/cs345/fall24/


Assignment: In this assignment you’ll be writing a portion of the Bones Battle code, specifically the three
Java classes Territory, Map, and Graph. Territory represents a square on the game board, Map handles
interactions with the game board, using the Graph class to represent the collection(s) of territories and their
relationships.

Please note that the following describes what you must include in these classes. If you wish to add more (e.g.,
additional private methods), you may, so long as the additions fit within the existing framework.

1. The Territory Class: Each of the squares on the game board is represented within the game by a Territory
object. A Territory needs to know the map with which it is associated (type: Map), the quantity of dice
currently assigned to it (int), its identification number (int; see below), and a reference to the player who
owns it (Player).

� Constructor #1: Territory (Map map)

Sets the map reference to the argument, the owner reference to null, and the integers to -1.

� Constructor #2: Territory (Map map, Player owner, int dice, int idNum)

Sets the state variables to the values of the given arguments.

� The Accessors (“Getters”):

int getDice (), int getIdNum (), Map getMap (), and Player getOwner ().

� The Mutators (“Setters”):

void setDice (int), void setIdNum (int), and void setOwner (Player).

� Other Methods:

– int getRow () and int getCol (): A territory’s row and column coordinates within the game
board can be computed from the territory’s ID# because the ID#s must be assigned as follows:
The territory assigned to the upper left corner (row 0, column 0) has ID# 0. The territory to
the right of ID# 0 has ID# 1, and the territory just below ID# 0 is ID# 8, assuming that the
board has eight columns and at least two rows. In other words, the territories are numbered in
row-major order. Knowing that, the row and column indices can be easily computed from the
ID#.

2. The Map Class: This provides the representation of the game board – a rectangle of territories – with
several ‘holes’ (invisible, unplayable territories) to make the board more interesting.

A Map state consists of the map (Territory[][]), a reference to a graph data structure that knows
neighboring territories (see the Graph class, below), and a list of references to the game’s players
(ArrayList<Player>).

� Constants (all of type int):

– ROWS and COLUMNS : Size of the board.

– VICTIMS : Number of unused (‘invisible’) territories.

– NUMTERRITORIES : Synonym for ROWS times COLUMNS.

– OCCUPIED : Synonym for NUMTERRITORIES minus VICTIMS.

– MAXDICE : The largest quantity of dice a territory may have.

� The Constructor: Map (ArrayList<Player> players, int rows, int columns, int victims, int maxDice)

The arguments are used to set the corresponding constants and instance variables. The construc-
tor also declares the map array (that is, the game board), and creates territories for the board
(w/ correct ID#s). It also creates the territory neighbor graph by calling the constructGraph()

method and concludes by calling the local partitionTerritories() and distributeDice()meth-
ods (which you’ll write; see below) to initialize the game board.

� The Accessors (“Getters”):

Territory[][] getMap (), Graph getGraph (), and Territory getTerritory (int row, int column).

2



getTerritory() simply returns the Territory reference stored in the game board at location (row,
column).

� The Mutators (“Setters”): There are no mutators in this class.

� Additional Methods:

– public int getTerritoryId (int row, int column): Given the row and column of a territory, com-
pute and return the territory’s ID#. The Territory class (detailed above) supplies getRow()
and getCol() methods.

– public int countTerritories (Player player): Determine and return the quantity of territories
owned by the given player.

– public int countDice (Player player): Determine and return the total number of dice currently
assigned to this player’s territories.

– public ArrayList<Territory> getPropertyOf(Player player): Construct and return a reference
to an ArrayList of Territory object references. The territories referenced by the list are those
currently owned by the given player.

– public ArrayList<Territory> getNeighbors(Territory cell): Each territory has at least one ad-
jacent (edge–sharing) neighboring territory, but no more than four. This method returns a
reference to an ArrayList of references to the given territory’s neighbors. The Graph object
offers a helpful method: isInGraph(). isInGraph() takes a territory ID# and returns true if the
territory is participating in the game (remember, some territories are ‘invisible’ and thus can’t
be neighbors).

– public ArrayList<Territory> getEnemyNeighbors(Territory cell): Similar to getNeighbors(),
above, but the returned list contains only references to neighboring territories controlled by
another player.

– private void partitionTerritories(): This method is called by the constructor after the array of
un-owned territories has been built. This method assigns to each player the same (or nearly
the same) quantity of territories. Each player’s territories are to be selected randomly. That is,
do not assign players to territories based on a pattern.

– private void distributeDice(): This method is called by the constructor after partitionTerrito-
ries() has been called. Collectively, the assigned territories of each player have the same quantity
of dice as the territories of every other player: three times the player’s number of territories.
For example, if there were two players and 15 territories per player, each player would start
with 45 dice. This method randomly distributes each player’s dice allotment across his or her
territories. Each territory must have at least one die, but no territory can have more than
MAXDICE dice.

– public int countConnected (Player player): Returns a count of the number of territories in the
largest connected cluster of territories owned by the given player.

– public Graph constructGraph(int rows, int cols, int victims): Builds, and returns a reference
to, a graph representing all of the active territories in the game. An acceptable graph has the
appropriate number of active territories (Map.OCCUPIED), ‘scatters’ the inactive territories
among the active territories in an unpredictable (pseudo–random) fashion, and ensures that all
of the active vertices are connected.

3. The Graph Class: The Map class relies on a Graph object to represent the neighbor relationships between
territories. Each territory is represented by a corresponding vertex within the graph, and neighboring
territories are connected by edges. A Graph object needs a representation for the graph, and a way to
know which of the vertices are considered to be ‘inactive’ by the game.

The graph vertices need to be numbered in the same way that the game numbers the territories: The
territory assigned to the upper left corner (row 0, column 0) of the board has ID# 0. The territory
to its immediate right has ID# 1, and the territory just below ID# 0 has ID# 8. In other words, the
territories, and thus the vertices, are numbered in row–major order. Knowing that, the row and column
indices can be easily computed from the ID#, and vice–versa.

� The Constructor: Graph (int numVertices)

3



The number of vertices in the graph is supplied. The constructor will create a suitable graph
representation that initially includes no edges. Because our application requires that some of the
vertices be ‘inactive’ within the game, the graph needs to be able to distinguish the inactive vertices
from the active vertices.

� Additional Methods:

– public List<Integer> getUnusedVertices (): Returns a list of the ID#s of the inactive vertices
of the graph. If there are no inactive vertices, a reference to an empty list object is returned.

– public boolean isEdge (int source, int destination): Returns true if the graph possesses an edge
directly connecting the given source and destination vertices. That is, ‘true’ is returned if these
vertices are adjacent.

– public void addEdge (int source, int destination): Ensures that the graph contains an edge
connecting the given source and destination vertices.

– public void removeEdge (int source, int destination): Ensures that the graph does not contain
an edge connecting the given source and destination vertices.

– public boolean isInGraph (int vertex): Returns true if the given vertex is active within the graph.

– public void removeVertex (int vertex): Called to mark a vertex as inactive. Inactive vertices
have no neighbors, and thus have a degree of 0.

– public List<Integer> getAdjacent (int vertex): Returns a list of vertex ID#s. A vertex is in the
list if it is active and adjacent to the given vertex.

– public int degree (int vertex): Returns the degree of the given vertex.

– public boolean connected (): Returns true if the graph is connected; that is, if every active vertex
is reachable from every other active vertex.

The Supplied Classes: The classes you will be writing are just a portion of the game. Because the knowledge
can help, here’s a summary of the pre–compiled classes we are supplying:

� The Bones Class: This is the game engine. As it calls methods of other classes, rather than other classes
calling its methods, its workings aren’t important for this assignment.

� The Player Class: Each player in the game is represented as a Player object. A Player object knows the
player’s internal ID number (of type int), name (String), color (Color) (and ‘clicked’ color (Color)), and
has a reference to the strategy this player uses to select attacks (Strategy).

The constructor and public methods of Player are: Player (String name, Color color), int getId (), String
getName (), Strategy getStrategy (), Color getColor (), Color getClickColor (), void setName (String),
void setStrategy (Strategy), void setColor (Color), void setClickColor (Color), boolean willAttack (Map),
Territory getAttacker (), and Territory getDefender (). (The last three exist to allow the game to talk
to the player’s associated strategy object.)

� The StrategyLoader Class: Like the Bones class, this one you don’t need to worry about. StrategyLoader
is what makes dynamic loading of strategy classes, and thus the tournament mode, possible. Curious
about that mode and how to write strategies? See the last two pages of this handout.

Input: None of the classes you are to write accept input from the outside world; they each exist only to
support the Bones Battle game. Thus, we cannot supply any input data for testing.

We have, however, supplied the rest of the .class files that comprise the Bones Battle game. A ZIP file
containing them (prog2.zip) is linked to the class web page. It also includes the Strategy.java interface
file, the sample MilquetoastStrategy source code, as well as a ReadMe.txt file that explains how to use the
supplied classes with your compiled classes to assemble the complete game. Finally, as mentioned above, an
executable version of the complete game is available; more information on it is provided below.

We expect to test your classes by (a) plugging them into the normal game to verify that the game works, and
(b) writing programs that exercise the methods to verify their correct operation. We strongly recommend that

4



you do both of these, too. As always, you may NOT share your assignment code with other students, but you
may share your testing programs. Just keep in mind that testing programs can have bugs, too.

Output: As these classes produce no output of their own, we have no output specifications to give you. See
the Input section, above, for details on how we expect to test your classes.

Hand In: On the due date, submit your completed .java program files using the turnin facility on lectura.
Do not zip them up! The submission folder is cs345p2. Instructions are available from the document of turnin
instructions linked to the class web page.

Want to Learn More?

� Want to play Dice Wars? There’s an updated version available (I haven’t played it to see if it still cheats!)
https://www.gamedesign.jp/games/dicewars/

� Want to play Bones Battle before you code it? Download the BonesBattle.jar file from the class web
page, and run it from the command line with java -jar BonesBattle.jar.

� Why the name ‘Bones Battle?’ Because early dice were sometimes carved from bone, dice are sometimes
referred to as ‘bones’ (as in the phrase “roll them bones!”).

Other Requirements and Hints:

� Start early! You will be writing a fair amount of code for this assignment, and the classes you write

will not only have to integrate with each other, they’ll have to work with the supplied classes to complete
the game. This usually means there will be lots of mystery Java exceptions to figure out. 2 a.m. on the
due date is a lousy time to be stuck doing that.

� Your first order of business: Play the game! It’s hard to code what you don’t fully grasp.

� You don’t have to (nor should you!) rely only on running the game to test your classes. We encourage
you (strongly!) to write your own testing code. Note that you may share testing code with other
students, but don’t share the assignment code.

� A reminder about program documentation: Document your code as you write it. If you wait until the
code’s working before you document it, you’ll be spending hours doing nothing but writing documen-
tation. Most people find hours spent in this way to be a trifle boring. Instead, when you start writing
a class, write the class block comment first. As you write each method, document it. As soon as you
declare a variable, give it a good name and a brief comment. This comment–as–you–code approach is not
only less boring, you’re also more likely to remember decisions that went into your coding (e.g., choice of
algorithms) that should be mentioned in the documentation. Remember, the point is to make happier
the poor schmuck who will someday have to read your code in order to understand and modify it. Keep
in mind that the poor schmuck may well be the future you.

� When running java on lectura, be sure that you’re using Oracle’s Java. When you ask java for its version
(javac -version and java -version) on lectura, it should report the version to be javac 16.0.2. If
you see a different version, you’ll want to give the complete pathname to the compiler and interpreter:
/usr/bin/javac and /usr/bin/java, respectively. Mixing .class files created by different versions of
Java usually produces bizarre compilation errors.

� Using a Mac and getting no colors when running locally? I do not have a Mac to test this, but adding
this flag when you run the program has worked in the past:
-Dswing.defaultlaf=javax.swing.plaf.metal.MetalLookAndFeel

The Following is NOT Part of the Assignment!

Want to Write Your Own Strategy for Computer Players?

The ComputerStrategy Class: When you study the demo version of the game, you’ll find that the computer
players make attacks that, rather than being evocative of Sun Tzu’s classic “The Art of War,” remind you

5

https://www.gamedesign.jp/games/dicewars/


more of “Zapp Brannigan’s Big Book of War.”2 The game framework offers you the opportunity to write
a strategy that will make beating the computer a real challenge for the human player. The methods that
need to be implemented are listed in the Strategy.java interface, an interface that the ComputerStrategy class
implements.

The strategy class used in the demonstration game is not very strategic at all. All it does is ask, “Is there an
attacker–defender pair in which the attacker’s dice quantity is greater than or equal to that of the defender?”
If such a pair can be found, it recommends attacking. Here’s a somewhat better strategy: Give preference to
attacks that, if successful, would connect two disconnected clusters of the player’s territories. There are many
more possibilities.3

� The Constructor: Don’t write one! (Why not? For dynamic class loading to work in tournament mode,
your strategy class can have only the default constructor.)

� The Mutator (“Setter”):

– public void setPlayer (Player whom):

The strategy object needs to know on which player’s behalf it is thinking strategically. If we could
have a constructor, we wouldn’t need this setter.

� Additional Methods:

– public boolean willAttack (Map board): Returns true if the player will attack, given the state of the
game as described by the current game board. As this determination is made, the method may
construct data structures whose content can be used to assist in the processing of getAttacker() and
getDefender().

– public Territory getAttacker (): Returns a reference to a territory that will be the source of the next
attack. The selected territory must have at least two dice and be owned by the player associated
with this strategy object. This method should be called only after willAttack() has been called.

– public Territory getDefender (): Returns a reference to the territory object that will defend the
attack of the territory just identified by getAttacker(). The defending territory must be occupied
(owned) by another player and must be adjacent to the attacking territory. This method should be
called only after getAttacker() has been called.

The collection of files for this assignment includes a trivial example strategy class, MilquetoastStrategy.

Using Your Strategy in Bones Battle: Built–in to the Bones Battle game is a ‘tournament mode’ in which
strategies can play one another until a given number of victories by one strategy is achieved. This is a fun way
to both test a strategy against itself, and to pit your strategies against those of your classmates.

To run Bones Battle in this mode, add the .class file names of the strategies to be used in the game to the
command line. For example:

java Bones Zapp Fry Leela Zoidberg

Up to five strategy classes can be listed. By default, in tournament mode the game will run at an accelerated
speed, will report victories to the terminal window, and will stop when a strategy has accumulated 16 victories.
The winning total can be adjusted with the command line argument wins=W; just replace the W with the desired
win total. Use speed=M to change the pace of the game, where M is the number of milliseconds per attack.
Unless changed, M = 20ms in tournament mode, a hundredth of the delay of normal play.

Preparing an existing strategy for tournament play is easy; make a copy of your ComputerStrategy.java file
named with a suitable name. For example, if you want it named ‘Awesum’, copy the strategy file to ‘Awe-
sum.java’ (and in the copy change the name of the class to ‘Awesum’ as well, of course). Your strategy code
should be entirely contained within the file; that is, no auxiliary .java files should be used.

2Futurama, “Love’s Labors Lost in Space,” Season 1, Episode 4
3If your strategy ends up enslaving humanity, we reserve the right to retroactively fail you. ,

6


