CSc 345 — Analysis of Discrete Structures
Fall 2024 (McCann)

http://cs.arizona.edu/classes/cs345/fall24/
Program #3: Columnsort

Due Date: October 31¢, 2024, at the beginning of class

Overview: Columnsort is an algorithm originally designed to be implemented as a parallel algorithm (that
is, as an algorithm whose effort can be spread across multiple processors). For this assignment, we will treat
Columnsort as if it were a normal, garden—variety internal sorting method.

Rather than provide an algorithm description in my own words, I'm attaching a page from a paper from Dart-
mouth that gives a pretty good description of the algorithm. No, it’s not a nice, clear, processed description;
it’s an algorithm description from a research paper, but a pretty clear one, as such things go. If you spend a
little time creating a small example and working it through by hand, I'm confident that you will be able to
figure out how to perform its steps.

As you examine the algorithm, you will note that Columnsort spends a lot of time sorting sections of the
sequence (the columns). You will need to employ an auxiliary sorting method for Columnsort to use to sort
the columns. You may use any sorting algorithm you wish to sort the columns, so long as you implement it
yourself. (That is, you can’t use any of Java’s API sorting methods, you can’t download a sorting class from
the 'net, you can’t get one from a friend or ChatGPT, etc.)

You will also notice that Columnsort needs to select its own quantities of rows and columns based on some
simple constraints. You’ll need to implement an algorithm to select appropriate values for r and s based on
the number of items to be sorted. Note that Columnsort will work with » = N and s = 1, but that there
would be a lot of wasted work.

There are other decisions that you will have to make as you create your implementation. We will not suggest
any solutions; you’ll have to decide on your own how to handle things.

Assignment: Implement Columnsort, and measure its performance on a collection of Integer objects whose
content (elements of a sequence of four—byte integers) will be supplied in a file named on the command line.
The goal is to get your implementation of Columnsort to sort the given collection of Integer objects in as little
time as possible. To measure the elapsed time, use System.nanoTime (). Note that you want to time only the
sort itself, not the reading of the file, nor the production of the output. Place your ‘start the stopwatch’ and
‘stop the stopwatch’ actions just before and just after the call to Columnsort.

Input: Write your program to accept the name of a data file on the command line: java Prog3 prog3a.dat
is a sample invocation.

I have linked to the class web page two files of integers, named prog3a.dat and prog3b.dat. These will be
the only sample data files we will supply; we're assuming that you can make your own files of integers for
additional testing without too much trouble. The format of a data file is straight—forward: One integer per
line. The integers will be standard four—byte integers, and can be negative, zero, or positive. If you detect
that the data file contains anything other than integers, terminate the program after displaying a helpful error
message.

The two sample data files are of significantly different sizes: The first is very small, and the second is much
larger (though not huge by any measure). When we grade, we’ll use files of integers with a variety of other
characteristics as well; please test your code thoroughly. Exchanging sample data files with other students is
acceptable; exchanging source code is, of course, a no—no.

(Continued ...)

http://cs.arizona.edu/classes/cs345/fall24/

Output: Have your program output (to the screen) the quantity of values (n) being sorted, the program’s
choices of r and s, the elapsed time required to complete the sort (in seconds, to three decimal places), and
the sorted sequence of values, one per line. Use this fancy output format:

$ java Prog3 somedata.dat

n = 20

r = 10

s =2

Elapsed time = 0.001 seconds.
1000

1000

1001

[...]

Note that the output can be easily redirected to a file; e.g., java Prog3 prog3a.dat > results

Hand In: On the due date, submit your completed, well-documented and well-tested program file(s) to the
class submission directory, using the turnin command on lectura. The turnin location for this assignment
is €s345p3. Name your main program source file Prog3. java so that we don’t have to guess which file to
compile/translate, but feel free to split up your code over multiple files.

Want to Learn More?

Keen to see the paper in which Columnsort first appeared? Here’s the reference: Leighton, Tom.
“Tight Bounds on the Complexity of Parallel Sorting.” Proceedings of the 16th Annual ACM Sym-
posium on Theory of Computing (STOC), 1984, pp. 71-80. It’s available from the ACM digital library:
http://doi.acm.org/10.1145/800057.808667.

The attached description of Columnsort is a page from an early version of this paper: Chaudhry, G., Cor-
men, T., and Wisniewski, L.F. “Columnsort Lives! An Efficient Out—of—Core Sorting Program.” Proceed-
ings of the Thirteenth Annual ACM Symposium on Parallel Algorithms and Architectures, 2001, pp. 169
- 178. It’s also available from the ACM digital library: http://doi.acm.org/10.1145/378580.378627.
http://doi.acm.org/10.1145/378580.378627.

Other Requirements, Hints, and Miscellany:

The use of nanoTime () is demonstrated in the demo program Timing2.java, which is available on the
class web page.

You may NOT use smaller integer types to try to gain a speed advantage; use Java’s four-byte integers
in the standard Integer wrapper class.

We insist that your implementation NOT create separate processes, or threads, or farm out work to other
machines, etc. All of that would be fun and educational, but parallel/distributed processing is in the
domain of other courses. We have plenty of topics of our own to cover, and we’re keen to see what you
can accomplish without throwing hardware at the problem.

An expected question: “Can we change Columnsort to improve its performance?” So long as you remain
true to the philosophy of the algorithm, yes. Think of Bubblesort; the ‘check for swaps’ modification
creates a variant of Bubblesort, but it’s still Bubblesort at the core; the modification is just a tweak.
Deciding to implement a different sorting algorithm instead of Columnsort would be far more than a
tweak!

After the assignments are graded, we’ll let you know whose Columnsort implementation proved to be
the fastest in the testing we performed for grading. No prizes, just intra—class fame, assuming that the
‘winner’ wants fame. We’ll at least report anonymous times.

Seems like I'm forgetting ... oh, yes! Start early! :-)

(Continued ...)

http://doi.acm.org/10.1145/800057.808667
http://doi.acm.org/10.1145/378580.378627

The following is a page from: Chaudry, et. al. “Columnsort Lives! An Efficient Out—of-Core Sorting
Program.” Proc. of the 13th Annual ACM Symposium on Parallel Algorithms and Architecture, July 2001.

a g m] a b ¢] a g m] oo d joop]

o h m Step 2 d e f ok om Step 6 oo e kg

c i o | — g h i | c i o0 | — oo f I r |

d j p | Stepd joko1 | d j p | Step? a g m o |

e k g m " o@ e k g b h n oo

b r J rog rJ I rJ c i o r>'::-J
[a) (b)

Figure 2: The operations of even-numbered steps of columnsort. This figure is taken from [Lei83]. For simplicity, this
small 6 x 3 matrix is chosen to illustrate the steps, even though its dimensions fail to obey the columnsort restrctions
on r and 5. (a) The operations of steps 2 and 4. (b) The operations of steps 6 and 5.

2 The basic columnsort algorithm

In this section, we review Leighton’s columnsort algorithm from [Lei85]. Along the way, we make some
observations that will improve the out-of-core implementation.

Columnsort sorts N numbers, which are treated as an r » 5 matrix, where N = rg, 5 15 a divisor of r,
and r = 2(s — 1)°. When columnsort completes, the matrix is sorted in column-major order. That is, each
column is sorted, and the keys in each column are no larger than the keys in columns to the right.

Columnsort proceeds in eight steps. Steps 1, 3, 5, and 7 are all the same: sort each column individually.
Each of steps 2, 4, 6, and 8 permutes the matrix entries.

Step 2: Transpose and reshape
As Figure 2(a) shows, we first transpose the r » 5 matrix into an s x r matrix. Then we “reshape™ it
back into an r x 5 matrix by taking each row of r entries and rewriting it as an r/s x 5 submatrix. In
Figure 2(a), for example, the column with r = 6 entries a b c d ¢ f 1s transposed into a 6-entry row

with entries a b ¢ d e { and then reshaped into the 2 x 3 submatrix [:, ﬁ }]

Step 4: Reshape and transpose
As Figure 2(a) shows, we first reshape each set of r/s rows into a single r-element row and then
transpose the matrix. In other words, step 4 is the inverse of the permutation performed in step 2.

Step 6: Shift down by r /2
As Figure 2(b) shows, we shift each column down by r/2 positions, wrapping around into the next
column as necessary. This shift operation vacates the first r/2 entries of the leftmost column, which
are filled with keys of —oo, and it creates a new column on the right, the bottommost r/2 entries of
which are filled with keys of oo, Looked at another way, we shift the top half of each column into the
bottom half of that column, and we shift the bottom half of each column into the top half of the next
column.

Step 8: Shift up by r/2
As Figure 2(b) shows, we shift each column up by r/2 positions, wrapping around into the previous
column as necessary. In other words, we perform the inverse permutation of step 6.

We omit the proof of correctness and refer the reader to [Lei85).

The [Lei85] reference: Tom Leighton. Tight bounds on the complexity of parallel sorting. IEEE Transactions
on Computers, C-34(4):344-354, April 1985. https://ieeexplore.ieee.org/document/5009385

