
CSc 345 — Analysis of Discrete Structures
Fall 2024 (McCann)

http://cs.arizona.edu/classes/cs345/fall24/

Program #4: “They did the MASH . . . ”

Due Date: November 26 th, 2024, at the beginning of class

Overview: One practical application of hashing is found in the creation of message digests. A message digest
is a bit–pattern formed from a given ‘message’ by a digest function, which can be thought of as a complex
hash function. The idea is that the digest function produces a message digest from which the original message
cannot easily be found. That is the basic principle behind the original UNIX password system: The encrypted
passwords were available for anyone to look at, because people assumed that it was too hard to use the
encrypted password to determine the plaintext password. In addition to being difficult to reverse, the digest
function should be constructed to make it unlikely that two messages m and n have the same digest. This is
analogous to choosing a hash function that minimizes collisions.

Message digests are used for two common tasks in cryptography: To provide a means for a user to detect if
data has been altered, and to provide a way to ‘sign’ data so that its origin can be verified.

There are quite a few digest functions in existence; see the end of this handout for a reference. For this
assignment, we’ll be implementing the MASH–2 (Modular Arithmetic Secure Hash) digest function, which is
defined in ISO/IEC Standard 10118. The MASH functions are now out–of–date, but they’re simple enough to
use for an assignment.

The Algorithm: Don’t anyone pass out at the sight of this; yes, it’s rather involved, as are most interesting
things in Computer Science, but still straight–forward.

Given: A message x of length (in bits) b.
Two prime numbers, p and q.

1. Compute M = pq, and determine m, the number of bits in M .

2. Determine n, the largest multiple of 16 that is ≤ m. n is the size of the message digest, in bits.

3. Create two n–bit binary numbers H0 and A. Set H0 = 0, and set A to a value consisting of four 1–bits
and n− 4 0–bits. Thus, A = 11110000...0000.

4. Append 0–bits to the right of x to make its length (in bits) equal to the nearest multiple of n

2
.

5. Divide x into t blocks of n

2
bits each. Call these blocks x1, x2, . . ., xt.

6. Create an n

2
–bit block xt+1 that is the binary representation of b (the original length of x in bits).

7. For each block x1 through x
t
:

(a) Partition x
i
into nybbles. (A nybble is half a byte; a 4–bit chunk)

(b) Insert 1111 ahead of (that is, to the left of) each nybble to form the n–bit block y
i

8. Partition x
t+1 into nybbles. Insert 1010 before each to form the n–bit block y

t+1.

9. For each block y1 through y
t+1:

(a) F
i
= ((H

i−1 ⊕ y
i
) ∨ A)257 % M , where ⊕ is bitwise eXclusive–OR, ∨ is bitwise inclusive–OR, and

257 is 25710.

(b) G
i
= the rightmost n bits of F

i

(c) H
i
= G

i
⊕H

i−1

Result : H
t+1 is the message digest.

(Continued . . .)

http://cs.arizona.edu/classes/cs345/fall24/

Example:

Given: x = 1011012; thus, b = 610 = 1102.
The two prime numbers are p = 691110 and q = 694710.

1. M = pq = 4801071710 = 101101110010010101110111012, and thus m = 26 bits.

2. n = 16 (16 is the largest multiple of 16 ≤ m)

3. H0 = 00000000000000002 and A = 11110000000000002

4. b = 6 and the nearest multiple of n

2
is 8, so x becomes 10110100.

5. x1 = 10110100; t = 1.

6. x2 = 00000110

7. 10110100⇒ 1011 and 0100 ⇒ 1111 1011 1111 0100. Thus, y1 = 1111101111110100.

8. 00000110⇒ 0000 and 0110 ⇒ 1010 0000 1010 0110. Thus, y2 = 1010000010100110.

9. For y1:

(a) F1 = 101011011010010100101011 (strangely, I didn’t feel like showing any powers of 257 here)

(b) G1 = 1010010100101011

(c) H1 = 1010010100101011

For y2:

(a) F2 = 10001000101100100000010111

(b) G2 = 1100100000010111

(c) H2 = 0110110100111100

Result : H2 = 0110110100111100 is the message digest.

Assignment: Write a complete, well–documented program that implements the MASH–2 algorithm. Your
implementation is to accept two prime numbers (ints) and a message (of no less than two characters but no
more than 6 characters in length) from the command line, in that order, and display to the screen the digest
(in binary and decimal) produced by the MASH–2 algorithm.

Data: As mentioned above, supply the two primes and the message, in that order, to your program on the
command line. For example: java Prog4 7 11 hashme

Use BigInteger’s isProbablePrime() to test that the given prime numbers are at least likely primes. The
2–to–6 character messages may consist of letters, digits, or punctuation symbols. For example, l33t! is an
acceptable message. If an unacceptable message is provided, display a helpful error message and terminate
using System.exit() and an error code of 1.

Convert the messages to binary representations as follows: For each character, determine the character’s 7–bit
ASCII value, and concatenate them to form a (7n)–bit message, where n is the number of characters in the
message. For example, consider the message “abc”. a’s ASCII value is 97, or 11000012. b’s is 11000102, and
c’s is 11000112. The binary representation of the message is 1100001110001011000112.

As usual, test your program with a variety of primes and messages, because the TAs will, too.

(Continued . . .)

2

Output: If the user supplies valid input, then the program will produce the message’s digest in binary and
decimal representations. Here is the format that you are to use:

Binary: <binary representation using the characters 0 and 1>

Decimal: <decimal representation>

For example (note that those are single spaces after the colons):

Binary: 0110110100111100

Decimal: 27964

If any of the command–line input is inappropriate, display a helpful error message and have the program
terminate using System.exit() and an error code of 1.

Hand In: As usual, you are required to submit your completed program file(s) to the class submission
directory, using the turnin command. The turnin location for this assignment is cs345p4. Name your main
program source file Prog4.java so that we don’t have to guess which file to use.

Want to Learn More?

� You can buy a PDF of ISO/IEC 10118-3:2018 (IT Security techniques – Hash-functions – Part 3: Dedi-
cated hash-functions) for a mere 216 Swiss francs here:
https://www.iso.org/standard/67116.html

� A short description of MASH-1 and MASH-2:
https://link.springer.com/referenceworkentry/10.1007%2F0-387-23483-7_243

� Java includes a MessageDigest Class. Naturally, you may NOT use it for this assignment.
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/security/MessageDigest.html

� A general description of cryptographic hash functions (also not including MASH-2):
https://en.wikipedia.org/wiki/Cryptographic_hash_function

� The algorithm description in this handout is a slight variation of the one presented in the book Intro-

duction to Cryptography with Java Applets by David Bishop. This book does contain an implementation
of the algorithm, but it is somewhat optimized and rather distinctive. Resist the temptation to use any
portion of Bishop’s code (or that of any other implementation you may find, regardless of the source) as
your own; that’s academic dishonesty, and would earn you a zero on the assignment.

Other Requirements, Hints, and Miscellaneous Babbling:

� You will find Java’s java.math.BigInteger class to be very useful. It’s as if it were designed just for
this sort of thing . . .

You may be tempted to think about all of these bit strings as Java Strings of ‘0’ and ‘1’ characters, and
then to try to implement the algorithm using that representation. You’re welcome to try, but I think
you’ll find using BigInteger to be much less work.

� Be aware that several punctuation symbols have special meaning to UNIX command shells. Thus, using
them as input data on a command line can be difficult. You may need to escape some of them, or put
single–quotes around the entire message. For example, java Prog4 'ca$h'

� Origin of the assignment title: “Monster Mash” is a 1962 song written by Bobby ‘Boris’ Pickett and
Lenny Capizzi, and was first performed by Bobby ‘Boris’ Pickett and the Crypt–Kickers. The second
chorus starts with the line “They did the mash.” If you already know the song, good luck getting it out
of your head for the rest of the day. ,

3

