CSc 345 — Analysis of Discrete Structures (McCann)

Single Source Shortest Path (SSSP) Algorithms

Dijkstra's Algorithm

Note: This algorithm is not guaranteed to work in the presence of negative edge weights.

Legend:

source	the source (starting) vertex
d(a, b)	the path cost (distance) from vertex a to vertex b
w(x,y)	the weight of the edge connecting vertices x and y
Known	the set of vertices whose shortest paths from the source vertex are known
Fringe	the set of vertices that we know we can reach from the source

```
Set d(source, source) = 0 and d(source, x) = +infinity, for all other vertices x
 Initialize Known to contain source
2
3
 Initialize Fringe to contain the vertices adjacent to source
 So long as Fringe is not empty:
4
     Find the fringe vertex f that has the smallest d(source, f)
5
               [ where d(source, f) = d(source,t) + w(t,f), where t is Known ]
6
     Move f from Fringe to Known
7
     Add unKnown, unFringe vertices that are adjacent to f to the Fringe
8
     Update Fringe data if necessary
```

Bellman-Ford Algorithm

Legend:

source	the source (starting) vertex
V	vertex set of the graph
d(a, b)	the path cost (distance) from vertex a to vertex b
w(x,y)	the weight of the edge connecting vertices x and y