Linear Programming

The definitions of LP, and other pieces of the material appear in CLRS Chapter 29

The linear-time algorithm for LP in 2D from MMOM

Slides courtesy of Craig Gotsman
Example of an LP: The Diet problem

In the diet problem, we will have to compute two values x and y, indicating many bananas and oranges we will consume daily, so we get enough many vitamins while minimizing the amount of calories.
Define: (amount consumed per day)
- types of foods: \{oranges, bananas\}
- \(j \) – types of vitamins (\(1 \leq j \leq n \)).
- \(x \) – number of pounds of oranges we recommend daily
- \(y \) – number of pounds of bananas we recommend daily

// these are the only unknown we have to compute.
- \(a_{ji} \) – the amount of vitamin \(j \) in a unit of food \(i \)
 \((i=1 \text{ for oranges, } i=2 \text{ for bananas}) \). These are constants.
- \(c_1 \) – the number of calories in an orange.
- \(c_2 \) – the number of calories in a banana.
- \(b_j \) – minimal daily required amount of vitamin \(j \).

Constraints (we need to consume some minimal amount of each vitamin):

\[
\begin{align*}
a_{11}x + a_{12}y & \geq b_1 \\
& \vdots \\
a_{n1}x + a_{n2}y & \geq b_n
\end{align*}
\]

Minimize: the total number of calories:

\[
C((x, y)) = c_1x + c_2y
\]
Define: (amount amount consumed per day)
- \(i \) – types of foods \((1 \leq i \leq d)\).
- \(j \) – types of vitamins \((1 \leq j \leq n)\).
- \(x_i \) – the amount of food of type \(i \) consumed per day.
- \(a_{ji} \) – the amount of vitamin \(j \) in one unit of food \(i \).
- \(c_i \) – the number of calories in one unit of food \(i \).
- \(b_j \) – minimal required amount of vitamin \(j \).

Constraints (we need to consume some minimal amount of each vitamin):

\[
\begin{align*}
\min c^T x \\
\text{Subject to} & \quad Ax \geq b
\end{align*}
\]

Minimize: the total number of calories consumed:

\[
C(x) = c_1 x_1 + c_2 x_2 + \cdots + c_d x_d
\]
Linear Programming – The Geometry

- Each constraint defines a half-space region in d-dimensional space.
- The *feasible region* is the (convex) intersection of these half-spaces.

- We will treat the case $d = 2$, where each constraint defines a *half-plane*.
Flow networks

Definition. A *flow network* is a directed graph $G = (V, E)$ with two distinguished vertices: a *source* s and a *sink* t. Each edge $(u, v) \in E$ has a nonnegative *capacity* $c(u, v)$. If $(u, v) \not\in E$, then $c(u, v) = 0$.

Example:
Flow networks

Definition. A *positive flow* on G is a function $p : V \times V \rightarrow \mathbb{R}$ satisfying the following:

Capacity constraint: For all $u, v \in V$,
\[
0 \leq p(u, v) \leq c(u, v).
\]

Flow conservation: For all $u \in V - \{s, t\}$,
\[
\sum_{v \in V} p(u, v) - \sum_{v \in V} p(v, u) = 0.
\]

The *value* of a flow is the net flow out of the source:
\[
\sum_{v \in V} p(s, v) - \sum_{v \in V} p(v, s).
\]
The solution to the linear program is a point in the feasible region that is extreme in the direction of the target function.

Theorem: Any bounded linear program that is feasible has a solution, which is a vertex of the feasible region.

Proof: Convexity …
Degenerate Cases

- The feasible region may be:
 - Empty
 - Unbounded

- The solution may be:
 - Not unique
The Simplex Algorithm

- Assume WLOG that the cost function points “downwards”.
- Construct (some of) the vertices of the feasible region.
- Walk edge by edge downwards until reaching a local minimum (which is also a global minimum).

- In \mathbb{R}^d, the number of vertices might be $\Theta(n^{\lceil d/2 \rceil})$.
LP History

- Mid 20th century: Simplex algorithm, time complexity $\Theta(n^{d/2})$ in the worst case.
- 1980’s (Khachiyan) ellipsoid algorithm with time complexity poly(n,d).
- 1980’s (Karmakar) interior-point algorithm with time complexity poly(n,d).
- 1984 (Megiddo) – parametric search algorithm with time complexity $O(C_d n)$ where C_d is a constant dependent only on d. E.g. $C_d = 2^{d^2}$.
- The holy grail: An algorithm with complexity independent of d.

- In practice the simplex algorithm is used because of its linear expected runtime.
O(n log n) 2D Linear Programming

- **Input:**
 - n half planes.
 - Cost function that WLOG “points down”.

- **Algorithm:**
 - Partition the n half-planes into two groups.
 - S are all halfplanes contain the point $(0, \infty)$
 - S' all other halfplanes contain the point $(0, -\infty)$
 - Sort them by slopes
 - Compute the upper envelop $U(S)$ and the lower envelop $L(S')$
 (using question from hw1)
 - Scan simultaneously from left to right, and compute intersection of two envelopes - they can intersect only at 2 points (why).
 - Evaluate cost function at each vertex.
O(n^2) Incremental Algorithm

The idea:
- Start by intersecting two halfplanes.
- Add halfplanes one by one and update optimal vertex by solving one-dimensional LP problem on new line if needed.
Incremental Algorithm - Notation

- h_i the i^{th} half plane
- l_i the line that defines h_i
- C_i the feasible region after i constraints
- v_i the optimal vertex of C_i

Cost function to minimize: $c(x,y) = y$
Returns the lowermost point in feasible region
Theorem:

1. If $v_{i-1} \in h_i$, then $v_i = v_{i-1}$. // O(1) check, nothing to do

2. If $v_{i-1} \not\in h_i$, then either
 - $C_i = \emptyset$ // terminate
 - or $C_i = C_{i-1} \cap h_i$ and v_i lies on l_i // run 1D LP

Proof:

1. Trivial. Otherwise v_i would not have been optimum before.
2. Assume that v_i is not on l_i. v_i must be in C_{i-1}.
 By convexity, also the segment v_iv_{i-1} is in C_{i-1}.

 Consider point v_j - the intersection of v_iv_{i-1} with l_i. v_j is in both C_{i-1} and C_i, and is better than v_i.

 Contradiction.
Finding v_i given l_i (one-dimensional LP)

- Intersect each h_j ($j<i$) with l_i, generating $i-1$ rays representing (unbounded) intervals.
- Intersect the $i-1$ intervals in $O(i)$ time.
- If the intersection is empty then report no solution, else report the lowest point.
Complexity Analysis

\[T(n) = \sum_{i=3}^{n} O(i) = O(n^2) \]
Incremental Algorithm – $O(n)$
Randomized Version

- Exactly like the deterministic version, only the order of the lines is random.

- Theorem: The expected runtime of the random incremental algorithm (over all $n!$ permutations of the input constraints) is $O(n)$.
Complexity Analysis

The expected runtime is:

\[
\sum_{i=3}^{n} \left[O(1)(1 - E(x_i)) + O(i)E(x_i) \right] \leq O(n) + \sum_{i=3}^{n} [O(i)E(x_i)]
\]

where \(x_i \) is a random variable:

\[
x_i = \begin{cases}
1 & v_i \neq v_{i-1} \quad // \text{run 1D LP} \\
0 & v_i = v_{i-1} \quad // \text{do nothing}
\end{cases}
\]
Backward analysis

- **Question**: When given a solution after \(i \) half-planes, what is the probability that the last half-plane affected the solution?

- **Answer**: Exactly \(2/i \), because a change can occur only if the last halfplane inserted is one of the two halfplanes thru \(v_i \). (note that \(v_i \) depends on the \(i \) halfplanes, but not on their order)
Complexity Analysis

\[E(x_i) = \Pr(v_i \neq v_{i-1}) \approx \frac{2}{i} \]

\[O(n) + \sum_{i=3}^{n} O(i) E(x_i) = O(n) + O \left(\sum_{i=3}^{n} i \cdot \frac{2}{i} \right) = O(n) \]
Just to Make Sure …

- **False Claim:**
 - The probabilistic analysis is for the average input. Hence there exist bad sets of constraints for which the algorithm’s expected runtime is *more* than $O(n)$, and there exist good sets of constraints for which the algorithm’s expected runtime is *less* than $O(n)$.

- **True Claim:**
 - The probabilistic analysis is valid for *all* inputs. The expected complexity is over all *permutations* of this input.
Now the input is a collection of half-spaces \(\{h_1 \ldots h_n\} \).

Now \(l_i \) is the plane bounding \(h_i \). (notations are analogous to the 2D case).

We will define \(v_3 \) as the intersection of the planes \(l_1, l_2 \) and \(l_3 \).

We insert the other halfspaces \(\{h_4 \ldots h_n\} \) at a random order, and update \(v_i \) according to the following Theorem:

Theorem:

1. if \(v_{i-1} \in h_i \), then \(v_i = v_{i-1} \). // O(1) check,
 nothing to do

2. if \(v_{i-1} \not\in h_i \), then the solution (if exists) is on \(l_i \).

 run \(v_i = \text{2DLP}(h_1 \cap l_i, h_2 \cap l_i, h_3 \cap l_i, \ldots, h_{i-1} \cap l_i). \)

Terminates if there is no solution (that is, \(C_i = \emptyset \))
In 3D, the worst case running time is $\Theta(n^3)$ \textit{(prove)}.

However, the expected running time is $O(n)$. In general, the running time in d-dimension is $O(d! \ n)$. That is, linear in any fixed (and small) dimension.