Union/Find
Aka: Disjoint-set forest

Alon Efrat

Problem definition

Given: A set of atoms \(S = \{1, 2, \ldots, n\} \)
E.g. each represents a commercial name of a drugs.
This set consists of different disjoint subsets.

Problem: suggest a data structures that efficiently supports two operations

- **Find** \((i, j)\) – reports if the atom \(i\) and atom \(j\) belong to the same set.
- **Union** \((i, j)\) – unify (merged) all elements of the set containing \(i\) with the set containing \(j\).

*Example – on the board.

Naïve attempts

Idea: Each element “knows” to which set it belongs
(recall – each atom belongs to exactly one set)

Bad idea: once two sets are merged, we need to scan all elements of one set and “tell” them that they belong to a different set – requires lots of work if the set is large.

A Promising Attempt

- Store a forest of trees.
- Each set is stored as a tree (each node is an atom)
- Every node points to the parent
(different than standard trees)

Only the root “knows” the name of the set.

So the ‘name’ of the set \(\{2, 3, 4, 1\}\) is 2.
The name of the set \(\{5, 6, 7, 8\}\) is 8.
The name of the set \(\{9\}\) is 9.
The name of the set \(\{11, 12\}\) is 12.

To find if two atoms belong to the same set, just check if they belong to same tree: Follow the parents pointers from each of them up all the way to the roots. Check if reached the same root.
A forest of disjoint sets – merging trees

Find_root(j){
 If (p[j] ≠ j) return Find_root(p[j]);
 // p[] - points to the parent
 Else return j;
}

Find(i,j){
 return (Find_root(i) == Find_root(j));
}

Union(i,j){
 Let r = Find_root(j);
 p[r] = i;
}

Example – Union(5,11)

It this efficient?

Time per ans operation depends on the height of the tree. Might be \(\Theta(n) \) in the worst case.

So \(n \) operations takes \(\Theta(n^2) \)

Could we do better?

First improvement

Improved union operation – version 1

Example – Union(5,11)

Note that we can also do

Improved union operation – version 1
Keeping tracks of # nodes

Every root (only roots) stores the number of nodes in its tree. Let \(n_r \) denote this field in the root \(r \).

```plaintext
Union(i,j) {
    Let \( r_1 = \text{Find}_\text{root}(i) \);  Let \( r_2 = \text{Find}_\text{root}(j) \);
    /* connect the root of the small tree as a child of the root of
       the larger tree */
    if (\( r_1.n < r_2.n \)) {    p[\( r_1 \)] = \( r_2 \);
        \( r_2.n += r_1.n \);  }
    else {   p[\( r_2 \)] = \( r_1 \);
        \( r_1.n += r_2.n \)  }
}
```

Example: \(\text{Union}(9,3) \)

Proving bounds on the height

Assume we start from a forest where each node is a singleton (a set of one element), and we perform a sequence of union operations.

Lemma: The height of every tree is \(\leq \log_2 n \). (\(n \) – number of atoms)

Proof: Show by induction that every tree of height \(h \) has \(\geq 2^h \) nodes.

Assume true for every tree of height \(h' < h \), and assume that after merging trees \(T_1, T_2 \), we created a tree of height exactly \(h \).

\(T_2 \) has height exactly \(h-1 \), so it has \(\geq 2^{h-1} \) nodes.

\(T_1 \) also has \(2^{h-1} \) nodes, (why?)

Together they have \(2^{h-1} + 2^{h-1} = 2^h \) nodes.

Further improvement: path compression

So far we know that every tree has height \(O(\log n) \), so this bounds the time for each operation.

Path compression: during either union or find operation, we scan a sequence of nodes on our way from a node \(j \) to the root.

Idea: set the parent pointer of all these node to points to the root.
(Slightly more work to perform it, but pays off in next operations)

```plaintext
\text{Find}_\text{root}(j ) {  
    \text{If } p[j] \neq j \text{ then } p[j]=\text{Find}_\text{root}(p[j]);  
    \text{return } p[j]  
}
```

Make sense – but how fast is it?

Consider a set of \(n \) atoms.

Thm: Any sequence of \(m \) U/F operations takes \(O(m a(n)) \).

Here \(a(n) \) is the inverse function of Ackerman function, and is approaching infinity as \(n \) approaching infinity.

However, it does it very slowly.

\(a(n) <4 \) when \(n < 10^{100} \).
Connected Components in Undirected graphs

Let $G(V, E)$ be a graph.

Definition:
We say that a subset C of V is a connected component (CC) iff for every pair $u, v \in C$, there is a path connecting u to v, and no path connects u to a node $\notin C$.

Examples:
1. If $G(V, E)$ is connected then V is a (single) CC.
2. If $G(V, E)$ contains no edges, then every node is CC, which contains only itself.
3. If $G(V, E)$ is a tree, and we deleted an edge from E, then the resulting graph has 2 CCs.

Minimum Spanning Trees

Given: a graph $G(V, E)$ with positive weights on its edges.

A Minimum spanning tree (MST) is any graph T such that

1. Every vertex of V appears in T, and
2. T is connected (has a path between every two vertices)
3. T is a subset of E
4. Sum of weights of its edges are as small as possible

Application: Kruskal algorithm

Kruskal algorithm for finding a MST.

Input: Graph $G(V, E)$. **Output:** Minimal Spanning Tree for G.

1. Assume $E = \{e_1, ..., e_m\}$ is sorted from cheapest edge to most expensive edge.
2. Set $S = \text{EmptySet}$. S determines or more trees, each is a subtree of $\text{MST}(G)$.
3. For $i = 1..m$
 - if $e_i \cup S$ does not contain a cycle, add e_i to S
 // We use U/F structure to answer last test

We need a mechanism to determine if a new edge $e=(u,v)$ connects two vertices from different trees, or both u and v belong to the same tree.

Idea: Use U/F data structure.

If E is sorted, then the time is $O(|E| \alpha(|E|))$.

Application: Kruskal algorithm

Input: Graph $G(V, E)$. **Output:** Minimal Spanning Tree for G.

Assume $E = \{e_1, ..., e_m\}$ is sorted from cheapest edge to most expensive edge.

The algorithm maintains a set S of disjoint trees, each is a subtree of $\text{MST}(G)$

1. Set $S = \text{EmptySet}$. S determines or more trees, each is a subtree of $\text{MST}(G)$
2. Assume $E = \{e_1, ..., e_m\}$ is sorted from cheapest edge to most expensive edge.
3. For $i = 1..m$
 - if $e_i \cup S$ does not contain a cycle, add e_i to S
 // We use U/F structure to answer last test

We need a mechanism to determine if a new edge $e=(u,v)$ connects two vertices from different trees, or both u and v belong to the same tree.

Idea: Use U/F data structure.

If E is sorted, then the time is $O(|E| \alpha(|E|))$.