
Topic 3:

Files and Indexing

Files and Indexing – CSc 460 v1.1 (McCann) – p. 1/50

The Storage Pyramid

Files and Indexing – CSc 460 v1.1 (McCann) – p. 2/50

Hard Drive Physical Characteristics (1 / 2)

Side View

Files and Indexing – CSc 460 v1.1 (McCann) – p. 3/50

Hard Drive Physical Characteristics (2 / 2)

Top View

Files and Indexing – CSc 460 v1.1 (McCann) – p. 4/50

Sources of Read / Write Delay

The three major sources of delay (in descending order):

Files and Indexing – CSc 460 v1.1 (McCann) – p. 5/50

Western Digital 3.5” Hard Drive Specs

WD450AA WD1002FAEX DC HC550 DC HC690

(9/2000) (7/2012) (8/2020) (5/2025)

Size (GB) 45 1,000 18,000 32,000

Platters & Heads 3 & 6 3 & 6 9 & 18 11 & 22

Bytes per Sector 512 512 512 / 4096 512 / 4096

Sectors per Surface 14,655,144 325,587,528 1,953,147,562 2,840,973,684

Rotations (RPM) 5400 7200 7200 7200

R/W Seeks (ms) 9.5 / 13.4 ?? / ?? ?? / ?? ?? / ??

Latency (ms) 5.4 4.2 4.16 4.16

Cache (MB) 2 64 512 512

Xfer Rate (MiB/s max.) 66.6 126.0 257.0 257.0

Read / Write (W) 6.2 6.8 6.5 9.4

[Power] Idle (W) 6.2 6.1 5.6 5.5

Standby / Sleep (W) ∼1.1 0.7 ?.? ?.?

Files and Indexing – CSc 460 v1.1 (McCann) – p. 6/50

RAID Background (1 / 3): Disk Mirroring

(a) Disk Mirroring

Advantage(s):

Disadvantage(s):

Files and Indexing – CSc 460 v1.1 (McCann) – p. 7/50

RAID Background (2 / 3): Disk Striping

(b) Disk Striping

Example(s):

Advantage(s):

Disadvantage(s):

Files and Indexing – CSc 460 v1.1 (McCann) – p. 8/50

RAID Background (3 / 3): Parity Bits

(c) Parity Schemes

Example(s):

Advantage(s):

Disadvantage(s):

Files and Indexing – CSc 460 v1.1 (McCann) – p. 9/50

Detour: Independent Event Probabilities (1 / 3)

First, some set and probability review!

1. DeMorgan’s Laws for Sets:

2. For a sample space S and an event E ∈ S,

the probability of E ’s occurrence is:

3.
∑

e∈S

p(e) =

Files and Indexing – CSc 460 v1.1 (McCann) – p. 10/50

Detour: Independent Event Probabilities (2 / 3)

Next, Independent Events:

4. Events A and B are independent when . . .

5. Recall: Principle of Inclusion/Exclusion for 2 Sets is:

Applied to probabilities:

Files and Indexing – CSc 460 v1.1 (McCann) – p. 11/50

Detour: Independent Event Probabilities (3 / 3)

Probabilities for Independent Events (cont.):

Recall:

4. p(A ∩ B) = p(A) · p(B)

5. p(A ∪ B) = p(A) + p(B)− p(A ∩ B)

6. Combining (4) and (5):

7. And thanks to DeMorgan’s Laws and (4):

Files and Indexing – CSc 460 v1.1 (McCann) – p. 12/50

Probability of Hard Disk Drive Failures (1 / 4)

Factors contributing to HDD failures include:

How often does a ‘young’ (1-3 years old) HDD fail?

Refs: http://research.google.com/archive/disk_failures.pdf

https://www.backblaze.com/blog/best-hard-drive/

Files and Indexing – CSc 460 v1.1 (McCann) – p. 13/50

Probability of Hard Disk Drive Failures (2 / 4)

What is the pf for a striped 2-disk system?

⇒ Remember, the system fails when either drive fails!

(Let D#f be the event of Disk # failing.)

pf = p(D1f ∪ D2f) Either or both!

= p(D1f) + p(D2f)− p(D1f) · p(D2f) Princ. Inc./Ex. &

= 0.02 + 0.02− (0.02)2 . . . Indep. events

= 0.0396 (3.96%)

Files and Indexing – CSc 460 v1.1 (McCann) – p. 14/50

Probability of Hard Disk Drive Failures (3 / 4)

New point of view: Be an optimist!

The probability that Disk D# does not fail:

p(D#nf) = 1− p(D#f) = 1− 0.02 = 0.98

What is the pnf for a striped 2-disk system?

pnf = p(D1f ∪ D2f) [Neither fails!]

= p(D1f ∩ D2f) [De Morgan’s]

= p(D1nf ∩ D2nf) [D#f = D#nf]

= p(D1nf) · p(D2nf) [Independent events assumed]

= p(D#nf)
2 [Foreshadowing . . .]

= (0.98)2 [From above]

= 0.9604 (96.04%) [= 1− 0.0396]

Files and Indexing – CSc 460 v1.1 (McCann) – p. 15/50

Probability of Hard Disk Drive Failures (4 / 4)

What if we have dozens of HDDs? Say, three dozen?

No problem; being optimistic scales nicely!

pnf = p(D1f ∪ . . . ∪ D36f) [None fail!]

= p(D1f ∩ . . . ∩ D36f) [Massive De Morgan’s]

= p(D1nf ∩ . . . ∩ D36nf) [D#f = D#nf]

= p(D1nf) · . . . · p(D36nf) [Independent events assumed]

= (0.98)36 [From last slide]

= 0.4832 . . . (48.32%) [pf = 1− pnf = 0.5168]

Remember: Assuming independence is convenient, not realistic!

Files and Indexing – CSc 460 v1.1 (McCann) – p. 16/50

RAID: Redundant Arrays of Independent∗ Disks (1 / 2)
∗ Originally “Inexpensive”

Level 0: Striped Volume (N data disks)

Level 1: Mirrored (N data disks + N mirror disks)

Files and Indexing – CSc 460 v1.1 (McCann) – p. 17/50

RAID: Redundant Arrays of Independent Disks (2 / 2)

Level 5: Block–Interleaved Distributed Parity (N+1 disks)

Level 6: “Double Parity”

Files and Indexing – CSc 460 v1.1 (McCann) – p. 18/50

SSDs: Solid–State Device (Flash) Storage

• NAND–based non–volatile RAM

• Not a new idea: Used to have “RAM drives”

(Even though the 1981 IBM PC had 256 KB RAM – max!)

Advantage(s):

Disadvantage(s):

Files and Indexing – CSc 460 v1.1 (McCann) – p. 19/50

File Granularity Hierarchy

Bits

⇓
Bytes
⇓

Fields

⇓
Records

⇓
Blocks
⇓

Files
⇓

Databases

Files and Indexing – CSc 460 v1.1 (McCann) – p. 20/50

File Blocking (1 / 2)

Definition: Blocking Factor (bf)

Definition: Internal Fragmentation

Example(s):

Files and Indexing – CSc 460 v1.1 (McCann) – p. 21/50

File Blocking (2 / 2)

Locating records within blocks:

Files and Indexing – CSc 460 v1.1 (McCann) – p. 22/50

Indexing

Definition: Index

Files and Indexing – CSc 460 v1.1 (McCann) – p. 23/50

A Few Words about Keys

Some of the types of keys:

Files and Indexing – CSc 460 v1.1 (McCann) – p. 24/50

One Classification of Indices

Files and Indexing – CSc 460 v1.1 (McCann) – p. 25/50

Primary Index (1 / 2)

Characteristics:

• The indexed field is .

• The index records are on the key.

• The DB file records are on the key.

Files and Indexing – CSc 460 v1.1 (McCann) – p. 26/50

Primary Index (2 / 2)

Example(s):

University RID

Eau Claire

Green Bay

La Crosse

Madison

Milwaukee

Oshkosh

Parkside

Platteville

River Falls

Stevens Point

Stout

Superior

Whitewater

PRIMARY INDEX

University Founded

Eau Claire

Green Bay

La Crosse

Madison

Milwaukee

Oshkosh

Parkside

Platteville

River Falls

Stevens Point

Stout

Superior

Whitewater

1916

1968

1909

1848

1885

1871

1968

1866

1874

1894

1891

1893

1868

Files and Indexing – CSc 460 v1.1 (McCann) – p. 27/50

Clustered Index (1 / 2)

Characteristics:

• The indexed field is .

• The index records are on the key.

• The DB file records are on the key.

Files and Indexing – CSc 460 v1.1 (McCann) – p. 28/50

Clustered Index (2 / 2)

Example(s):

Founded RID

1848

1866

1868

1871

1874

1885

1891

1893

1894

1909

1916

1968

1968

CLUSTERED INDEX

University Founded

Madison

Platteville

Whitewater

Oshkosh

River Falls

Milwaukee

Stout

Superior

Stevens Point

La Crosse

Eau Claire

Green Bay

Parkside

1848

1866

1868

1871

1874

1885

1891

1893

1894

1909

1916

1968

1968

Files and Indexing – CSc 460 v1.1 (McCann) – p. 29/50

Secondary Index (1 / 2)

Characteristics:

• The indexed field is .

• The index records are on the key.

• The DB file records are on the key.

Files and Indexing – CSc 460 v1.1 (McCann) – p. 30/50

Secondary Index (2 / 2)

Example(s):

University Founded

Eau Claire

Green Bay

La Crosse

Madison

Milwaukee

Oshkosh

Parkside

Platteville

River Falls

Stevens Point

Stout

Superior

Whitewater

1916

1968

1909

1848

1885

1871

1968

1866

1874

1894

1891

1893

1868

IBP Founded

1848

1866

1868

1871

1874

1885

1891

1893

1894

1909

1916

1968

SECONDARY

Files and Indexing – CSc 460 v1.1 (McCann) – p. 31/50

Another Index Categorization: Dense vs. Sparse (1 / 2)

Dense Indices:

Sparse Indices:

Notes:

Files and Indexing – CSc 460 v1.1 (McCann) – p. 32/50

Another Index Categorization: Dense vs. Sparse (2 / 2)

Example(s):

University Founded

Eau Claire

Green Bay

La Crosse

Madison

Milwaukee

Oshkosh

Parkside

Platteville

River Falls

Stevens Point

Stout

Superior

Whitewater

1916

1968

1909

1848

1885

1871

1968

1866

1874

1894

1891

1893

1868

BID University

Eau Claire

Milwaukee

River Falls

Whitewater

SPARSE PRIMARY

Files and Indexing – CSc 460 v1.1 (McCann) – p. 33/50

Review of Internal Hashing

• Goal: O(1) search performance

• Key → Hash Coding → Compression Mapping →

Hash Table Index

• Collision Resolution: Chaining v. Open Addressing

• Problem:

Files and Indexing – CSc 460 v1.1 (McCann) – p. 34/50

Dynamic Hashing

Two components:

Example(s): Let bf=3. Insert 1101, 1000, 0101, 0010, 1110, and 1010:

Files and Indexing – CSc 460 v1.1 (McCann) – p. 35/50

Extendible Hashing: Basics

Improvement over Dynamic Hashing:

Directory is an array ⇒
d = 1

d = 1

0

1

D = 1

Directory

Index Blocks

Files and Indexing – CSc 460 v1.1 (McCann) – p. 36/50

Extendible Hashing: Insertion (1 / 2)

When a key is inserted into a full index block:

• The block becomes k blocks

• The depth of each is one more than the original’s

• Existing content is distributed to the new blocks

• If any d > D, split (‘double’) the directory:

◦ increase global depth by one

◦ create new directory of kD pointers

◦ copy existing block pointers

◦ add pointers to new blocks

Files and Indexing – CSc 460 v1.1 (McCann) – p. 37/50

Extendible Hashing: Insertion (2 / 2)

After Inserting 11011,

00101, 01101, 10010,

and 00100:

00101

01101

00100

11011

10010

d = 1

d = 1

0

1

D = 1

(Assume max. 3 keys/node)

After Inserting 01110:

Files and Indexing – CSc 460 v1.1 (McCann) – p. 38/50

Extendible Hashing: Deletion

Question: Do you have lots of disk space available?

If so:

If not:

Files and Indexing – CSc 460 v1.1 (McCann) – p. 39/50

B–Trees: Structure

But first: Know that “B” does not stand for “binary”!

“Bayer”? (Rudolf Bayer & Edward McCreight, ’72)

“Balanced”? (It is!) “Boeing”? (McCreight’s employer?)

Structure of a B–Tree node: k0 k1 kn−1

— A node holding n keys holds n+ 1 pointers

— Each key is stored in the index exactly once (∴ dense)

— A node’s keys are stored in (ascending) sorted order

— Pointer 0’s subtree has all keys < key k0

— Pointer i’s subtree has all keys > ki−1 and < ki

— Pointer n’s subtree has all keys > kn−1

Files and Indexing – CSc 460 v1.1 (McCann) – p. 40/50

B-Trees: Definition

Definition: B-Tree of Order M (a la D. Comer♮)

♮ Comer, D. “The Ubiquitous B–Tree,” ACM Computing Surveys 11(2), June 1979,

pp. 121-137.
Files and Indexing – CSc 460 v1.1 (McCann) – p. 41/50

B-Tree: Insertion (1 / 2)

• Find the leaf node that should contain the new key value

• If leaf has capacity, insert the key into it.

Otherwise:

◦ Form a set of the leaf’s keys plus the insertion key

◦ Promote the set’s median value to the parent

◦ Create two nodes to hold the key values that are < and > the

median, respectively.

◦ Attach nodes as children on either side of the median

Files and Indexing – CSc 460 v1.1 (McCann) – p. 42/50

B-Tree: Insertion (2 / 2)

Example: Insert 40, 20, 60, 10, 80, 5, 15, and 25

into a B-Tree of Order 2:

Files and Indexing – CSc 460 v1.1 (McCann) – p. 43/50

B-Tree: Deletion (1 / 2)

When a deletion leaves a node under-full:

• If the under-full node is a leaf node:

◦ If a neighboring sibling has above-minimum occupancy, borrow:

· Move separating value from parent to under-full node

· Move appropriate value (smallest / largest) from neighbor to parent

◦ Otherwise, concatenate:

· Merge node, a neighboring sibling, and the parent’s separating

value into one node

· (Note that this can leave the parent under-full, so recurse!)

• Otherwise, the under-full node is an internal node:

◦ Replace deleted key with its inorder predecessor or successor

◦ Recurse if necessary

Files and Indexing – CSc 460 v1.1 (McCann) – p. 44/50

B-Tree: Deletion (2 / 2)

Still assuming M = 2Example(s):

Initially H P

A C D F J L V X

Files and Indexing – CSc 460 v1.1 (McCann) – p. 45/50

B-Tree: Capacity

What is the key capacity of a B-Tree of Order M?

Example(s):

Files and Indexing – CSc 460 v1.1 (McCann) – p. 46/50

B-Tree: Order Determination

The Idea: Select order to best fit disk block capacity

Remember: A node of a B-Tree of Order M can hold

2M keys and 2M + 1 pointers

Example(s):

Files and Indexing – CSc 460 v1.1 (McCann) – p. 47/50

B+–Tree: A B-Tree for Indexing

Like a B-Tree, but:

Files and Indexing – CSc 460 v1.1 (McCann) – p. 48/50

B+–Tree: Insertion

Example(s):

Files and Indexing – CSc 460 v1.1 (McCann) – p. 49/50

B+–Tree: Advantages and Disadvantages over B-Trees

Advantage(s):

Disadvantage(s):

Files and Indexing – CSc 460 v1.1 (McCann) – p. 50/50

	Topic 3:
	The Storage Pyramid
	Hard Drive Physical Characteristics (1 / 2)
	Hard Drive Physical Characteristics (2 / 2)
	Sources of Read / Write Delay
	Western Digital 3.5'' Hard Drive Specs
	RAID Background (1 / 3):
Disk Mirroring
	RAID Background (2 / 3):
Disk Striping
	RAID Background (3 / 3):
Parity Bits
	Detour: Independent Event Probabilities (1 / 3)
	Detour: Independent Event Probabilities (2 / 3)
	Detour: Independent Event Probabilities (3 / 3)
	Probability of Hard Disk Drive Failures (1 / 4)
	Probability of Hard Disk Drive Failures (2 / 4)
	Probability of Hard Disk Drive Failures (3 / 4)
	Probability of Hard Disk Drive Failures (4 / 4)
	large RAID: Redundant Arrays of Independent* Disks (1 / 2)
	large RAID: Redundant Arrays of Independent Disks (2 / 2)
	SSDs: Solid--State Device (Flash)
Storage
	File Granularity Hierarchy
	File Blocking (1 / 2)
	File Blocking (2 / 2)
	Indexing
	A Few Words about Keys
	One Classification of Indices
	Primary Index (1 / 2)
	Primary Index (2 / 2)
	Clustered Index (1 / 2)
	Clustered Index (2 / 2)
	Secondary Index (1 / 2)
	Secondary Index (2 / 2)
	large Another Index Categorization: Dense vs. Sparse (1 / 2)
	large Another Index Categorization: Dense vs. Sparse (2 / 2)
	Review of Internal Hashing
	Dynamic Hashing
	Extendible Hashing: Basics
	Extendible Hashing: Insertion (1 / 2)
	Extendible Hashing: Insertion (2 / 2)
	Extendible Hashing: Deletion
	B--Trees: Structure
	B-Trees: Definition
	B-Tree: Insertion (1 / 2)
	B-Tree: Insertion (2 / 2)
	B-Tree: Deletion (1 / 2)
	B-Tree: Deletion (2 / 2)
	B-Tree: Capacity
	B-Tree: Order Determination
	B$^{+}$--Tree: A B-Tree for Indexing
	B$^{+}$--Tree: Insertion
	large B$^{+}$--Tree: Advantages and Disadvantages over B-Trees

